首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacological properties of bradykinin (BK) receptors were characterized in canine cultured corneal epithelial cells (CECs) using [(3)H]-BK as a radioligand. Analysis of binding isotherms gave an apparent equilibrium dissociation constant of 0.34 +/- 0.07 nM and a maximum receptor density of 179 +/- 23 fmol/mg protein. Neither a B(1) receptor-selective agonist (des-Arg(9)-BK) nor antagonist ([Leu(8), des-Arg(9)]-BK) significantly inhibited [(3)H]-BK binding to CECs, thus excluding the presence of B(1) receptors in canine CECs. The specific binding of [(3)H]-BK to CECs was inhibited by B(2) receptor-selective agonists (BK and kallidin) and antagonists (Hoe 140 and [D-Arg(0), Hyp(3), Thi(5,8), D-Phe(7)]-BK), with a best fit using a one-binding-site model. The order of potency for the inhibition of [(3)H]-BK binding was BK = Hoe 140 > kallidin > [D-Arg(0), Hyp(3), Thi(5,8), D-Phe(7)]-BK. Stimulation of CECs by BK produced a concentration-dependent accumulation of inositol phosphates (IP) and an initial transient peak of intracellular Ca(2+). B(2) receptor-selective antagonist ([D-Arg(0), Hyp(3), Thi(5,8), D-Phe(7)]-BK) significantly antagonized the BK-induced responses with dissociation constants of 6.0-6.1. Pretreatment of CECs with pertussis toxin (PTX) or cholera toxin did not alter the BK-induced IP accumulation. Incubation of CECs in the absence of external Ca(2+) led to a significant attenuation of the IP accumulation induced by BK. These results demonstrate that BK directly stimulates phospholipase C-mediated signal transduction through BK B(2) receptors via a PTX-insensitive G protein in canine CECs. This effect may function as the transducing mechanism for BK-mediated cellular responses.  相似文献   

2.
The role of des-Arg9-bradykinin (des-Arg9-BK) and kinin B1 receptor in the plasma extravasation of rat carrageenin-induced pleurisy was investigated employing B1 receptor agonist and antagonists and kininogen-deficient rats. Expression of the B1 receptor mRNA in pleura was induced from 3 to 5 h after the injection of carrageenin into the pleural cavity of Sprague-Dawley rats. Exogenous injection of des-Arg9-BK into the pleural cavity provoked a significant increase in plasma extravasation in 5 h carrageenin-induced pleurisy, but not in 20 min kaolin-induced pleurisy. The level of immunoreactive des-Arg9-BK in the exudate of 5 h carrageenin-induced pleurisy was higher than that of bradykinin (BK). Administration of the B1 receptor antagonists, des-Arg9-[Leu8]-BK or des-Arg9-D-Arg-[Hyp3, Thi5, D-Tic7,Oic8]-BK significantly reduced the exudation rate. However, intrapleural administration of des-Arg9-BK to plasma kininogen-deficient. Brown Norway-Katholiek rats did not result in a further increase in the plasma extravasation. In conclusion, endogenously generated des-Arg9-BK could contribute to the plasma extravasation in carrageenin-induced pleurisy via mediation of the inducible B1 receptor.  相似文献   

3.
It has been recently claimed that the human B1 receptors for kinins bind angiotensin-converting enzyme (ACE) inhibitors via a potential zinc-binding domain and are pharmacologically stimulated by these drugs. We verified whether ACE inhibitors stimulate B1 receptors in vitro. The isolated rabbit aorta or mouse stomach responded by negligible contractions to the application of captopril, enalaprilat, or zofenoprilat. The human isolated umbilical vein also failed to respond to enalaprilat. All of these preparations were responsive to the B1 receptor agonists des-Arg9-bradykinin (BK) or Lys-des-Arg9-BK. Furthermore, enalaprilat applied continuously had no significant interaction with the effects of Lys-des-Arg9-BK on the rabbit aorta. Enalaprilat failed to stimulate [3H]arachidonate release, translocate the receptors (confocal microscopy), or stimulate ERK1/2 phosphorylation (immunoblot) in HEK-293 cells stably expressing the rabbit B1 receptor conjugated to yellow fluorescent protein. The phospho-ERK1/2 content of arterial smooth muscle cells of human or rabbit origin was increased by treatment with Lys-des-Arg9-BK but not with enalaprilat. ACE inhibitors do not act as bona fide agonists of the kinin B1 receptors.  相似文献   

