首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wheat cultivar Xingzi 9104 (XZ) possesses adult plant resistance (APR) to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). In this study, histological and cytological experiments were conducted to elucidate the mechanisms of APR in XZ. The results of leaf inoculation experiments indicated that APR was initiated at the tillering stage, gradually increased as the plant aged and highly expressed after boot stage. The histology and oxidative burst in infected leaves of plants at seedling, tillering and boot stages were examined using light microscopic and histochemical methods. Subcellular changes in the host–pathogen interactions during the seedling and boot stages were analyzed by transmission electron microscopy. The results showed that haustorium formation was retarded in the adult plants and that the differentiation of secondary intercellular hyphae was significantly inhibited, which decreased the development of microcolonies in the adult plants, especially in plants of boot stage. The expression of APR to stipe rust during wheat development was clearly associated with extensive hypersensitive cell death of host cells and localized production of reactive oxygen species, which coincided with the restriction of fungal growth in infection sites in adult plants. At the same time, cell wall-related resistance in adult plants prevented ingression of haustorial mother cells into plant cells. Haustorium encasement was coincident with malformation or death of haustoria. The results provide useful information for further determination of mechanisms of wheat APR to stripe rust. Key message The expression of APR to stipe rust in wheat cultivar Xingzi 9104 (XZ) was clearly associated with extensive hypersensitive cell death of host cells and the localized production of reactive oxygen species.  相似文献   

2.
Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' x 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.  相似文献   

3.
4.
小麦品种贵农22号抗条锈基因遗传分析   总被引:7,自引:0,他引:7  
贵农22号是利用簇毛麦(Haynaldia villosa)、硬粒小麦(Triticum durum)及普通小麦(Triticum aestuvum)杂交而育成的普通小麦品种,其抗中国目前流行和出现的条锈菌小种,已成为目前重要的抗小麦条锈病抗源。为了明确该品种抗锈遗传规律并进行应用前景评价,用一个流行的强毒性小种条中31号和一个突变弱毒性小种CY29-mut3,分别接种贵农22与国际已知抗锈基因品种Moro及感病品种辉县红双列杂交F2、F2代各株系幼苗,对贵农22号进行了抗锈性遗传分析,以便于在抗病育种中进一步应用。研究结果表明,贵农22号有三对独立遗传的抗条锈基因,暂定名为YrGui 1、YrGui 2和YrGui 3,它们表达稳定,不受亲本正反交影响,而并不具有Yr 10。Yr10基因载体品种Moto中有二或四对基因抗中国不同的条锈菌小种,不同小种及正反交对基因的表达有影响,为父本时其对CY29-mut3小种有两对完全显性基因、一对中度抗病基因及一对隐性抗病基因,而为母本时有一对完全显性基因和一对中度抗病基因起抗病作用;对条中31号,其为父本时有一对显性基因和一对隐性基因,为母本时可能存在两对累加作用基因或两对隐性抗病基因控制抗痫作用。  相似文献   

5.
6.
西科麦2028是地理远缘小麦材料的杂交后代,具有突出的抗条锈病性能。为了解西科麦2028对小麦条锈病的抗性遗传规律,以西科麦2028和铭贤169的杂交群体为研究对象,采用我国目前小麦条锈菌流行小种CYR31、CYR32、CYR33、Su11-4对供试群体进行成株期接种,分析杂交后代的抗病性及分布情况。结果表明:西科麦2028对CYR31的抗病性由3对显性基因控制;对CYR32由2对显性和1对隐性基因控制;对CYR33由1对显性基因控制;对Su11-4由1对显性和1对隐性基因控制。  相似文献   

