首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The Na+/proline transporter PutP of Escherichia coli is a member of a large family of Na+/substrate symporters. Previous work on PutP suggests an involvement of the region ranging from Asp-55 to Gly-58 in binding of Na+ and/or proline (Pirch, T., Quick, M., Nietschke, M., Langkamp, M., Jung, H. (2002) J. Biol. Chem. 277, 8790-8796). In this study, a complete Cys scanning mutagenesis of transmembrane domain II (TM II) of PutP was performed to further elucidate the role of the TM in the transport process. Strong defects of PutP function were observed upon substitution of Ala-48, Ala-53, Trp-59, and Gly-63 by Cys in addition to the previously characterized residues Asp-55, Ser-57, and Gly-58. However, except for Asp-55 none of these residues proved essential for function. The activity of eight mutants was sensitive to N-ethylmaleimide inhibition with the sensitive positions clustering predominantly on a hydrophilic face in the cytoplasmic half of TM II. The same face was also highly accessible to the bulky sulfhydryl reagent fluorescein 5-maleimide in randomly oriented membrane vesicles, suggesting an unrestricted accessibility of the corresponding amino acid positions via an aqueous pathway. Na+ stimulated the reactivity of Cys toward fluorescein 5-maleimide at two positions while proline inhibited reaction of the sulfhydryl group at nine positions. Taken together, the results demonstrate that TM II of PutP is of particular functional importance. It is proposed that hydrophilic residues in the cytoplasmic half of TM II participate in the formation of an aqueous cavity in the membrane that allows Na+ and/or proline binding to residues located in the middle of the TM (e.g. Asp-55 and Ser-57). In addition, the data indicate that TM II participates in Na+- and proline-induced conformational alterations.  相似文献   

2.
M Quick  S St?lting  H Jung 《Biochemistry》1999,38(41):13523-13529
The Na+/proline transporter of Escherichia coli (PutP) is a member of a large family of Na+/solute symporters. To investigate the role of Arg residues which are conserved within this family, Arg40 at the cytoplasmic end of transmembrane domain (TM) II and Arg117 in cytoplasmic loop 4 of PutP are subjected to amino acid substitution analysis. Removal of the positive charge at position 40 (PutP-R40C, Q, E) leads to a dramatic decrease of the V(max) of Na(+)-coupled proline uptake (1-10% of PutP-wild-type). The reduced transport rates are accompanied by decreased apparent affinities of the transporter for Na+ and Li+ while the apparent affinity for proline is only slightly altered. Furthermore, single Cys PutP-R40C reacts with N-ethylmaleimide (NEM), and this reaction is partially inhibited by proline and more efficiently by Na+ ions. Remarkably, NEM modification of Cys40 inhibits Na(+)-driven proline uptake almost completely while facilitated influx of proline into deenergized cells is stimulated by this reaction, suggesting an at least partially uncoupled phenotype under these conditions. These results suggest that Arg40 is located close to the site of ion binding and is important for the coupling of ion and proline transport. The observations confirm the functional importance of TM II described in earlier studies [M. Quick and H. Jung (1997) Biochemistry 36, 4631-4636]. In contrast to Arg40, Arg117 is apparently not important for function of the mature protein. The low transport rates observed upon substitution of Arg117 (PutP-R117C, K, Q) can at least partially be attributed to reduced amounts of PutP in the membrane. However, once inserted into the membrane, PutP containing Arg117 replacements shows a stability comparable to the wild-type as indicated by pulse-chase experiments. These observations suggest that Arg117 plays a crucial role at a stage prior to complete functional insertion of PutP into the membrane, i. e., by stabilizing a folding intermediate.  相似文献   

3.
The Na+/I- symporter (NIS) is a key plasma membrane glycoprotein that mediates Na+-dependent active I- transport in the thyroid, lactating breast, and other tissues. The OH group of the side chain at position 354 in transmembrane segment (TMS) IX of NIS has been demonstrated to be essential for NIS function, as revealed by the study of the congenital I- transport defect-causing T354P NIS mutation. TMS IX has the most beta-OH group-containing amino acids (Ser and Thr) of any TMS in NIS. We have thoroughly characterized the functional significance of all Ser and Thr in TMS IX in NIS, as well as of other residues in TMS IX that are highly conserved in other transporters of the SLC5A protein family. Here we show that five beta-OH group-containing residues (Thr-351, Ser-353, Thr-354, Ser-356, and Thr-357) and Asn-360, all of which putatively face the same side of the helix in TMS IX, plus Asp-369, located in the membrane/cytosol interface, play key roles in NIS function and seem to be involved in Na+ binding/translocation.  相似文献   

