首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cell factor (SCF), a progenitor cell growth factor, binds to and activates the c-Kit receptor tyrosine kinase, which is critical for early stem cell differentiation in haematopoiesis and gametogenesis. Nothing is known regarding these interactions during islet development in the human fetal pancreas. The present study was to investigate whether an increase in c-Kit receptor activity in isolated human fetal islet-epithelial clusters, by giving exogenous SCF, would promote beta-cell development. In the intact fetal pancreas, SCF and c-Kit were observed co-localizing with cytokeratin 19 in both ductal and newly forming islet cells. Islet cells isolated from 14 to 16 weeks fetal pancreata were cultured with SCF (50 ng/ml) or vehicle for 48 h. We observed an increase in the number of c-Kit-, pancreatic and duodenal homeobox gene 1- (PDX-1-), insulin- and glucagon-expressing cells in the SCF-treated group (PDX-1 and insulin, p < 0.05). PDX-1 and c-Kit mRNA levels were also up-regulated in the SCF group (PDX-1, p < 0.05), with no change in preproinsulin or proglucagon gene expression. Co-localization of insulin with PDX-1 or c-Kit was observed frequently in SCF-treated cultures. A significantly (p < 0.05) greater proliferative capacity of islet-epithelial clusters was found in the SCF group in parallel with increased (p < 0.02) phosphorylation of Akt in a phosphatidylinositol-3 kinase (PI3K)-dependent manner. Our results demonstrate that SCF/c-Kit interactions are likely to be involved in mediating islet cell differentiation and proliferation during human fetal pancreatic development, and that phosphorylated Akt may have a role downstream of SCF/c-Kit signaling.  相似文献   

2.
The receptor, c-Kit, and its ligand, stem cell factor (SCF), are critical for hematopoietic stem cell differentiation and have been implicated in the development, function, and survival of rodent islets. Previously, we reported that exogenous SCF treatments of cultured human fetal (14-16 wk fetal age) islet-epithelial clusters enhanced islet cell differentiation and proliferation (Li J, Goodyer CG, Fellows F, Wang R. Int J Biochem Cell Biol 38: 961-972, 2006). In the present study, we examined the expression pattern of c-Kit in early to midgestation human fetal pancreata and the relevance of c-Kit receptor tyrosine kinase for insulin gene expression and beta-cell survival. c-Kit is expressed in the intact pancreas in a cell-specific manner, with a significant decrease in immunoreactivity in the duct regions from 8 to 21 wk fetal age, paralleled by a significant increase in expression within endocrine regions. These c-Kit-positive cells are highly proliferative and show frequent coexpression with insulin and glucagon. Treatment of islet-epithelial clusters with anti-ACK45 antibody stimulates c-Kit phosphorylation paralleled by a significant increase in PDX-1 and insulin expression, increased cell proliferation, and reduced beta-cell death. In contrast, transient transfection with c-Kit siRNA results in a three- to fourfold decrease in c-Kit, PDX-1, and insulin expression and decreased cell proliferation. This study describes important changes in the distribution and dynamics of c-Kit-expressing cells during human fetal pancreatic neogenesis, suggesting that c-Kit may be a marker for human pancreatic islet progenitor cells. Functional analysis of the c-Kit receptor tyrosine kinase provides evidence that phosphorylation of c-Kit receptor may be involved in mediating early beta-cell differentiation and survival.  相似文献   

3.
Evidence that stem cell factor (SCF) and c-Kit receptor tyrosine kinase expressed in the cerebellum during postnatal development, suggests a possible contribution of the SCF/Kit signaling pathway in the cerebellar development. In the present study, we prepared cerebellar cultures from C57Bl/6J mouse at postnatal day 6 to investigate the role of c-Kit receptor and SCF in regulation of cell growth and viability in the postnatal cerebellar cells. SCF increased the number of survival cells and density of calbindin and GFAP expression in the immunoblot analysis. Treatment with c-Kit antibody accelerated cellular loss in serum-free media and decreased the expression of calbindin and GFAP. The recovery effects of SCF on the cellular proliferation and the expression of functional proteins in the cultures containing c-Kit antibody suggest an involvement of SCF/Kit pathways in the control of postnatal development of cerebellar cells.  相似文献   