7.
Wollaroi, an Australian durum wheat cultivar, produced a low stripe rust response and the alternative parent Bansi was highly susceptible. The Wollaroi/Bansi recombinant inbred line (RIL) population was phenotyped across three consecutive crop seasons. A genetic map of the Wollaroi/Bansi RIL population comprising 799 markers (diversity arrays technology and simple sequence repeat markers) was used to determine the genomic location of stripe rust resistance genes carried by the cultivar Wollaroi. Composite interval mapping detected three consistent quantitative trait loci (QTL) in chromosomes 2A, 3B and 5B. These QTL were named QYr.sun-2A, QYr.sun-3B and QYr.sun-5B. Another QTL, QYr.sun-1B, was detected only in the 2009 crop season. QTL in chromosomes 1B, 2A, 3B and 5B explained on average 6, 9.3, 26.7 and 8.7 %, respectively, of the variation in stripe rust response. All QTL were contributed by Wollaroi. RILs carrying these QTL singly produced intermediate stripe rust severities ranging from 46.2 to 55.7 %, whereas RILs with all four QTL produced the lowest disease severity (34.3 %). The consistently low stripe rust response of Wollaroi for 20 years demonstrated the durability of the resistance loci involved. The QTL combination detected in this study is being transferred to common wheat.  相似文献   

8.

Key message

A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.
  相似文献   

9.
Stripe rust, caused by Puccinia striiformis f. sp. tritici , is a serious disease of wheat. The spring wheat cultivar Kariega expresses complete adult plant resistance to stripe rust, whereas Avocet S is susceptible. In former studies, quantitative trait loci (QTL) analysis of doubled haploid lines derived from a Kariega × Avocet S cross revealed two major QTL ( QYr.sgi-7D and QYr.sgi-2B.1 ) and two minor QTL ( QYr.sgi-1A and QYr.sgi-4A.1 ) responsible for the adult resistance of Kariega in the field. Avocet S contains none of these QTL. In the present study, stripe rust development was compared, by means of fluorescence and confocal laser scanning microscopy, in flag leaves of Kariega, Avocet S and six doubled haploid (DH) lines, containing all four, none or one QTL. Depending on the QTL present, the infection types of the DH lines ranged from resistant to fully susceptible. No differences in fungal growth were observed during the first 5 days post inoculation (dpi), whereas the mean length of the fungal colonies started to differ at 6 dpi. Interestingly, MP 51 carrying QYr.sgi-7D responded with lignification to the fungal growth without restricting it, whereas MP 35 containing QYr.sgi-2B.1 did not show lignified host tissue, but fungal growth was restricted. RT PCR experiments with sequences of pathogenesis-related (PR) proteins resulted in a slightly stronger induction of PR 1, 2 and 5, known markers for the hypersensitive reaction, and peroxidases in MP 51, whereas a second band for chitinases was detected in MP 35 only.  相似文献   

10.
Stripe rust resistance in the German winter wheat cv. Alcedo has been described as durable, the resistance having remained effective when grown extensively in Germany and Eastern Europe between 1975 and 1989. Genetic characterisation of field resistance in a cross between Alcedo and the stripe rust susceptible UK winter wheat cv. Brigadier identified two major QTL in Alcedo located on the long arms of chromosomes 2D (QPst.jic-2D) and 4B (QPst.jic-4B). Stripe rust resistance was evaluated by measuring the extent of fungal growth, percentage infection (Pi) and the necrotic/chlorotic response of the plant to infection, infection type (IT). Both QPst.jic-2D and QPst.jic-4B contributed significantly to the reduction in stripe rust infection (Pi), with QPst.jic-2D explaining up to 36.20% and QPst.jic-4B 28.90% of the phenotypic variation measured for Pi. Both QTL were identified by the IT phenotypic scores, with QPst.jic-2D in particular being associated with a strong necrotic phenotype (low IT), QPst.jic-2D explaining up to 53.10% of IT phenotypic variation and QPst.jic-4B 22.30%. In addition, two small effect QTL for field stripe rust resistance were identified in Brigadier, QPst.jic-1B on the long arm of chromosome 1B and QPst.jic-5A on the short arm of chromosome 5A. The influence of QPst.jic-1B was primarily seen with the Pi phenotype, contributing up to 13.10% of the explained phenotypic variation. QPst.jic-5A was only detected using an approximate multiple-QTL model and selecting markers linked to the major effect QTL, QPst.jic-2D and QPst.jic-4B as co-factors. Seedling stripe rust resistance was also mapped in the cross, which confirmed the location of Yr17 from Brigadier to the short arm of chromosome 2A. A seedling expressed QTL was also located in Alcedo that mapped to the same location as the field stripe rust resistance QPst.jic-2D.  相似文献   