4.
To elucidate the functional importance of transmembrane domain II in the Na(+)/proline transporter (PutP) of Escherichia coli we analyzed the effect of replacing Ser-54 through Gly-58. Substitution of Asp-55 or Met-56 dramatically reduces the apparent affinity for Na(+) and Li(+) in a cation-dependent manner. Conversely, Cys in place of Gly-58 significantly reduces only the apparent proline affinity while substitution of Ser-57 results in a dramatic reduction of the apparent proline and cation affinities. Interestingly, upon increasing the proline concentration the apparent Na(+) affinity of Ser-57 replacement mutants converges toward the wild-type value, indicating a close cooperativity between cation and substrate site(s). This notion is supported by the fact that Na(+)-stimulated site-specific fluorescence labeling of a single Cys at position 57 is completely reversed by the addition of proline. Similar results are obtained upon labeling of a Cys at position 54 or 58. Taken together, these results indicate that Asp-55 and Met-56 are located at or close to the ion-binding site while Ser-54, Ser-57, and Gly-58 may be close to the proline translocation pathway. In addition, the data prod at an involvement of the latter residues in ligand-induced conformational dynamics that are crucial for cation-coupled transport.  相似文献   

5.
Selected residues of transmembrane domain (TM) IX were previously shown to play key roles in ligand binding and transport in members of the Na+/solute symporter family. Using the Na+/proline transporter PutP as a model, a complete Cys scanning mutagenesis of TM IX (positions 324 to 351) was performed here to further investigate the functional significance of the domain. G328, S332, Q345, and L346 were newly identified as important for Na+-coupled proline uptake. Placement of Cys at one of these positions altered Km(pro) (S332C and L346C, 3- and 21-fold decreased, respectively; Q345C, 38-fold increased), K0.5(Na+) (S332C, 13-fold decreased; Q345C, 19-fold increased), and/or Vmax [G328C, S332C, Q345C, and L346C, 3-, 22-, 2-, and 8-fold decreased compared to PutP(wild type), respectively]. Membrane-permeant N-ethylmaleimide inhibited proline uptake into cells containing PutP with Cys at distinct positions in the middle (T341C) and cytoplasmic half of TM IX (C344, L347C, V348C, and S351C) and had little or no effect on all other single Cys PutP variants. The inhibition pattern was in agreement with the pattern of labeling with fluorescein-5-maleimide. In addition, Cys placed into the cytoplasmic half of TM IX (C344, L347C, V348C, and S351C) was protected from fluorescein-5-maleimide labeling by proline while Na+ alone had no effect. Membrane-impermeant methanethiosulfonate ethyltrimethylammonium modified Cys in the middle (A337C and T341C) and periplasmic half (L331C) but not in the cytoplasmic half of TM IX in intact cells. Furthermore, Cys at the latter positions was partially protected by Na+ but not by proline. Based on these results, a model is discussed according to which residues of TM IX participate in the formation of ligand-sensitive, hydrophilic cavities in the protein that may reconstitute part of the Na+ and/or proline translocation pathway of PutP.  相似文献   

6.
The Na(+)/solute symporter family (SSF, TC No. 2.A.21) contains more than 40 members of pro- and eukaryotic origin. Besides their sequence similarity, the transporters share the capability to utilize the free energy stored in electrochemical Na(+) gradients for the accumulation of solutes. As part of catabolic pathways most of the transporters are most probably involved in the acquisition of nutrients. Some transporters play a role in osmoadaptation. With a high resolution structure still missing, a combination of genetic, protein chemical and spectroscopic methods has been used to gain new insights into the structure and molecular mechanism of action of the transport proteins. The studies suggest a common 13-helix motif for all members of the SSF according to which the N-terminus is located in the periplasm and the C-terminus is directed into the cytoplasm (except for proteins containing a N- or C-terminal extension). Furthermore, an amino acid substitution analysis of the Na(+)/proline transporter (PutP) of Escherichia coli, a member of the SSF, has identified regions of particular functional importance. For example, amino acids of TM II of PutP proved to be critical for high affinity binding of Na(+) and proline. In addition, it was shown that ligand binding induces widespread conformational alterations in the transport protein. Taken together, the studies substantiate the common idea that Na(+)/solute symport is the result of a series of ligand-induced structural changes.  相似文献   

