首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The atomic force microscope (AFM) was used to image native OmpF porin and to detect the electrostatic potential generated by the protein. To this end the OmpF porin trimers from Escherichia coli was reproducibly imaged at a lateral resolution of approximately 0.5 nm and a vertical resolution of approximately 0.1 nm at variable electrolyte concentrations of the buffer solution. At low electrolyte concentrations the charged AFM probe not only contoured structural details of the membrane protein surface but also interacted with local electrostatic potentials. Differences measured between topographs recorded at variable ionic strength allowed mapping of the electrostatic potential of OmpF porin. The potential map acquired by AFM showed qualitative agreement with continuum electrostatic calculations based on the atomic OmpF porin embedded in a lipid bilayer at the same electrolyte concentrations. Numerical simulations of the experimental conditions showed the measurements to be reproduced quantitatively when the AFM probe was included in the calculations. This method opens a novel avenue to determine the electrostatic potential of native protein surfaces at a lateral resolution better than 1 nm and a vertical resolution of approximately 0.1 nm.  相似文献   

2.
S-Crystallin from octopus lens has a tertiary structure similar to sigma-class glutathione transferase (GST). However, after isolation from the lenses, S-crystallin was found to aggregate more easily than sigma-GST. In vitro experiments showed that the lens S-crystallin can be polymerized and finally denatured at increasing concentration of urea or guanidinium chloride (GdmCl). In the intermediate concentrations of urea or GdmCl, the polymerized form of S-crystallin is aggregated, as manifested by the increase in light scattering and precipitation of the protein. There is a delay time for the initiation of polymerization. Both the delay time and rate of polymerization depend on the protein concentration. The native protein showed a maximum fluorescence emission spectrum at 341 nm. The GdmCl-denatured protein exhibited two fluorescence maxima at 310 nm and 358 nm, respectively, whereas the urea-denatured protein showed a fluorescence peak at 358 nm with a small peak at 310 nm. The fluorescence intensity was quenched. Monomers, dimers, trimers, and polymers of the native protein were observed by negative-stain electron microscopic analysis. The aggregated form, however, showed irregular structure. The aggregate was solubilized in high concentrations of urea or GdmCl. The redissolved denatured protein showed an identical fluorescence spectrum to the protein solution that was directly denatured with high concentrations of urea or GdmCl. The denatured protein was readily refolded to its native state by diluting with buffer solution. The fluorescence spectrum of the renatured protein solution was similar to that of the native form. The phase diagrams for the S-crystallin in urea and GdmCl were constructed. Both salt concentration and pH value of the solution affect the polymerization rate, suggesting the participation of ionic interactions in the polymerization. Comparison of the molecular models of the S-crystallin and sigma-GST suggests that an extra ion-pair between Asp-101 and Arg-14 in S-crystallin contributes to stabilizing the protomer. Furthermore, the molecular surface of S-crystallin has a protruding Lys-208 on one side and a complementary patch of aspartate residues (Asp-90, Asp-94, Asp-101, Asp-102, Asp-179, and Asp-180) on the other side. We propose a molecular model for the S-crystallin polymer in vivo, which involves side-by-side associations of Lys-208 from one protomer and the aspartate patch from another protomer that allows the formation of a polymeric structure spontaneously into a liquid crystal structure in the lens.  相似文献   