11.
The Indian bread wheat cultivar HD2009 has maintained its partial resistance to leaf rust and stripe rust in India since its release in 1976. To examine the nature, number and mode of inheritance of its genes for partial leaf rust and stripe rust resistance, this cultivar was crossed with cultivar WL711, which is susceptible to leaf rust and stripe rust. The F1, F2, F3 and F5 generations from this cross were assessed separately for adult plant disease severity under artificial epidemic of race 77-5 of leaf rust and race 46S119 of stripe rust. Segregation for rust reaction in the F2, F3 and F5 generations indicated that resistance to each of these rust diseases is based on 2 genes, each with additive effects. Although the leaf rust resistance of HD2009 is similar in expression to that conferred by the gene Lr34, but unlike the wheats carrying this gene, cultivar HD2009 did not show leaf tip necrosis, a morphological marker believed to be tightly linked to the leaf rust resistance gene Lr34. Thus, the non-hypersensitive resistance of HD2009 was ascribed to genes other than Lr34.  相似文献   

12.
13.
‘Express’, a hard red spring wheat cultivar that has been widely grown in the western United States, is used to differentiate races of Puccinia striiformis f. sp. tritici, the causal fungal pathogen of wheat stripe rust. To identify genes conferring race-specific, overall resistance to stripe rust, Express was crossed with ‘Avocet S’. The parents and F1, F2, F3 and F5 populations were tested with races PST-1, PST-21, PST-43, and PST-45 of P. striiformis f. sp. tritici in the seedling stage under controlled greenhouse conditions. Two dominant genes for resistance to stripe rust were identified, one conferring resistance to PST-1 and PST-21, and the other conferring resistance to all four races. Linkage groups were constructed for the resistance genes using 146 F5 lines to establish resistance gene analog and chromosome-specific simple sequence repeat marker polymorphisms. The gene for resistance to races PST-1 and PST-21 was mapped on the long arm of chromosome 1B, and that conferring resistance to all four races was mapped on the long arm of chromosome 5B. We temporarily designate the gene on 1BL as YrExp1 and the gene on 5BL as YrExp2. Polymorphism of at least one of the two markers flanking YrExp2 was detected in 91% of the 44 tested wheat genotypes, suggesting that they would be useful in marker-assisted selection for combining the gene with other resistance genes into many other wheat cultivars. Knowledge of these genes will be useful to understand recent virulence changes in the pathogen populations.  相似文献   

14.

Key message

New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds.

Abstract

CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5–60.8%, 9.0–14.3%, 2.8–13.9%, and 11.6–29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.
  相似文献   