7.
Asp187 and Gln190 were predicted as conserved and closely located at the Na(+) binding site in a topology and homology model structure of Na(+)/proline symporter (PutP) of Escherichia coli. The replacement of Asp187 with Ala or Leu did not affect proline transport activity; whereas, change to Gln abolished the active transport. The binding affinity for Na(+) or proline of these mutants was similar to that of wild-type (WT) PutP. This result indicates Asp187 to be responsible for active transport of proline without affecting the binding. Replacement of Gln190 with Ala, Asn, Asp, Leu and Glu had no effect on transport or binding, suggesting that it may not have a role in the transport. However, in the negative D187Q mutant, a second mutation, of Gln190 to Glu or Leu, restored 46 or 7% of the transport activity of WT, respectively, while mutation to Ala, Asn or Asp had no effect. Thus, side chain at position 190 has a crucial role in suppressing the functional defect of the D187Q mutant. We conclude that Asp187 is responsible for transport activity instead of coupling-ion binding by constituting the translocation pathway of the ion and Gln190 provides a suppressing mutation site to regain PutP functional activity.  相似文献   

8.
The structure of a 36-amino-acid-long N-terminal fragment of human phospholamban phosphorylated at Ser-16 and Thr-17 and Cys-36-->Ser mutated was determined from nuclear magnetic resonance data in aqueous solution containing 30% trifluoroethanol. The peptide assumes a conformation characterized by two alpha-helices connected by an irregular strand, which comprises the amino acids from Arg-13 to Pro-21. The proline is in a trans conformation. The two phosphate groups on Ser-16 and Thr-17 are shown to interact preferably with the side chains of Arg-14 and Arg-13, respectively. The helix comprising amino acids 22 to 35 is well determined (the rmsd for the backbone atoms, calculated for a family of 24 nuclear magnetic resonance structures is 0.69 +/- 0.28 A). The structures of phosphorylated and unphosphorylated phospholamban are compared, and the effect of the two phosphate groups on the relative spatial position of the two helices is examined. The packing parameters Omega (interhelical angle) and d (minimal interhelical distance) are calculated: in the case of the phosphorylated phospholamban, Omega = 100 +/- 35 degrees and d = 7.9 +/- 4.6 A, whereas for the unphosphorylated peptide the values are Omega = 80 +/- 20 degrees and d = 7.0 +/- 4.0 A. We conclude that 1) the phosphorylation does not affect the structure of the C terminus between residues 21 and 36 and 2) the phosphorylated phospholamban has more loose helical packing than the nonphosphorylated.  相似文献   

9.
Na+ and Cl(-)-coupled glycine transporters control the availability of glycine neurotransmitter in the synaptic cleft of inhibitory glycinergic pathways. In this report, we have investigated the involvement of the second intracellular loop of the neuronal glycine transporter 2 (GLYT2) on the protein conformational equilibrium and the regulation by 4alpha-phorbol 12 myristate 13-acetate (PMA). By substituting several charged (Lys-415, Lys-418, and Lys-422) and polar (Thr-419 and Ser-420) residues for different amino acids and monitoring plasma membrane expression and kinetic behavior, we found that residue Lys-422 is crucial for glycine transport. The introduction of a negative charge in 422, and to a lower extent in neighboring N-terminal residues, dramatically increases transporter voltage dependence as assessed by response to high potassium depolarizing conditions. In addition, [2-(trimethylammonium)ethyl] methanethiosulfonate accessibility revealed a conformational connection between Lys-422 and the glycine binding/permeation site. Finally, we show that the mutation of positions Thr-419, Ser-420, and mainly Lys-422 to acidic residues abolishes the PMA-induced inhibition of transport activity and the plasma membrane transporter internalization. Our results establish a new structural basis for the action of PMA on GLYT2 and suggest a complex nature of the PMA action on this glycine transporter.  相似文献   