3.
Molecular sieve chromatography can resolve interactive systems into populations having different effective hydrodynamic volumes. In this report, the advantages of such resolution to protein folding are illustrated by using moderate pressure to decrease analysis time and lowered temperature to slow down the kinetics of conformational change. A 300-mm Bio-Sil TSK-125 size-exclusion column was equilibrated with a series of different concentrations of guanidine hydrochloride at 2 degrees C in 50 mM phosphate buffer, pH 7.0. Samples of native Escherichia coli thioredoxin, denatured thioredoxin, or thioredoxin equilibrated with the column solvent were injected, and the effluent was monitored at 220 nm. Injection of equilibrated protein samples defined three denaturant concentration zones identical with those observed by spectral measurements: the native base-line zone where only compact protein is observed in the effluent profile; the transition zone in which both compact and denatured forms are observed in slow exchange; and the denatured base-line zone in which only denatured protein is observed. Unfolding was observed by injection of native protein into columns having isocratic denaturant concentrations in the transition and denatured base-line zones. Effluent profiles indicated a dynamic conversion of compact to denatured protein with a time constant which appeared to decrease markedly with increasing denaturant concentration. Refolding was observed by injection of denatured protein into columns having isocratic concentrations in the transition and native base-line zones. As the denaturant concentration was decreased, the effluent profiles evidenced a persistent slow conversion of denatured to compact protein which was suddenly accelerated about midway in the native base-line zone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
It was shown that denaturation of beef liver glutamate dehydrogenase under the action of guanidine hydrochloride results in a diplacement of the protein fluorescence maximum from 332 to 349 nm, in a decrease of optical rotation of the protein at 233 nm and in an appearance of negative bands in the difference absorbance spectrum with extrema at 279 and 287 nm. The transition of native enzyme into a denaturated state is observed within a narrow interval of guanidine hydrochloride concentrations. The middle point of the transition corresponds to approximately 2,2 M guanidine hydrochloride. The inactivation kinetics for glutamate dehydrogenase coincide with those of the enzyme spectral properties alterations due to denaturation. The attempts at renaturation of glutamate dehydrogenase by diluting the denaturated enzyme solution or by a dialysis against a buffer solution were unsuccessful.  相似文献   

5.
1. A homogeneous preparation of penicillinase (penicillin amido-beta-lactamhydrolase, EC 3.5.2.6) was isolated and purified from cultures of Staphylococcus aureus by a simple two-stage procedure. 2. The native protein contains 20-30% helix as determined by optical-rotatory-dispersion and circular-dichroism measurements. Some 54(+/-5)% of the 13 tyrosine residues are exposed to solvent molecules of diameter 0.44 and 0.94 nm. 3. Conditions that allow full recovery of enzymic activity and native conformation from the fully unfolded state in 4M-guanidinium chloride were defined. 4. Refolding of the protein was shown to be inhibited by intermolecular interaction, by small changes in ionization and by low concentrations (0.025 M) of phenol.  相似文献   

6.
Cytochrome c is modified by covalent binding of pyridoxal phosphate (PLP) to lysine residues. One di-substituted [(PLP)2--C] and two mono-substituted derivatives [(PLP)--c and (PLP)'--c] were obtained and precisely purified. The peak at 695 nm and CD-spectra in 190--600 nm region show that all derivatives have native conformation. The differential UV-spectra of the derivatives against native protein show that in (PLP)2--c there is a contact dipole-dipole interaction between PLP chromophores. It is calculated that the N-atoms of the two PLP-substituted lysines must be at a distance less than or equal to 12 A. Analysing our and literature data, one may suppose that Lys-13 and Lys-87 are the most probable candidates for modification with PLP. (PLP)---c and (PLP)'--c behave differently during ion-exchange chromatography and when added to cytochrom c-depleted mitochondria. (PLP)'--c restores electron transfer at higher concentrations than (PLP)'--c. Both they restore fully succinate and ascorbate oxidation but at considerably higher concentrations than the native protein, i. e. modification of any one of the reactive towards PLP lysines descreases but does not exclude the interaction with its reductase and oxidase. The effective equilibrium constants of binding of modified derivatives to cytochrome c-depleted mitochondria are lower than the constant for native protein. Together with decrease in binding activity, Hill coefficients increase. From our results it may be supposed that probably the binding sites of cytochrome c for its reductase and oxidase partially overlap.  相似文献   