4.
G Drapeau  A Chow  P E Ward 《Peptides》1991,12(3):631-638
Bradykinin (BK) analogs such as Lys-Lys-BK, des-Arg9-BK and [Leu8]des-Arg9-BK were poor substrates for angiotensin I converting enzyme (ACE), and analogs containing D-Phe7 residues, or a pseudopeptide C-terminal bond, were completely resistant. However, many of these analogs were metabolized by carboxypeptidase N (CPN) including Lys-Lys-BK, [Tyr8(OMe)]BK and D-Phe7-containing analogs, with Km and Vmax values comparable to those for BK. The only analogs completely resistant to both ACE and CPN were the B2 agonist [Phe8 psi(CH2NH)Arg9]BK, the B2 agonist D-Arg[Hyp3,D-Phe7,Phe8 psi(CH2NH)Arg9]BK, and the B1 agonist [D-Phe8]des-Arg9-BK. These data indicate an important role for plasma CPN and vascular CPN-like activity in the metabolism of the widely used ACE-resistant/D-Phe7-containing antagonists of B2 kinin receptors.  相似文献   

5.
The rabbit jugular vein (rbJV) was used as a bioassay system to validate some early and new hypothetical interactions between the angiotensin-converting enzyme (ACE) and the B2 receptor, which may be influenced by ACE inhibitors (ACE-I). These involve the potentiation of the contractile effect of bradykinin (BK) and BK analogues, which are inactivated by ACE (e.g., [Hyp3, Tyr(Me8)]-BK (R556)), the prevention of BK-induced B2 receptor desensitisation, and the restoration of receptor sensitivity in tissues desensitised with B2 receptor agonists. Enzymatic degradation studies performed in vitro and in vivo revealed that BK and R556 are readily degraded by rabbit ACE whereas [Phe8psi(CH2-NH)Arg9]-BK (R379) is totally resistant. BK, R556, and R379 contracted endothelium-denuded veins with similar potencies (pEC50 range 8.10-8.50). Tissues pretreated with ACE-I showed an increase in pEC50 values for BK and R556 but not for R379. ACE-I (captopril, enalaprilat) were unable to prevent B2 receptor desensitisation induced by BK (1 microM). ACE-I partially restored B2 receptor-mediated contraction in tissues initially exposed to BK but not to R379. These effects were antagonised by HOE 140 (0.1 microM) but were unaffected by AcLys[Dbeta-Nal7, Ile8]-desArg9BK (R715) (1 microM) or by Losartan (1 microM). In conclusion, the potentiation of BK and its analogues relates exclusively on prevention of their metabolism, B2 receptor desensitisation is not affected by ACE-I, and restoration of tissue responsiveness to BK by ACE-I may be attributed to changes in BK concentrations in the vicinity of the B2 receptor.  相似文献   

6.
Characterization of bradykinin receptors in peripheral organs.   总被引:3,自引:0,他引:3  
Bradykinin (BK) and related kinins are potent stimulants of the rabbit jugular vein, the hamster urinary bladder, and the guinea pig trachea. The characterization of kinin receptors in these tissues was made with agonists and antagonists. Results obtained with agonists indicate that bradykinin and kallidin are much more active than des-Arg9-BK and suggest the presence of B2 receptors in the three organs. Some new agonists were also tested and the BK analogue, [Hyp3,Tyr(Me)8]BK, was found to be a potent and selective stimulant of the three preparations, with pD2 values of 8.56, 8.00, and 8.39, respectively, but inactive on the rabbit aorta (a B1-receptor system). Contractile effects of kinins in the rabbit jugular vein and hamster urinary bladder were reduced or eliminated by B2-receptor antagonists but at different concentration levels; e.g., acetyl-D-Arg[Hyp3,D-Phe7]BK showed pA2 values of 7.78 on the rabbit jugular vein but only 5.72 on hamster urinary bladder. This compound contracted the guinea-pig trachea and was found to be inactive as an antagonist on this preparation. Contractions of the hamster urinary bladder and the guinea-pig trachea in response to bradykinin were markedly reduced or eliminated by indomethacin and by BW 755C, while those of the rabbit jugular vein were not modified. The present findings indicate that the myotropic effect of kinins on the rabbit jugular vein depends on the activation of B2 receptors and suggest that B2 receptors are largely responsible also for the response of the hamster urinary bladder. B2 receptors and (or) a nonreceptor mechanism appear to be involved in the stimulant effects of the kinin agonists and some antagonists in the guinea-pig trachea.  相似文献   