15.
Stripe rust, caused by Puccinia striiformis West. f.sp. tritici, is one of the most damaging diseases of wheat worldwide. Forty genes for stripe rust resistance have been catalogued so far, but the majority of them are not effective against emerging pathotypes. Triticum monococcum and T. boeoticum have excellent levels of resistance to rusts, but so far, no stripe rust resistance gene has been identified or transferred from these species. A set of 121 RILs generated from a cross involving T. monococcum (acc. pau14087) and T. boeoticum (acc. pau5088) was screened for 3 years against a mixture of pathotypes under field conditions. The parental accessions were susceptible to all the prevalent pathotypes at the seedling stage, but resistant at the adult plant stage. Genetic analysis of the RIL population revealed the presence of two genes for stripe rust resistance, with one gene each being contributed by each of the parental lines. A linkage map with 169 SSR and RFLP loci generated from a set of 93 RILs was used for mapping these resistance genes. Based on phenotypic data for 3 years and the pooled data, two QTLs, one each in T. monococcum acc. pau14087 and T. boeoticum acc. pau5088, were detected for resistance in the RIL population. The QTL in T. monococcum mapped on chromosome 2A in a 3.6 cM interval between Xwmc407 and Xwmc170, whereas the QTL from T. boeoticum mapped on 5A in 8.9 cM interval between Xbarc151 and Xcfd12 and these were designated as QYrtm.pau-2A and QYrtb.pau-5A, respectively. Based on field data for 3 years, their R 2 values were 14 and 24%, respectively. T. monococcum acc. pau14087 and three resistant RILs were crossed to hexaploid wheat cvs WL711 and PBW343, using T. durum as a bridging species with the objective of transferring these genes into hexaploid wheat. The B genome of T. durum suppressed resistance in the F1 plants, but with subsequent backcrossing one resistance gene could be transferred from one of the RILs to the hexaploid wheat background. This gene was derived from T. boeoticum acc. pau5088 as indicated by co-introgression of T. boeoticum sequences linked to stripe rust resistance QTL, QYrtb.pau-5A. Homozygous resistant progenies with 40–42 chromosomes have been identified. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Quantitative resistance is postulated to be more durable than qualitative (R-gene mediated) resistance, which is usually quickly overcome by the pathogen population. Despite its wide use for nearly 10?years in France, the French bread wheat cultivar Apache remains resistant to stripe rust. Here, we investigated the genetic architecture of cv. Apache resistance to examine whether its durability could be explained by quantitative characteristics. We identified quantitative trait loci (QTL) by composite interval mapping of disease progress data recorded throughout 4?years of field assays. These assays included inoculation with three different pathotypes on a segregating population originating from a cross between cv. Apache and cv. Taldor, a French cultivar susceptible to stripe rust. Three QTLs derived from Apache, QYr.inra-2AS, QYr.inra-2BL and QYr.inra-4B, were detected. Each of these QTLs contributed between approximately 15 and 69?% of the phenotypic variance and corresponds to a race-specific resistance gene. We showed that QYr.inra-2AS and QYr.inra-2BS map to the positions of Yr17 and Yr7, respectively, whereas QYr.inra-4B corresponds to an adult plant resistance gene. Our results demonstrate that a combination of two or more race-specific resistance genes can confer durable resistance provided that it is properly managed at a continental level. Race-specific resistance genes should not be removed from breeding programs provided that they are properly managed.  相似文献   

17.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of soft red winter wheat in the eastern region of the USA. Pioneer 26R61 has provided effective resistance to stripe rust for 10 years. To elucidate the genetic basis of the resistance, a mapping population of 178 recombinant inbred lines (RILs) was developed using single-seed descent from a cross between Pioneer 26R61 and the susceptible cultivar AGS 2000. A genetic map with 895 markers covering all 21 chromosomes was used for QTL analysis. One major QTL was detected, explaining up to 56.0% of the mean phenotypic variation, flanked by markers Xbarc124 and Xgwm359, and assigned to the distal 22% of the short arm of wheat chromosome 2A. Evidence showed that it was different from Yr17 derived from Ae. ventricosa, the only formally named Yr gene in 2AS, and the QTL was temporarily designated as YrR61. In addition, a minor QTL, QYr.uga-6AS, probably conditioned high-temperature adult plant resistance. The QTL explained 6–7% of the trait variation. Preliminary test of the flanking markers for YrR61, in two cultivars and two promising breeding lines with Pioneer 26R61 in their pedigree, indicated that YrR61 was present in these cultivars and lines, and these markers could therefore be used in marker-assisted selection.  相似文献   