10.
Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation characterized by hypoketotic hypoglycemia and skeletal and cardiac myopathy. It is caused by mutations in the Na+-dependent organic cation transporter, OCTN2. To define the domains involved in carnitine recognition, we evaluated chimeric transporters created by swapping homologous domains between OCTN1, which does not transport carnitine, and OCTN2. Substitution of the C terminus of OCTN2 (amino acid residues 342-557) with the corresponding residues of OCTN1 completely abolished carnitine transport. The progressive substitution of the N terminus of OCTN2 with OCTN1 resulted in a decrease in carnitine transport associated with a progressive increase in the Km toward carnitine from 3.9 +/- 0.5 to 141 +/- 19 microM. The largest drop in carnitine transport (and increase in Km toward carnitine) was observed with the substitution of residues 341-454 of OCTN2. An additional chimeric transporter (CHIM-9) in which only residues 341-454 of OCTN2 were substituted by OCTN1 had markedly reduced carnitine transport, with an elevated Km toward carnitine (63 +/- 5 microM). Site-directed mutagenesis and introduction of residues nonconserved between OCTN1 and OCTN2 in the OCTN2 cDNA indicated that the R341A, L409W, L424Y, and T429I substitutions significantly decreased carnitine transport. Single substitutions did not increase the Km toward carnitine. By contrast, the combination of three of these substitutions (R341W + L409W + T429I) greatly decreased carnitine transport and increased the Km toward carnitine (20.2 +/- 4.5 microm). The Arg-341, Leu-409, and Thr-429 residues are all located in predicted transmembrane domains. Involvement of these residues in carnitine transport was further supported by the partial restoration of carnitine transport by the introduction of these OCTN2 residues in the OCTN1 portion of CHIM-9. These studies indicate that multiple domains of the OCTN2 transporter are required for carnitine transport and identify transmembrane residues important for carnitine recognition.  相似文献   

11.
The transport function of the rat type IIa Na(+)/P(i) cotransporter is inhibited after binding the cysteine modifying reagent 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) to a cysteine residue substituted for a serine at position 460 (S460C) in the predicted third extracellular loop. This suggests that Ser-460 lies in a functionally important region of the protein. To establish a "structure-function" profile for the regions that flank Ser-460, the substituted cysteine accessibility method was employed. 18 mutants were constructed in which selected amino acids from Arg-437 through Leu-465 were substituted one by one for a cysteine. Mutants were expressed in Xenopus oocytes and transport function (cotransport and slippage) and kinetics were assayed by electrophysiology with or without prior treatment with cysteine modifying (methanethiosulfonate, MTS) reagents. Except for mutant I447C, mutants with cysteines at sites from Arg-437 through Thr-449, as well as Pro-461, were inactive. Cotransport function of mutants with Cys substitutions at sites Arg-462 through Leu-465 showed low sensitivity to MTS reagents. The preceding mutants (Cys substitution at Thr-451 to Ser-460) showed a periodic accessibility pattern that would be expected for an alpha-helix motif. Apart from loss of transport function, exposure of mutants A453C and A455C to MTSEA or 2-(triethylammonium)ethyl MTS bromide (MTSET) increased the uncoupled slippage current, which implicated the mutated sites in the leak pathway. Mutants from Ala-453 through Ala-459 showed less pH dependency, but generally stronger voltage dependency compared with the wild type, whereas those flanking this group were more sensitive to pH and showed weaker voltage dependence of cotransport mode kinetics. Our data indicate that parts of the third extracellular loop are involved in the translocation of the fully loaded carrier and show a membrane-associated alpha-helical structure.  相似文献   

12.
Proximity relationships within three doubly spin-labeled variants of the Na+/proline transporter PutP of Escherichia coli were studied by means of four-pulse double electron-electron resonance spectroscopy. The large value of 4.8 nm for the interspin distance determined between positions 107 in loop 4 and 223 in loop 7 strongly supports the idea of these positions being located on opposite sides of the membrane. Significant smaller values of between 1.8 and 2.5 nm were found for the average interspin distances between spin labels attached to the cytoplasmic loops 2 and 4 (position 37 and 107) and loops 2 and 6 (position 37 and 187). The large distance distribution widths visible in the pair correlation functions reveal a high flexibility of the studied loop regions. An increase of the distance between positions 37 and 187 upon Na+ binding suggests ligand-induced structural alterations of PutP. The results demonstrate that four-pulse double electron-electron resonance spectroscopy is a powerful means to investigate the structure and conformational changes of integral membrane proteins reconstituted in proteoliposomes.  相似文献   

13.
The Na+/I- symporter (NIS)-mediated iodide uptake activity is the basis for targeted radioiodide ablation of thyroid cancers. Although it has been shown that NIS protein is phosphorylated, neither the in vivo phosphorylation sites nor their functional significance has been reported. In this study, Ser-43, Thr-49, Ser-227, Thr-577, and Ser-581 were identified as in vivo NIS phosphorylation sites by mass spectrometry. Kinetic analysis of NIS mutants of the corresponding phosphorylated amino acid residue indicated that the velocity of iodide transport of NIS is modulated by the phosphorylation status of Ser-43 and Ser-581. We also found that the phosphorylation status of Thr-577 may be important for NIS protein stability and that the phosphorylation status of Ser-227 is functionally silent. Thr-49 appears to be critical for proper local structure/conformation of NIS because mutation of Thr-49 to alanine, aspartic acid, or serine results in reduced NIS activity without alterations in total or cell surface NIS protein levels. Taken together, we showed that NIS protein levels and functional activity could be modulated by phosphorylation through distinct mechanisms.  相似文献   