7.
This study analyzed bradykinin (BK)-evoked contractile responses in the mouse colon under normal and inflammatory conditions. BK and the preferential B(2) receptor agonists Hyp(3)-BK, Lys-BK, Met-Lys-BK and Tyr(8)-BK produced a marked and concentration-related contraction of the normal mouse colon, whereas the selective B(1) receptor agonist des-Arg(9)-BK had no effect. BK-induced contraction was concentration-dependently antagonized (in a non-competitive manner) by both B(2) receptor antagonists Hoe 140 and FR173657, but not the B(1) receptor antagonist des-Arg(9)-[Leu(8)]-BK. Analysis of the possible mechanisms implicated in the contractile responses of BK in the mouse colon revealed the involvement of the neural release of acetylcholine, the activation of L- and N-type voltage-gated calcium channels, and the release of neuropeptides, prostanoids and leukotrienes. The contraction induced by BK was markedly increased in preparations obtained from TNBS-treated mice. The up-regulation of B(2) receptors following the induction of colitis was confirmed with binding studies using [(3)H]-BK, which revealed a marked increase in B(2) receptor densities, without alterations of affinity. We provide convincing evidence on the relevance of B(2) receptors in the mouse colon under normal conditions, as well as under an inflammatory profile of colitis. Selective B(2) receptor antagonists might well represent rational therapeutic options for treating inflammatory bowel diseases.  相似文献   

8.
Pro258 in transmembrane domain (TMD) 6 of the bradykinin (BK) B2 receptor (B2R) is highly conserved among G-protein coupled receptors (GPCRs). Using mutagenesis, we show that Pro258 is required for normal trafficking of the receptor to the plasma membrane and that mutation of Pro258 to Ala or Leu but not Gly, enhances BK efficacy to induce receptor activation. Furthermore, P258A mutation suppresses the constitutive activity of a constitutively activated N113A-B2R mutant but preserves the antagonist to agonist efficacy shift previously observed on the N113A single mutant. Our data suggest that Pro258 in TMD6 is required for agonist-independent activation of the B2R and that straightening of TMD6 at the Pro-kink might favor G-protein coupling. It is also shown that Asn113 is a contact point of BK interaction and it is proposed that the release of a TMD3-TMD6 interaction involving Asn113 is crucial for the efficacy shift from antagonism toward agonism.  相似文献   

9.
Dopamine receptor agonists play an important role in the treatment of Parkinson's disease and hyperprolactinemic conditions. Proterguride (n-propyldihydrolisuride) was already reported to be a highly potent dopamine receptor agonist, thus its action at different non-dopaminergic monoamine receptors, alpha(1A/1B/1D), 5-HT(2A/2B)- and histamine H(1), was investigated using different functional in vitro assays. The drug behaved as an antagonist at alpha(1)-adrenoceptors without the ability to discriminate between the subtypes (pA(2) values: alpha(1A) 7.31; alpha(1B) 7.37; alpha(1D) 7.35) and showed antagonistic properties at the histamine H(1) receptor. In contrast, at serotonergic receptors (5-HT(2A), 5-HT(2B)) proterguride acted as a partial agonist. The drug stimulated 5-HT(2A) receptors of rat tail artery in lower concentrations than 5-HT itself but failed to evoke comparable efficacy (proterguride: pEC(50) 8.34, E(max) 53% related to the maximum response to 5-HT; 5-HT: pEC(50) 7.03). Agonism at 5-HT(2B) receptors is presently considered to be involved in drug-induced valvular heart disease. Activation of 5-HT(2B) receptors in porcine pulmonary arteries by proterguride (pEC(50) 7.13, E(max) 49%; E(max) (5-HT) 69%), however, occurred at concentrations much higher than plasma concentrations achieving dopaminergic efficacy in humans. The results are discussed focussing on the relevance of action at 5-HT(2B) receptors as well as their significance for a transdermal administration of proterguride. Since it is well accepted that pulsatile dopaminergic stimulation is associated with treatment-related motor complications in the dopaminergic therapy of Parkinson's disease, the transdermal route of administration is of great clinical interest due to the possibility to achieve constant plasma concentrations.  相似文献   