7.
The reversible denaturation and reduction with dithionite has been studied for the phycobiliproteins, C-phycocyanin (1) and allophycocyanin (2) from Spirulina platensis, and C-phycoerythrin (4) from Fremyella diplosiphon (both cyanobacteria). By treatment with sodium dithionite, the chromophores are selectively reduced at the central (C-10) methine bridge, producing pigments with bilirubinoid (lambda max = 418 nm from 1 and 2), and vinylpyrroloc (lambda max= 300 nm from 4) chromophores. The extent of reduction is dependent on the state of the protein. The chromophores of denatured biliproteins are completely reduced at 0.5 mM dithionite. In the native pigments, dithionite concentrations up to 0.5 mM lead only to partial reduction, thus forming products containing both reduced and oxidized chromophores (e.g. "phycocyanorubins" from 1 and 2). The reduction is non-statistical with respect to the different chromophores present in 1 and 4, the chromophores absorbing at shorter wavelengths being preferentially reduced. Renaturation of the proteins containing reduced chromophores is accompanied by their reoxidation. This oxidation is complete in the absence of dithionite or at concentrations up to 0.5 mM. At higher dithionite concentrations, the reoxidation is incomplete, and the products are spectroscopically identical to those obtained by reduction of the native pigments at similar concentrations of reductant. The results are interpreted by a model in which the protein is "transparent" to the reducing agent, dithionite. The difference in the extent of reduction of the native and denatured pigments can only be due to thermodynamic (viz. stability) differences in the susceptibility of the chromophores to reduction. Specifically, the (extended) chromophore present in the native pigment is much more difficult to reduce than the chromophore (present in a cyclic conformation) in the denatured pigment. The energetics of the process of refolding both the protein and the chromophores are discussed.  相似文献   

8.
An analog of human tumor necrosis factor-alpha (TNF-alpha) was created involving the replacement of Cys69 with Asp and Cys101 with Arg. The solution structure and behavior of this analog were compared with the native protein. The analog exhibited a greatly decreased folding efficiency following dilution from urea, but essentially identical circular dichroic spectra in both the folded and unfolded states. The Stokes radius of the native and analog TNF-alpha in the folded state were identical, with the analog exhibiting a slight broadening of the eluting peak. The fluorescence emission spectrum of the native protein exhibits a plateau from 320 to 328 nm, while the spectrum of the analog consisted of a single peak with a maximum at 335 nm. The analog also had a 1.4-fold increase in the fluorescence intensity. Limited proteolysis of the analog resulted in only one of the two peptides seen following digestion of the native protein, and this product was less stable than the equivalent native protein fragment. The analog exhibited a 10-fold lower cytolytic activity than the native protein. These results demonstrated that the disulfide bond is not necessary for folding and activity, but are consistent with the analog having a looser, more flexible structure in solution than the native TNF-alpha.  相似文献   

9.
A fluorescence study of egg white riboflavin-binding protein   总被引:1,自引:0,他引:1  
1. Denaturation of riboflavin-binding protein (RBP) by guanidine hydrochloride (Gu-HCl) was investigated by measruing the fluorescence of the protein. The denaturation-renaturation processes of RBP by Gu-HCl were fully reversible. The apo-RBP fluorescence had an emission maximum at 343 nm in the absence of Gu-HCl, and at 350 nm in the presence of 4M Gu-HCl, which completely denatured the protein. The relative fluorescence yield of apo-RBP in the presence of 4 M Gu-HCl was about 170% of that in the absence of Gu-HCl. The affinity of native apo-RBP for riboflavin was very strong, while riboflavin was not bound to the denatured form. The equilibrium system of apo-RBP and riboflavin in solutions containing Gu-HCl at various concentrations was analyzed by measuring riboflavin fluorescence. 2. The quenching of apo-RBP fluorescence, probably the fluorescence of tryptophanyl residues, by iodide anions and cesium cations was measured. The fluorescence of apo-RBP in the presence of 4 M Gu-HCl was quenched considerably by iodide and cesium, and Stern-Volmer plots were linear. However, the fluorescence of native apo-RBP was scarcely quenched by iodide or cesium. This suggested that tryptophanyl residues buried inside apo-RBP were responsible for most of the tryptophanyl fluorescence of native apo-RBP.  相似文献   

10.
Abstract: A novel, apparently acid-stable cytochrome has been purified from Leptospirillum ferrooxidans in which it probably functions in the 'downhill' transfer of electrons from ferrous iron. It appeared to comprise a single polypeptide of apparent M r 17.9 kDa as determined by SDS-PAGE. Non-denaturing PAGE showed this to be the approximate size of the native protein. The oxidized cytochrome showed a broad absorption maximum at 422 nm and was readily reduced with dithionite or ferrous iron to give a form with absorption maxima at 440 and 579 nm. A mid-point potential of +680 mV at pH 3.5 was determined. Iron and zinc were found at concentrations approaching one atom of each per cytochrome molecule.  相似文献   