14.
Cys341 of carboxypeptidase Y, which constitutes one side of the solvent-accessible surface of the S1 binding pocket, was replaced with Gly, Ser, Asp, Val, Phe or His by site-directed mutagenesis. Kinetic analysis, using Cbz-dipeptide substrates, revealed that polar amino acids at the 341 position increased K(m) whereas hydrophobic amino acids in this position tended to decrease K(m). This suggests the involvement of Cys341 in the formation of the Michaelis complex in which Cys341 favors the formation of hydrophobic interactions with the P1 side chain of the substrate as well as with residues comprising the surface of the S1 binding pocket. Furthermore, C341G and C341S mutants had significantly higher k(cat) values with substrates containing the hydrophobic P1 side chain than C341V or C341F. This indicates that the nonhydrophobic property conferred by Gly or Ser gives flexibility or instability to the S1 pocket, which contributes to the increased k(cat) values of C341G or C341S. The results suggest that Cys341 may interact with His397 during catalysis. Therefore, we propose a dual role for Cys341: (a) its hydrophobicity allows it to participate in the formation of the Michaelis complex with hydrophobic substrates, where it maintains an unfavorable steric constraint in the S1 subsite; (b) its interaction with the imidazole ring of His397 contributes to the rate enhancement by stabilizing the tetrahedral intermediate in the transition state.  相似文献   

15.
Serines 260 and 288 are involved in sulfate transport by hNaSi-1   总被引:2,自引:0,他引:2  
The low affinity Na+/sulfate cotransporter, NaSi-1, belongs to the SLC13 family that also includes the Na+/dicarboxylate cotransporters, NaDC. Two serine residues in hNaSi-1, at positions 260 and 288, are conserved in all of the sulfate transporters in the family whereas the NaDC contain alanine or threonine at those positions. Therefore, the functional roles of serines 260 and 288 in substrate and cation binding by hNaSi-1 were investigated. These two serine residues were first mutated to alanine and the mutants were characterized in Xenopus oocytes. Alanine substitution of Ser-260 resulted in increased Km values for both substrate and Na+ whereas alanine replacement at Ser-288 resulted in a broadened cation selectivity, indicating that these two serines might play important roles in cation and/or substrate binding of hNaSi-1. The two serines and 12 surrounding residues were further mutated to cysteine and studied using a thiol-reactive compound, [2-(trimethylammonium)ethyl]methane-thiosulfonate (MTSET). Four mutants surrounding Ser-260 (T257C, T259C, T261C, and L263C) were sensitive to MTSET inhibition. The sensitivity to MTSET was dependent on the presence of substrate, suggesting that the accessibility of these substituted cysteines depends on the conformational state of the transporter. Because the four residues are located in transmembrane domain 5, this transmembrane domain is likely to participate in the conformational movements during the transport cycle of hNaSi-1.  相似文献   

16.
Cysteine-scanning mutagenesis was performed from Ser-130 to Leu-160 in the fourth transmembrane domain (TM4) of the Na+/H+ antiporter NhaA from Helicobacter pylori to determine the topology of each residue and to identify functionally important residues. All of the mutants were based on cysteine-less NhaA (Cys-less NhaA), which functions very similarly to the wild-type protein, and were expressed at a level similar to Cys-less NhaA. Discontinuity of [14C]N-ethylmaleimide (NEM)-reactive residues suggested that TM4 comprises residues Gly-135 to Val-156. Even within TM4, NEM reactivity was high for I136C, D141C to A143C, L146C, M150C, and G153C to R155C. These residues are thought to be located on one side of the -helical structure of TM4 and to face a putative water-filled channel. Pretreatment of intact cells with membrane-impermeable maleimide did not inhibit [14C]NEM binding to the NEM-reactive residues within TM4, suggesting that the putative channel opens toward the cytoplasm. NEM reactivity of the A143C mutant was significantly inhibited by Li+. The T140C and D141C mutants showed lower affinity for Na+ and Li+ as transport substrates, but their maximal antiporter velocities (Vmax) were relatively unaffected. Whereas the I142C and F144C mutants completely lost their Li+/H+ antiporter activity, I142C had a lower Vmax for the Na+/H+ antiporter. F144C exhibited a markedly lower Vmax and a partially reduced affinity for Na+. These results suggest that Thr-140, Asp-141, and Phe-144 are located in the end portion of a putative water-filled channel and may provide the binding site for Na+, Li+, and/or H+. Furthermore, residues Ile-142 to Phe-144 may be important for the conformational change that accompanies ion transport in NhaA.  相似文献   