4.
5.
The biology of stem cell factor and its receptor C-kit   总被引:16,自引:0,他引:16  
The receptor tyrosine kinase c-Kit and its ligand Stem Cell Factor (SCF) are essential for haemopoiesis, melanogenesis and fertility. SCF acts at multiple levels of the haemopoietic hierarchy to promote cell survival, proliferation, differentiation, adhesion and functional activation. It is of particular importance in the mast cell and erythroid lineages, but also acts on multipotential stem and progenitor cells, megakaryocytes, and a subset of lymphoid progenitors. SCF exists in soluble or transmembrane forms which appear to differ in function. Multiple isoforms of c-Kit also exist as a result of alternate mRNA splicing, proteolytic cleavage and the use of cryptic internal promoters in certain cell types. This review focuses on what is known about the regulation of c-Kit expression, the functions of SCF and c-Kit isoforms, and the nature of the biological responses elicited by this receptor-ligand pair with emphasis on the haemopoietic system.  相似文献   

6.
Stem cell factor (SCF) binds and activates the receptor tyrosine kinase c-Kit, and this interaction is critical for normal hematopoiesis. SCF also synergizes with a variety of growth factors, including those binding members of the cytokine receptor superfamily. The mechanisms mediating this synergy remain to be defined. The present study investigates both structural and biochemical cross-talk between c-Kit and the receptor for granulocyte macrophage colony-stimulating factor (GM-CSF). We have found that c-Kit forms a complex with the beta-chain of the GM-CSF receptor, and this interaction involves the first part of the c-Kit kinase domain. Although inhibition of c-Kit kinase activity completely blocked SCF-induced proliferation, there was still greater than additive growth induced by SCF in combination with GM-CSF. In contrast, an inhibitory antibody against the extracellular domain of c-Kit (K-27) completely inhibited growth in response to SCF alone or in combination with GM-CSF. These results support a kinase-independent component of the synergistic growth induced by SCF and GM-CSF that may relate to interaction of these receptors. It is also clear that a significant part of the synergistic growth is dependent of c-Kit kinase activity. Although synergistic increases in phosphorylation of c-Kit and the beta-chain of the GM-CSF receptor were not observed, SCF and GM-CSF in combination prolonged the duration of Erk1/2 phosphorylation in a phosphatidylinositol 3-kinase-dependent manner. Consistent with these findings, phosphatidylinositol 3-kinase is synergistically activated by SCF and GM-CSF together. Hence, c-Kit makes both kinase-independent and -dependent contributions to the proliferative synergy induced by SCF in combination with GM-CSF.  相似文献   

7.

Background

Stem cell factor (SCF) receptor c-Kit is recognized as a key signaling molecule, which transduces signals for the proliferation, differentiation and survival of stem cells. Binding of SCF to its receptor triggers transactivation, leading to the recruitment of kinases and phosphatases to the docking platforms of c-Kit catalytic domain. Tyrosine phosphatase-1 (Shp-1) deactivates/attenuates 'Kit' kinase activity. Whereas, Asp816Val mutation in the Kit activation loop transforms kinase domain to a constitutively activated state (switch off-to-on state), in a ligand-independent manner. This phenomenon completely abrogates negative regulation of Shp-1. To predict the possible molecular basis of interaction between c-Kit and Shp-1, we have performed an in silico protein-protein docking study between crystal structure of activated c-Kit (phosphorylated c-Kit) and full length crystal structure of Shp-2, a close structural counterpart of Shp-1.

Findings

Study revealed a stretch of conserved amino acids (Lys818 to Ser821) in the Kit activation domain, which makes decisive H-bonds with N-sh2 and phosphotyrosine binding pocket residues of the phosphatase. These H-bonds may impose an inhibitory steric hindrance to the catalytic domain of c-Kit, there by blocking further interaction of the activation loop molecules with incoming kinases. We have also predicted a phosphotyrosine binding pocket in SH2 domains of Shp-1, which is found to be predominantly closer to a catalytic groove like structure in c-Kit kinase domain.