18.
Wheat line CSP44, a selection from an Australian bread wheat cultivar Condor, has shown resistance to stripe rust in India since the last twenty years. Seedlings and adult plants of CSP44 showed susceptible infection types against stripe rust race 46S119 but displayed average terminal disease severity of 2.67 on adult plants against this race as compared to 70.33 of susceptible Indian cultivar, WL711. This suggests the presence of nonhypersensitive adult plant stripe rust resistance in the line CSP44. The evaluation of F1, F2 and F3 generations and F6 SSD families from the cross of CSP44 with susceptible wheat cultivar WL711 for stripe rust severity indicated that the resistance in CSP44 is based on two genes showing additive effect. One of these two genes isYr18 and the second gene is not yet described.  相似文献   

19.
Wheat cultivar Express has durable, high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici). To elucidate the genetic basis of the resistance, Express was crossed with 'Avocet Susceptible' (AVS). A mapping population of 146 F(5) recombinant inbred lines (RILs) was developed using single-seed descent. The RILs were evaluated at two sites near Pullman in eastern Washington and one site near Mount Vernon in western Washington in 2005, and were evaluated near Pullman in 2006 under natural stripe rust infection of predominant races virulent on seedlings of Express. Infection type (IT) and disease severity (DS) were recorded three times for each line during each growing season. The DS data were used to calculate relative area under the disease progress curve (rAUDPC) values. Both IT and rAUDPC data showed continuous distributions, indicating that the Express HTAP resistance was controlled by quantitative trait loci (QTL). Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to map the HTAP resistance QTL. Three QTL were detected with significant additive effects, explaining 49.5-69.6% of the phenotypic variation for rAUDPC. Two of the QTL explained 30.8-42.7% of the phenotypic variation for IT. The three QTL were mapped to wheat chromosomes 6AS, 3BL and 1BL, and were designated as QYrex.wgp-6AS, QYrex.wgp-3BL and QYrex.wgp-1BL, respectively. QYrex.wgp-6AS and QYrex.wgp-3BL, which had higher effects than QYrex.wgp-1BL, were different from previously reported QTL/genes for adult-plant resistance. Markers Xgwm334-Xwgp56 and Xgwm299-Xwgp66 flanking the two major QTL were highly polymorphic in various wheat genotypes, suggesting that these markers are useful in marker-assisted selection.  相似文献   

20.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred means of control of the disease. The winter wheat cultivar Xiaoyan 54 has high-temperature resistance to stripe rust. To identify genes for stripe rust resistance, Xiaoyan 54 was crossed with Mingxian 169, a winter wheat genotype susceptible to all Chinese races of the pathogen. Seedlings and adult plants of the parents and F1, F2, F3 and F4 progeny were tested with Chinese race CYR32 under controlled greenhouse conditions and in the field. Xiaoyan 54 has two recessive resistance genes, designated as Yrxy1 and Yrxy2, conferring high-temperature resistance. Simple sequence repeat (SSR) primers were used to identify molecular markers flanking Yrxy2 using 181 plants from one segregating F3 line. A total of nine markers, two of which flanked the locus at genetic distances of 4.0 and 6.4 cM on the long arm of chromosome 2A were identified. Resistance gene analog polymorphism (RGAP) and SSR techniques were used to identify molecular markers linked to Yrxy1. A linkage group of nine RGAP and two SSR markers was constructed for Yrxy1 using 177 plants of another segregating F3 line. Two RGAP markers were closely linked to the locus with genetic distances of 2.3 and 3.5 cM. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers M8 and M9 and the two SSR markers located Yrxy1 on the short arm of chromosome 7A. The SSR markers Xbarc49 and Xwmc422 were 15.8 and 26.1 cM, respectively, from the gene. The closely linked molecular markers should be useful for incorporating the resistance genes into commercial cultivars and combining them with other genes for stripe rust resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号