11.
The optical properties of Pseudomonas cytochrome oxidase (ferrocytochrome-c:oxygen oxidoreductase, EC 1.9.3.2) were monitored as a function of guanidine hydrochloride (Gdn X HCl) concentration to probe for differential stabilization of its prosthetic groups, heme d1 and heme c. The protein fluorescence intensity increased with the Gdn X HCl concentration, revealing two transitions, a sharp one between 1.3 and 1.5 M Gdn X HCl, and a second less well defined extending from 2.5 to 4.5 M. Only the transition at the lower Gdn X HCl concentrations was present in titrations followed using the emission maxima. The spectral maximum for native Pseudomonas cytochrome oxidase was at approx. 335 nm and shifted to approx. 350 nm above 2 M Gdn X HCl. The heme d1 absorbance at 638 nm decreased with increasing [Gdn X HCl], giving a transition at 1.3-1.5 M, and no transition up to 4 M Gdn X HCl when the heme c was monitored at 525 nm. Along with the decrease at 638 nm, an absorption band appeared at 681 nm, suggesting heme d1 release into solution. Fluorescence titration of heme d1-depleted enzyme, prepared by gel filtration, showed a single transition similar to the transition occurring in the intact enzyme at high Gdn X HCl concentrations. Circular dichroism spectra revealed clearly distinguishable transitions for the heme d1 and heme c near 1.5 and 3.0 M Gdn X HCl, respectively. These results suggest that the two hemes are in regions of the protein with different stabilities which may represent distinct structural domains.  相似文献   

12.
The HypF N-terminal domain has been found to convert readily from its native globular conformation into protein aggregates with the characteristics of amyloid fibrils associated with a variety of human diseases. This conversion was achieved by incubation at acidic pH or in the presence of moderate concentrations of trifluoroethanol. Electron microscopy showed that the fibrils grown in the presence of trifluoroethanol were predominantly 3-5 nm and 7-9 nm in width, whereas fibrils of 7-9 nm and 12-20 nm in width prevailed in samples incubated at acidic pH. These results indicate that the assembly of protofilaments or narrow fibrils into mature amyloid fibrils is guided by interactions between hydrophobic residues that may remain exposed on the surface of individual protofilaments. Therefore, formation and isolation of individual protofilaments appears facilitated under conditions that favor the destabilization of hydrophobic interactions, such as in the presence of trifluoroethanol.  相似文献   

13.
Iodination of horse cytochrome c with the lactoperoxidase-hydrogen peroxide-iodide system results initially in the formation of the monoiodotyrosyl 74 derivative. This singly modified protein was obtained in pure form by ion exchange chromatography and preparative column electrophoresis. It shows an intact 695 nm absorption band, the midpoint potential of the native protein, a nuclear magnetic resonance spectrum which indicates an undisturbed heme crevice structure, a normal reaction with antibodies directed against native horse cytochrome c, and circular dichroic spectra in which the only changes from those of the native protein can be ascribed to the spectral properties of iodotyrosine itself. This conformationally intact derivative reacts with the succinate-cytochrome c reductase and the cytochrome c oxidase systems of beef mitochondrial particle preparations indistinguishably from the unmodified protein, showing that the region including tyrosine 74 is not involved in these enzymic electron transfer functions of the protein. The circular dichroic spectra of this derivative indicate that the minima observed at 288 and 282 nm in the spectrum of native ferricytochrome c originate from tyrosyl residue 74.  相似文献   