Conclusions

This study predicts that crucial hydrogen bonding between N-sh2 domain of Shp-1 and Kit activation loop can modulate the negative regulation of c-Kit kinase by Shp-1. Thus, this finding is expected to play a significant role in designing suitable gain-of-function c-Kit mutants for inducing conditional proliferation of hematopoietic stem cells.  相似文献   

8.
The c-Kit proto-oncogene is a receptor protein-tyrosine kinase associated with several highly malignant human cancers. Upon binding its ligand, stem cell factor (SCF), c-Kit forms an active dimer that autophosphorylates itself and activates a signaling cascade that induces cell growth. Disease-causing human mutations that activate SCF-independent constitutive expression of c-Kit are found in acute myelogenous leukemia, human mast cell disease, and gastrointestinal stromal tumors. We report on the phosphorylation state and crystal structure of a c-Kit product complex. The c-Kit structure is in a fully active form, with ordered kinase activation and phosphate-binding loops. These results provide key insights into the molecular basis for c-Kit kinase transactivation to assist in the design of new competitive inhibitors targeting activated mutant forms of c-Kit that are resistant to current chemotherapy regimes.  相似文献   

9.
10.
Jin C  Li W  Xu F  Zhu J  He Z  Hu Y 《IUBMB life》2007,59(7):458-464
Oval cells are the putative liver stem cells that proliferate during hepatocarcinogenesis and chemically-induced severe liver injury. Antigens traditionally associated with haematopoietic cells, such as c-Kit, have been reported to be expressed by oval cells. Previous studies suggested that stem cell factor (SCF) and c-Kit were critical to oval cell development. However, the role of SCF/c-Kit signals in oval cell proliferation still remains unclear. Recently, we reported the establishment of oval cell-derived liver epithelial progenitor cells (LEPCs). In this work, we showed LEPCs co-expressed c-Kit and its ligand SCF. The involvement of SCF/c-Kit signals in LEPCs proliferation was investigated either by exposing LEPCs to c-Kit inhibitors (STI571 and AG1296), SCF, anti-SCF neutralized antibody or by using small interfering RNA to knock-down c-Kit expression. Our data demonstrate that blocking SCF/c-Kit signal did not inhibit the proliferation of LEPCs, which suggest SCF/c-Kit is not necessary for the proliferation of oval cells, at least for the cultured oval cell counterpart LEPCs.  相似文献   

11.
The Csk Homologous Kinase (CHK) has been shown to have an enzymatic activity similar to the tyrosine kinase Csk in that it down-regulates Src family kinase activity by causing phosphorylation of the Src C-terminal tyrosine residue. In megakaryocytic Mo7e cells, CHK associates with a specific phosphotyrosine juxtamembrane sequence of the SCF/KL-activated c-Kit receptor. Here, we show that in Mo7e cells, the major Src family kinase activity is p53/56(Lyn). Studies using immobilized c-Kit phosphopeptides show that Lyn is able to specifically associate with the tyrosine-phosphorylated juxtamembrane 568Y*VY*IDPT sequence of c-Kit which has previously been shown to associate with CHK. In cells over-expressing CHK by means of a recombinant vaccinia virus, we observed an elimination of the SCF/KL-stimulated Lyn kinase peak of activity observed at 2-5 minutes in cells infected with the helper T7-expressing vaccinia virus by itself. Examination of total tyrosine phosphorylation by Western blotting showed that over-expression of CHK resulted in a reduction in the levels of tyrosine phosphorylations in the range of 50-60 kDa, but had no apparent effect on c-Kit autophosphorylation. Taken together, these findings show that CHK is able to down-regulate SCF/KL-stimulated Lyn activity in megakaryocytes.  相似文献   

12.
The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.  相似文献   

13.
The stem cell factor receptor (SCF) c-Kit plays a pivotal role in regulating cell proliferation and survival in many cell types. In particular, c-Kit is required for early amplification of erythroid progenitors, while it must disappear from cell surface for the cell entering the final steps of maturation in an erythropoietin-dependent manner. We initially observed that imatinib (IM), an inhibitor targeting the tyrosine kinase activity of c-Kit concomitantly down-regulated the expression of c-Kit and accelerated the Epo-driven differentiation of erythroblasts in the absence of SCF. We investigated the mechanism by which IM or related masitinib (MA) induce c-Kit down-regulation in the human UT-7/Epo cell line. We found that the down-regulation of c-Kit in the presence of IM or MA was inhibited by a pre-incubation with methyl-β-cyclodextrin suggesting that c-Kit was internalized in the absence of ligand. By contrast to SCF, the internalization induced by TKI was independent of the E3 ubiquitin ligase c-Cbl. Furthermore, c-Kit was degraded through lysosomal, but not proteasomal pathway. In pulse-chase experiments, IM did not modulate c-Kit synthesis or maturation. Analysis of phosphotyrosine peptides in UT-7/Epo cells treated or not with IM show that IM did not modify overall tyrosine phosphorylation in these cells. Furthermore, we showed that a T670I mutation preventing the full access of IM to the ATP binding pocket, did not allow the internalization process in the presence of IM. Altogether these data show that TKI-induced internalization of c-Kit is linked to a modification of the integrity of ATP binding pocket.  相似文献   