10.
Dopamine D1 receptor (D1R) ligands may directly interact with the NMDA receptor (NMDAR), but detailed knowledge about this effect is lacking. Here we identify D1R ligands that directly modulate NMDARs and examine the contributions of NR2A and NR2B subunits to these interactions. Binding of the open channel blocker [(3)H]MK-801 in membrane preparations from rat- and mouse brain was used as a biochemical measure of the functional state of the NMDAR channel. We show that both D1R agonist A-68930 and dopamine receptor D2 antagonist haloperidol can decrease [(3)H]MK-801 binding with increased potency in membranes from the NR2A(-/-) mice (i.e. in membranes containing NR2B only), as compared to the inhibition obtained in wild-type membranes. Further, a wide range of D1R agonists such as A-68930, SKF-83959, SKF-83822, SKF-38393 and dihydrexidine were able to decrease [(3)H]MK-801 binding, all showing half maximal inhibitory concentrations ~20 μM, and with significant effects occurring at or above 1 μM. With membranes from D1R(-/-) mice, we demonstrate that these effects occurred through a D1R-independent mechanism. Our results demonstrate that dopamine receptor ligands can selectively influence NR2B containing NMDARs, and we characterize direct inhibitory NMDAR effects by different D1R ligands.  相似文献   

11.
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+-ATPase activity but does not change (Na+ + K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+-ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+-ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C β (PI-PLCβ)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+-independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCβ/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.  相似文献   

12.
Competitive antagonists of bradykinin   总被引:35,自引:0,他引:35  
R J Vavrek  J M Stewart 《Peptides》1985,6(2):161-164
The first sequence-related competitive inhibitors of the classic kinin in vitro (rat uterus guinea pig ileum) and in vivo (rat blood pressure) assays have been developed. Replacement of the proline residue at position 7 of bradykinin (BK) with a D-phenylalanine residue is the key modification which converts BK agonists into antagonists. [D-Phe7]-BK exhibits moderate (pA2 = 5.0) inhibition of BK activity on the guinea pig ileum but possesses weak BK-like myotropic activity on the isolated rat uterus and 2-4% of BK depressor potency in the rat blood pressure assay. The additional replacement of the phenylalanine residues at positions 5 and 8 of [D-Phe7]-BK with the isosteric beta-(2-thienyl)-alanine residue produces a potent antagonist of BK activity on the uterus (pA2 = 6.4), ileum (pA2 = 6.3), and in the rat blood pressure assay. The antagonism of BK action on smooth muscle is specific for kinins (BK, kallidin, Met-Lys-BK), but neither inhibitor antagonizes the smooth muscle activity of angiotensin or substance P. Inhibition is competitive and fully reversible.  相似文献   

13.
J Howl 《Peptides》1999,20(4):515-518
Peptide ligands carrying additional reporter groups are valuable research tools to facilitate biochemical and pharmacological studies of G protein-coupled receptors. B2 bradykinin receptors, widely distributed in mammalian tissues, regulate many physiological systems and are therapeutic targets. Acylation of the amino-terminus of bradykinin (BK) and a B2a-selective antagonist produced ligands derivatized with biotinamidocaproate or 7-Amino-4-methylcoumarin-3-acetate. These fluorescent and biotinylated peptides bound with high affinity to bovine and rodent B2 receptors. Analysis of second messenger production confirmed that fluorescent and biotinylated analogs of BK were B2 receptor agonists whereas derivatives of DArg0[Hyp3,DPhe7,Leu8]BK were BK receptor antagonists. The complimentary properties of these selective receptor probes will be useful in studying B2 receptor localization, expression and desensitization.  相似文献   