14.
Properties of talin from chicken gizzard smooth muscle   总被引:9,自引:0,他引:9  
This paper describes the structural and biochemical characterization of talin, a protein localized to various cellular sites where bundles of actin filaments attach to the plasma membrane. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein has a molecular mass of 225,000 +/- 5,000 daltons. Hydrodynamic measurements at protein concentrations less than 0.72 mg/ml indicate a monomeric protein with a native molecular mass of 213,000 +/- 15,000 daltons. Sedimentation equilibrium experiments indicate self-association at protein concentrations of 0.72 mg/ml and higher. The data suggest that this self-association is a simple monomer:dimer equilibrium over the range of concentrations observed. At low protein concentrations where talin is a monomer, the Stokes radius and sedimentation coefficient vary with ionic strength. Under low ionic strength conditions (5-20 mM NaCl), talin has a Stokes radius of 6.5 nm and a sedimentation value of 9.4, suggesting an asymmetric globular molecule; whereas under high ionic strength conditions (200 mM NaCl), the Stokes radius increases to 7.7 nm and the sedimentation coefficient decreases to 8.8, suggesting a more elongated protein. This conformation change is confirmed by electron microscopy which reveals a more globular protein at low ionic strength which unfolds to become an elongated flexible molecule as the ionic strength is increased to physiological and higher levels. The amino acid composition of talin indicates a low level of aromatic residues, consistent with its relatively low extinction coefficient, talin has an isoelectric point between pH 6.7 and 6.8 based on isoelectric focusing. The detailed purification of talin is described.  相似文献   

15.
W W Ward  S H Bokman 《Biochemistry》1982,21(19):4535-4540
The green-fluorescent protein (GFP) that functions as a bioluminescence energy transfer acceptor in the jellyfish Aequorea has been renatured with up to 90% yield following acid, base, or guanidine denaturation. Renaturation, following pH neutralization or simple dilution of guanidine, proceeds with a half-recovery time of less than 5 min as measured by the return of visible fluorescence. Residual unrenatured protein has been quantitatively removed by chromatography on Sephadex G-75. The chromatographed, renatured GFP has corrected fluorescence excitation and emission spectra identical with those of the native protein at pH 7.0 (excitation lambda max = 398 nm; emission lambda max = 508 nm) and also at pH 12.2 (excitation lambda max = 476 nm; emission lambda max = 505 nm). With its peak position red-shifted 78 nm at pH 12.2, the Aequorea GFP excitation spectrum more closely resembles the excitation spectra of Renilla (sea pansy) and Phialidium (hydromedusan) GFPs at neutral pH. Visible absorption spectra of the native and renatured Aequorea green-fluorescent proteins at pH 7.0 are also identical, suggesting that the chromophore binding site has returned to its native state. Small differences in far-UV absorption and circular dichroism spectra, however, indicate that the renatured protein has not fully regained its native secondary structure.  相似文献   

16.
Summary The ability of native and chemically modified myelin basic protein to induce fusion of chicken erythrocytes and to interact with lipids in monolayers at the air-water interface and liposomes was studied. Chemical modifications of myelin basic protein were performed by acetylation and succinylation: the positive charges of the native protein were blocked to an extent of about 90–95%.Cellular aggregation and fusion of erythrocytes into multinucleated cells was induced by the native myelin basic protein. This effect was diminished for both acetylated and succinylated myelin basic protein. Native myelin basic protein penetrated appreciably in sulphatide-containing lipid monolayers while lower penetration occurred in monolayers of neutral lipids. Contrary to this, both chemically modified myelin basic proteins did not show any selectivity to penetrate into interfaces of neutral or negatively charged lipids. The intrinsic fluorescence of the native and chemically modified myelin basic proteins upon interacting with liposomes constituted by dipalmitoylphosphatidycholine, glycosphingolipids, egg phosphatidic acid or dipalmitoylphosphatidyl glycerol was studied. The interaction with liposomes of anionic lipids is accompanied by a blue shift of the maximum of the native protein emission fluorescence spectrum from 346 nm to 335 nm; no shift was observed with liposomes containing neutral lipids. The acetylated and succinylated myelin basic proteins did not show changes of their emission spectra upon interacting with any of the lipids studied. The results obtained in monolayers and the fluorescence shifts indicate a lack of correlation between the ability of the modified proteins to penetrate lipid interfaces and the microenvironment sensed by the tryptophan-containing domain.Abbreviations MBP myelin basic protein - DPPC dipalmitoyl phosphatidylcholine - DPPG dipalmitoyl phosphatidylglycerol - PA phosphatidic acid  相似文献   