14.
Adenoid cystic carcinoma (ACC) is an aggressive malignant neoplasm of the salivary glands in which c-Kit is overexpressed and activated, although the mechanism for this is as yet unclear. We analyzed 27 sporadic ACC tumor specimens to examine the biologic and clinical significance of c-Kit activation. Mutational analysis revealed expression of wild-type c-Kit in all, eliminating gene mutation as a cause of activation. Because stem cell factor (SCF) is c-Kit's sole ligand, we analyzed its expression in the tumor cells and their environment. Immunohistochemistry revealed its presence in c-Kit–positive tumor cells, suggesting an activation of autocrine signaling. We observed a significant induction of ERK1/2 in the cells. SCF staining was also found in other types of non-cancerous cells adjacent to tumors within salivary glands, including stromal fibroblasts, neutrophils, peripheral nerve, skeletal muscle, vascular endothelial cells, mucous acinar cells, and intercalated ducts. Quantitative PCR showed that the top quartile of c-Kit mRNA expression distinguished ACCs from normal salivary tissues and was cross-correlated with short-term poor prognosis. Expression levels of SCF and c-Kit were highly correlated in the cases with perineural invasion. These observations suggest that c-Kit is potentially activated by receptor dimerization upon stimulation by SCF in ACC, and that the highest quartile of c-Kit mRNA expression could be a predictor of poor prognosis. Our findings may support an avenue for c-Kit-targeted therapy to improve disease control in ACC patients harboring the top quartile of c-Kit mRNA expression.  相似文献   

15.
The B-Raf(V599E)-mediated constitutive activation of ERK1/2 is involved in establishing the transformed phenotype of some uveal melanoma cells (Calipel, A., Lefevre, G., Pouponnot, C., Mouriaux, F., Eychene, A., and Mascarelli, F. (2003) J. Biol. Chem. 278, 42409-42418). We have shown that stem cell factor (SCF) is involved in the proliferation of normal uveal melanocytes and that c-Kit is expressed in 75% of primary uveal melanomas. This suggests that the acquisition of autonomous growth during melanoma progression may involve the SCF/c-Kit axis. We used six human uveal melanoma tumor-derived cell lines and normal uveal melanocytes to characterize the SCF/c-Kit system and to assess its specific role in transformation. We investigated the possible roles of activating mutations in c-KIT, the overexpression of this gene, and ligand-dependent c-Kit overactivation in uveal melanoma cell tumorigenesis. Four cell lines (92.1, SP6.5, Mel270, and TP31) expressed both SCF and c-Kit, and none harbored the c-KIT mutations in exons 9, 11, 13, and 17 that have been shown to induce SCF-independent c-Kit activation. Melanoma cell proliferation was strongly inhibited by small interfering RNA-mediated depletion of c-Kit in these cells, despite the presence of (V599E)B-Raf in SP6.5 and TP31 cells. We characterized the signaling pathways involved in SCF/c-Kit-mediated cell growth and survival in normal and tumoral melanocytes and found that constitutive ERK1/2 activation played a key role in both the SCF/c-Kit autocrine loop and the gain of function of (V599E)B-Raf for melanoma cell proliferation and transformation. We also provide the first evidence that Glivec/STI571, a c-Kit tyrosine kinase inhibitor, could be used to treat uveal melanomas.  相似文献   