14.
Bradykinin receptor subtypes linked to prostaglandin release have been assessed in a human osteosarcoma cell line with osteoblastic phenotype (MG-63). Bradykinin (BK; 1 micromol/l) caused a burst of prostaglandin E(2) release that was maximal at 10 min. When the effect on the burst of PGE(2) and PGI(2) release by a variety of kinins and kinin analogues was assessed, the following rank order of response was found: Lys-BK>BK> or =Met-Lys-BK>Ile-Ser-BK>[Tyr(8)]-BK> or =[Hyp(3)]-BK>des-Arg(9)-BK=des-Arg(10)-Lys-BK=des-Arg(1)-BK, [Thi(5,8),D-Phe(7)]-BK=Sar-[D-Phe(8)]-des-Arg(9)-BK=Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK. The rapid effect of BK on PGE(2) and PGI(2) release was unaffected by des-Arg(9)-[Leu(8)]-BK, des-Arg(10)-[Leu(9)]-Lys-BK and des-Arg(10)-[Hoe 140], but strongly inhibited by Hoe 140 in a concentration-dependent manner. When the incubation time was extended to 48 h, it was found that des-Arg(9)-BK and des-Arg(10)-Lys-BK caused a delayed enhancement of the formation of PGE(2). When PGE(2) formation was assessed in 24-h experiments, the following rank order of response was obtained: Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK>BK=Lys-BK>des-Arg(10)-Lys-BK>Sar[D-Phe(8)]-des-Arg(9)-BK>des-Arg(9)-BK. The stimulatory effect of BK at 24 h was unaffected by des-Arg(9)-[Leu(8)]-BK, des-Arg(10)-[Leu(9)]-Lys-BK and des-Arg(10)-[Hoe 140] but inhibited by Hoe 140. The stimulatory effect of des-Arg(10)-Lys-BK in 24-h experiments was inhibited by des-Arg(9)-[Leu(8)]-BK, des-Arg(10)-[Leu(9)]-Lys-BK and des-Arg(10)-[Hoe 140]. Similarly, the stimulatory effects of Sar[D-Phe(8)]-des-Arg(9)-BK and Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK was inhibited by des-Arg(10)-[Hoe 140].The following rank order of response was seen for inhibition of [3H]-BK binding to MG-63 cells: Lys-BK=BK=Hoe 140>des-Arg(10)-Hoe 140=des-Arg(10)-Lys-BK=des-Arg(9)-BK=Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK. Using [3H]-des-Arg(10)-Lys-BK, the following rank order of response for inhibition of binding was seen: des-Arg(10)-Lys-BK=Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK>des-Arg(10)-Hoe 140>des-Arg(9)-BK=Lys-BK=BK=Hoe 140. MG-63 cells expressed mRNAs for BK B1 and B2 receptors, as assessed by RT-PCR.These data indicate that the human osteoblastic osteosarcoma cell line MG-63 is equipped with functional BK receptors of both B1 and B2 receptor subtypes. The B2 receptors are linked to a burst of prostanoid release, whereas the B1 receptors mediate a delayed prostaglandin response, indicating that the two receptor subtypes are linked to different signal transducing mechanisms or that the molecular mechanisms involved in prostaglandin release are different.  相似文献   

15.
Bradykinin (BK) receptor agonists and antagonists contain modifications that confer resistance to specific peptidases. In control studies, rat plasma degraded BK (10.3 +/- 0.3 nmol/min/ml) via angiotensin-converting enzyme (ACE; EC 3.4.15.1; 5.2 +/- 0.3 nmol/min/ml), carboxypeptidase N (CPN; EC 3.4.17.3; 3.2 +/- 0.4 nmol/min/ml), aminopeptidase P (APP; EC 3.4.11.9; 0.6 +/- 0.2 nmol/min/ml), and other (unidentified) activity (2.1 +/- 0.6 nmol/min/ml). In contrast, BK agonist analogs were hydrolyzed more slowly due to selective resistance to these plasma peptidases. In addition to Lys-Lys-BK (B1087), which is partially resistant to ACE, [Hyp3,Phe8-r-Arg9]BK (B7642) was completely resistant to ACE, CPN, and the unidentified plasma activity (1.9 +/- 0.3 nmol/min/ml), and D-Arg0[Hyp3,Phe8-r-Arg9]BK (B7644) was resistant to all plasma hydrolysis, including APP (less than 0.2 nmol/min/ml). In vivo ACE-resistant B1087 exhibited a depressor potency and duration of action greater than BK and equivalent to that of BK in the presence of the ACE inhibitor enalapril. Although the B7642 and B7644 agonists were also more potent and longer acting than BK, the increases were no more than that seen for B1087, despite their additional resistance to CPN (B7642) and CPN and APP (B7644). The duration of action of these analogs was, however, increased after renal ligation. These data demonstrate the importance of ACE to the metabolism of circulating BK and BK analogs. In contrast, resistance to CPN and APP are not associated with further potentiation. Beyond ACE resistance, it is likely that the development of more potent, longer-acting BK agonists and antagonists will relate to other factors, such as renal processing independent of CPN and APP.  相似文献   

16.
Yin H  Chao J  Bader M  Chao L 《Peptides》2007,28(7):1383-1389
We investigated the role of kinin receptors in cardiac remodeling after ischemia/reperfusion (I/R). Bradykinin injection improved cardiac contractility, diastolic function, reduced infarct size and prevented left ventricular thinning after I/R, whereas des-Arg(9)-BK injection had no protective effects. Bradykinin, but not des-Arg(9)-BK, reduced cardiomyocyte apoptosis and increased Akt and GSK-3beta phosphorylation. Furthermore, myocardial infarct size was similar between wild type and B2 knockout mice after I/R, but significantly reduced in kinin B1 receptor knockout mice. These results indicate that the kinin B2 receptor, but not the B1 receptor, protects against I/R-induced cardiac dysfunction by inhibiting apoptosis and limiting ventricular remodeling.  相似文献   