17.
Mass spectrometric analysis of proteolytically derived phosphopeptides has developed into a widespread technique for the identification of phosphorylated amino acids. Using liquid chromatography-electrospray ionization tandem mass spectrometry, 14 phosphorylation sites were identified on Xenopus laevis His6-Aurora A, a highly conserved regulator of centrosome maturation and cell division. These included seven novel phosphorylation sites, Ser-12, Thr-21, Thr-103, Ser-116, Thr-122, Tyr-155, and Thr-294, as well as the previously identified regulatory sites, Ser-53, Thr-295, and Ser-349. The identification of these novel phosphorylation sites will be important for future studies aimed at elucidating the mechanisms of Aurora A regulation by phosphorylation. Furthermore, we demonstrate that a "kinase-inactive" mutant of Aurora A, K169R, still retains 10% of activity of the wild-type enzyme in vitro along with occupancy of Thr-295 and Ser-12. However, mutation of Asp-281 to Ala completely abolishes activity of the enzyme and should therefore be used preferentially as a genuine kinase-dead construct. Because of the abundance of phosphorylated residues on His6-Aurora A, we found this protein to be an ideal tool for the characterization of immobilized metal-affinity chromatography (IMAC) as a method for phosphopeptide enrichment from complex mixtures. We present a detailed analysis of the binding and elution properties of both the phosphopeptides and unphosphorylated peptides of His6-Aurora A to Fe3+-IMAC before and after methyl esterification. Moreover, we demonstrate a significant difference in enrichment of phosphopeptides when different resins are used for Fe3+-IMAC and characterize the strengths and limitations of this methodology for the study of phosphoproteomics.  相似文献   

18.
A tyrosine group has been identified at, or near, the Na+-binding site of the Na+/glucose and Na+/proline cotransporters of rabbit intestinal brush-borders. Three tyrosine group-specific reagents, n-acetylimidazole, tetranitromethane, and p-nitrobenzene sulfonyl fluoride, were used to evaluate the role of tyrosyl groups in Na+-dependent glucose transport, Na+-dependent phlorizin binding, and the Na+-induced fluorescence quenching of fluorescein isothiocyanate bound to the glucose site of the carrier. All three reagents inhibited glucose transport, phlorizin binding, and fluorescein isothiocyanate quenching by 50-85% with Ki values in the range 7-50 microM. The presence of Na+ during the exposure of membranes to the reagents completely protected against inhibition, the Na+ concentration required to produce 50% protection was 14-36 mM. Fluorescent derivatives of n-acetylimidazole were synthesized to identify the tyrosyl residues on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A total of five polypeptide bands were labeled with eosin or fluorescein n-acetylimidazole in a Na+-sensitive manner. Two of these bands, previously identified as the glucose (75,000-dalton) and proline (100,000-dalton) binding sites of the glucose and proline carriers, account for 50% of the Na+-sensitive tyrosyl residues. On the basis of these studies, we believe that the Na+/glucose cotransporter contains both the Na+ and glucose active sites on the same polypeptide or that the cotransporter consists of two similar polypeptides, each containing one substrate binding site.  相似文献   

19.
20.
Na+/solute symporters are essential membrane integrated proteins that couple the flow of Na+ ions driven by electrochemical Na+ gradients to the transport of solutes across biological membranes. Here, we used a combination of molecular modeling techniques and evolutionary conservation analysis to construct and validate a first model of the Na+/proline symporter PutP of Escherichia coli based on the crystal structure of the bacterial Na+/galactose symporter vSGLT. Ligand docking experiments were employed to gain information about residues involved in proline binding. The proposed model is consistent with the available experimental data and was further validated by amino acid substitutions and kinetic and protein chemical analyses. Combination of the results of molecular modeling and functional studies predicts the location and organization of the Na+ and proline binding sites. Remarkably, as proposed computationally and discovered here experimentally, residues Y140, W244, and Y248 of transmembrane segments 4 and 7 are found to be particularly important for PutP function and suggested to participate in proline binding and/or gating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号