17.
Phaseolus vulgaris leucoagglutinin is a homotetrameric legume lectin possessing the canonical dimeric structure common to other legume lectins. In order to gain insight into the stability of the protein in an acidic environment, it was characterized by CD and fluorescence studies at pH 2.5. This was then compared with the native protein at physiological pH (7.2). The extinction coefficient of the native protein was calculated to be 3.58x10(4) from its UV absorption spectra. The far- and near-UV CD spectra of the protein at pH 2.5 showed very little difference even though the protein was found to exist as a dimer at pH 2.5. The fluorescence emission maxima of the protein upon excitation at 280 nm were found to shift only from 331 nm at pH 7.2 to 333 nm at pH 2.5. Based on the above observation it was concluded that the protein exhibits extreme pH stability especially in the acidic range. The secondary and tertiary structure of the protein is lost only when it is incubated for two days in 6 M GdnHCl at pH 2.5. At pH 7.2 it could be denatured in 6 M GdnHCl after one week of incubation.  相似文献   

18.
The equilibrium unfolding of pig kidney aminoacylase in guanidinium chloride (GdmCl) solutions was studied by following the fluorescence and circular dichroism (CD). At low concentrations of GdmCl, less than 1.0 M, the fluorescence intensity decreased with a slight red shift of the emission maximum (from 335 to 340 nm). An unfolding intermediate was observed in low concentrations of denaturant (between 1.2 and 1.6 M GdmCl). This intermediate was characterized by a decreased fluorescence emission intensity, a red-shifted emission maximum, and increased binding of the fluorescence probe 1-anilino-8-naphthalenesulfonate. No significant changes of the secondary structure were indicated by CD measurement. This conformation state is similar to a molten globule state which may exist in the pathway of protein folding. Further changes in the fluorescence properties occurred at higher concentrations of GdmCl, more than 1.6 M, with a decrease in emission intensity and a significant red shift of the emission maximum from 340 to 354 nm. In this stage, the secondary structure was completely broken. A study of apo-enzyme (Zn2+-free enzyme) produced similar results. However, comparison of the changes of the fluorescence emission spectra of native (Holo-) enzyme with Zn2+-free (Apo-) enzyme at low GdmCl concentrations showed that the structure of the Holo-enzyme was more stable than that of the Apo-enzyme.  相似文献   

19.
The kinetics of thermal aggregation of glycogen phosphorylase b and glyceraldehyde 3-phosphate dehydrogenase from rabbit skeletal muscles were studied using dynamic light scattering. Use of high concentrations of the enzymes (1-3 mg/ml) provided a simultaneous registration of the native enzyme forms and protein aggregates. It was shown that initially registered aggregates (start aggregates) were large-sized particles. The hydrodynamic radius of the start aggregates was about 100 nm. The intermediate states between the native enzyme forms and start aggregates were not detected. The initial increase in the light scattering intensity is connected with accumulation of the start aggregates, the size of the latter remaining unchanged. From a certain moment in time aggregates of higher order, formed as a result of sticking of the start aggregates, make a major contribution to the enhancement of the light scattering intensity.  相似文献   

20.
The effects of various concentrations of urea and guanidine hydrochloride on enzyme activity and on subunit association were determined. Incubation of thymidylate synthetase with buffered solutions of 3M to 3.5M guanidine hydrochloride or 5 M to 6 M urea resulted in the loss of about 90% of the enzyme activity. Under these denaturing conditions a red shift of the fluorescence emission maximum from 340 nm to 351 nm was observed together with a significant decrease in the relative fluorescence intensity of the protein. Studies at both 4 degrees C and 25 degrees C indicated that the enzyme was in the dimer form in 2 M guanidine hydrochloride but was dissociated into monomers in concentrations of this denaturant of 3 M and above. Although only monomeric species were evident at 4 degrees C in 6 M urea, at 25 25 degrees C this denaturant caused protein aggregation which increased with decreasing phosphate buffer concentration. Enzyme (5 mg/ml) in 0.5 M potassium phosphate buffer, pH 6.8, containing 4 M guanidine hydrochloride gave a minimum S20, w value of 1.22S at 25 degrees C. Sedimentation behavior of the native enzyme in the range of 5 to 20 mg/ml was only slightly concentration-dependent (4.28 S to 4.86 S) but extensive aggregation occurred above 20 mg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号