16.
Kaposi's sarcoma (KS), the most frequent malignancy afflicting AIDS patients, is characterized by spindle cell formation and vascularization. Infection with KS-associated herpesvirus (KSHV) is consistently observed in all forms of KS. Spindle cell formation can be replicated in vitro by infection of dermal microvascular endothelial cells (DMVEC) with KSHV. To study the molecular mechanism of this transformation, we compared RNA expression profiles of KSHV-infected and mock-infected DMVEC. Induction of several proto-oncogenes was observed, particularly the receptor tyrosine kinase c-kit. Consistent with increased c-Kit expression, KHSV-infected DMVEC displayed enhanced proliferation in response to the c-Kit ligand, stem cell factor (SCF). Inhibition of c-Kit activity with either a pharmacological inhibitor of c-Kit (STI 571) or a dominant-negative c-Kit protein reversed SCF-dependent proliferation. Importantly, inhibition of c-Kit signal transduction reversed the KSHV-induced morphological transformation of DMVEC. Furthermore, overexpression studies showed that c-Kit was sufficient to induce spindle cell formation. Together, these data demonstrate an essential role for c-Kit in KS tumorigenesis and reveal a target for pharmacological intervention.  相似文献   

17.
Stem-cell factor (SCF) is a noncovalent homodimeric cytokine that exhibits profound biological function in the early stages of hematopoiesis by binding to a cell surface tyrosine kinase receptor that is encoded by the c-Kit proto-oncogene. The results obtained from a combined implementation of homology-based molecular modeling and computational simulations in the study of species-specific SCF/c-Kit interactions are reported. The structural models of the human and rat SCF ligands are based on the close structural similarity to the cytokine M-CSF, whose Cα structure has recently become available. The constant domains of the human Fc fragment are used as a template for the ligand binding domains of the c-Kit receptor. The factors responsible for the stabilization of the SCF quaternary structure and the molecular determinants for ligand recognition and ligand specificity have been identified by assessing the conformational, topographical, and dynamic features of the isolated ligands and of the ligand-receptor complexes. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Activating mutations of codon 816 of the Kit gene have been implicated in malignant cell growth of acute myeloid leukemia (AML), systemic mastocytosis and germ cell tumors. Substitution of aspartic acid with valine (D816V) renders the receptor independent of ligand for activation and signaling. Wild-type c-Kit is a tyrosine kinase receptor that requires its ligand, stem cell factor (SCF), for activation. Several isoforms of c-Kit exist as a result of alternative mRNA splicing, of which two are characterized by the presence or absence of four amino acids (GNNK? and GNNK+, respectively) in the extracellular domain. The two isoforms show differences in signal transduction and biological activities and the shorter isoform seems to be highly expressed than the longer isoform in human malignancies. In this study we analysed the signal transduction downstream of the oncogenic c-Kit mutant D816V in an isoform specific context, using the hematopoietic cell line Ba/F3 stably transfected with the different versions of isoform and mutant receptor. Our data show that in contrast to the differences shown in the activation of wild-type c-Kit isoforms, both isoforms of c-Kit/D816V are constitutively phosphorylated to the same extent. By the use of Western blot analysis we investigated the activation of different signaling proteins and found that both D816V/GNNK? and D816V/GNNK+ constitutively phosphorylated Gab2, Shc, SHP-2 and Cbl to almost the same extent as c-Kit/GNNK?. In addition, both isoforms of c-Kit/D816V induced SCF-independent cell survival and proliferation equally well. This is in contrast to wild-type c-Kit, where c-Kit/GNNK? induced better cell survival and stronger proliferation than c-Kit/GNNK+, and both required stimulation with SCF. Taken together, these findings reveal that the differences in downstream signal transduction and biological responses between the two GNNK isoforms are eliminated by the D816V mutant.  相似文献   

19.
The molecular mechanisms regulating the sensitivity of sensory circuits to environmental stimuli are poorly understood. We demonstrate here a central role for stem cell factor (SCF) and its receptor, c-Kit, in tuning the responsiveness of sensory neurons to natural stimuli. Mice lacking SCF/c-Kit signaling displayed profound thermal hypoalgesia, attributable to a marked elevation in the thermal threshold and reduction in spiking rate of heat-sensitive nociceptors. Acute activation of c-Kit by its ligand, SCF, resulted in a reduced thermal threshold and potentiation of heat-activated currents in isolated small-diameter neurons and thermal hyperalgesia in mice. SCF-induced thermal hyperalgesia required the TRP family cation channel TRPV1. Lack of c-Kit signaling during development resulted in hypersensitivity of discrete mechanoreceptive neuronal subtypes. Thus, c-Kit can now be grouped with a small family of receptor tyrosine kinases, including c-Ret and TrkA, that control the transduction properties of sensory neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号