17.
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) class of ionotropic glutamate receptors comprises four different subunits: iGluR1/iGluR2 and iGluR3/iGluR4 forming two subgroups. Three-dimensional structures have been reported only of the ligand-binding core of iGluR2. Here, we present two X-ray structures of a soluble construct of the R/G unedited flip splice variant of the ligand-binding core of iGluR4 (iGluR4i(R)-S1S2) in complex with glutamate or AMPA. Subtle, but important differences are found in the ligand-binding cavity between the two AMPA receptor subgroups at position 724 (Tyr in iGluR1/iGluR2 and Phe in iGluR3/iGluR4), which in iGluR4 may lead to displacement of a water molecule and hence points to the possibility to make subgroup specific ligands.  相似文献   

18.
Protein phosphorylation can be regulated by changes in kinase activity, phosphatase activity, or both. GABAB receptor R2 subunit (GABABR2) is phosphorylated at S783 by 5′-AMP-activated-protein kinase (AMPK), and this phosphorylation modulates GABAB receptor desensitization. Since the GABAB receptor is an integral membrane protein, solubilizing GABABR2 is difficult. To circumvent this problem and to identify specific phosphatases that dephosphorylate S783, we employed an in vitro assay based on dephosphorylation of proteins on PVDF membranes by purified phosphatases. Our method allowed us to demonstrate that S783 in GABABR2 is directly dephosphorylated by PP2A (but not by PP1, PP2B nor PP2C) in a dose-dependent and okadaic acid-sensitive manner. We also show that the level of phosphorylation of the catalytic subunit of AMPK at T172 is reduced by PP1, PP2A and PP2C. Our data indicate that PP2A dephosphorylates GABABR2(S783) less efficiently than AMPK(T172), and that additional phosphatases might be involved in S783 dephosphorylation.  相似文献   

19.
The present study was performed to: (a) evaluate the effects of kinin B1 (Sar[D-Phe8]-des-Arg9-BK; 10 nmol/kg) and B2 (bradykinin (BK); 10 nmol/kg) receptor agonists on plasma extravasation in selected rat tissues; (b) determine the contribution of a lipopolysaccharide (LPS) (100 microg/kg) to the effects triggered by B1 and B2 agonists; and (c) characterize the selectivity of B1 ([Leu8]desArg9-BK; 10 nmol/kg) and B2 (HOE 140; 10 nmol/kg) antagonists as inhibitors of this kinin-induced phenomenon. B1 and B2 agonists were shown to increase plasma extravasation in the duodenum, ileum and also in the urinary bladder of the rat. LPS pretreatment enhanced the plasma extravasation mediated only by the B1 agonist in the duodenum, ileum, trachea, main and segmentar bronchi. These effects were prevented by the B1. but not the B2 antagonist. In normal rats, the B2 antagonist inhibited the effect of B2 agonist in all the tissues analyzed. However, in LPS-treated rats, the B2 antagonist was ineffective in the urinary bladder. These results indicate that kinins induce plasma extravasation in selected rat tissues through activation of B1 and B2 receptors, and that LPS selectively enhances the kinin effect on the B1 receptor in the duodenum, ileum, trachea and main and segmentar bronchi, and may increase B1 receptor expression in these tissues.  相似文献   

20.
A transgenic mouse model, deficient in kinin B1 receptor (B1−/−) was used to evaluate the role of B2 receptor in the smooth muscle stomach fundus. The results showed that the potency of bradykinin (BK) to induce contraction in the gastric tissue was maintained whereas the efficacy was markedly reduced. The angiotensin converting enzyme (ACE) inhibitor captopril potentiated BK-induced effect in wild type (WT) but not in B1−/− fundus. However, ACE activity detected by the convertion of Ang I to Ang II was inhibited by captopril in both types of gastric tissues. Taking into account the hypothesis that captopril and ACE bind to the B2 receptor, we suggest that this complex was not formed in the stomach deficient in B1 receptor. Therefore, our finding strongly support the hypothesis that in smooth muscles that constitutively express the kinin B1 and B2 receptors, an interaction between captopril and ACE, B1 and B2 receptors should occur forming a complex protein interaction for the potentiating effect of ACE on kinin receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号