首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
–Twenty-three diurnally active (0705–2333), healthy persons between 22 and 54 yrs of age and without history of sleep abnormality were monitored continuously for 120 consecutive hr (five days) by wrist actigraphy. Circadian rhythms of high amplitude were detected by cosinor analysis for each participant and for the groups of 10 males and 13 females with the average span of heightened activity timed between ~1330 and 1605. The circadian peak-trough difference in wrist movement was marked, equalling aproximately 75% of the 24-hr mean level. In 19 of 23 participants, the 24-hr mean of wrist activity varied between 140–180 movements/min, with four persons exhibiting lesser means of 110–140 movements/min. With respect to the daytime span of activity, the mean wrist movement of individual participants ranged from 155–265 movements/min, with the majority (20/23) varying between 185–245 movements/min. During nocturnal sleep the mean wrist activity level was quite low, varying between individuals from 5 to 25 movements/min for 21 of 23 persons. Wrist actigraphy proved to be well-accepted and was a most reliable means of monitoring aspects of body movement during activity and sleep in ambulatory persons adhering to usual life habits and pursuits.  相似文献   

2.
Insufficient quantity and quality of sleep may modulate eating behavior, everyday physical activity, overall energy balance, and individual risk of obesity and type 2 diabetes. We examined the association of habitual sleep quantity and quality with the self-reported pattern of eating behavior in 53 healthy urban adults with parental history of type 2 diabetes (30 F/23 M; mean (s.d.) age: 27 (4) years; BMI: 23.9 (2.3) kg/m(2)) while taking into consideration the amount of their everyday physical activity. Participants completed 13 (3) days of sleep and physical activity monitoring by wrist actigraphy and waist accelerometry while following their usual lifestyle at home. Overnight laboratory polysomnography was used to screen for sleep disorders. Subjective sleep quality was measured with the Pittsburgh Sleep Quality Index. Eating behavior was assessed using the original 51-item and the revised 18-item version of the Three-Factor Eating Questionnaire including measures of cognitive restraint, disinhibition, hunger, and uncontrolled and emotional eating. In multivariable regression analyses adjusted for age, BMI, gender, race/ethnicity, level of education, habitual sleep time measured by wrist actigraphy and physical activity measured by waist accelerometry, lower subjective sleep quality was associated with increased hunger, more disinhibited, uncontrolled and emotional eating, and higher cognitive restraint. There was no significant association between the amount of sleep measured by wrist actigraphy and any of these eating behavior factors. Our findings indicate that small decrements in self-reported sleep quality can be a sensitive indicator for the presence of potentially problematic eating patterns in healthy urban adults with familial risk for type 2 diabetes.  相似文献   

3.
Previous results have indicated that valsartan administration at bed-time, as opposed to upon wakening, improves the diurnal/nocturnal ratio of blood pressure (BP) toward a normal dipping pattern, without loss of 24 h efficacy. This ratio is characterized by a progressive decrease with aging. Accordingly, we investigated the administration time-dependent antihypertensive efficacy of valsartan, an angiotensin blocking agent, in elderly hypertensive patients. We studied 100 elderly patients with grade 1-2 essential hypertension (34 men and 66 women), 68.2+/-4.9 years of age, randomly assigned to receive valsartan (160 mg/d) as a monotherapy either upon awakening or at bed-time. BP was measured for 48 h by ambulatory monitoring, at 20 min intervals between 07:00 to 23:00 h and at 30 min intervals at night, before and after 3 months of therapy. Physical activity was simultaneously monitored every minute by wrist actigraphy to accurately determine the duration of sleep and wake spans to enable the accurate calculation of the diurnal and nocturnal means of BP for each subject. There was a highly significant BP reduction after 3 months of valsartan treatment (p < 0.001). The reduction was slightly larger with bed-time dosing (15.3 and 9.2 mm Hg reduction in the 24 h mean of systolic and diastolic BP, respectively) than with morning dosing (12.3 and 6.3 mm Hg reduction in the 24 h mean of systolic and diastolic BP, respectively). The diurnal/nocturnal ratio, measured as the nocturnal decline of BP relative to the diurnal mean, was unchanged in the group ingesting valsartan upon awakening (-1.0 and -0.3 for systolic and diastolic BP; p > 0.195). This ratio was significantly increased (6.6 and 5.4 for systolic and diastolic BP; p < 0.001) when valsartan was ingested at bed-time. The reduction of the nocturnal mean was doubled in the group ingesting valsartan at bed-time, as compared to the group ingesting it in the morning (p < 0.001). In elderly hypertensive patients, mainly characterized by a diminished nocturnal decline in BP, bed-time valsartan dosing is better than morning dosing since it improves efficacy during the nighttime sleep span, with the potential reduction in cardiovascular risk that has been associated with a normalized diurnal/nocturnal BP ratio.  相似文献   

4.
Adults with parental history of type 2 diabetes have high metabolic morbidity, which is exacerbated by physical inactivity. Self‐reported sleep <6 h/day is associated with increased incidence of obesity and diabetes, which may be mediated in part by sleep‐loss‐related reduction in physical activity. We examined the relationship between habitual sleep curtailment and physical activity in adults with parental history of type 2 diabetes. Forty‐eight young urban adults with parental history of type 2 diabetes (27 F/21 M; mean (s.d.) age 26 (4) years; BMI 23.8 (2.5) kg/m2) each completed 13 (2) days of sleep and physical activity monitoring by wrist actigraphy and waist accelerometry while following their usual lifestyle at home. Laboratory polysomnography was used to screen for sleep disorders. The primary outcome of the study was the comparison of total daily activity counts between participants with habitual sleep <6 vs. ≥6 h/night. Secondary measures included daily time spent sedentary and in light, moderate, and vigorous physical activity. Short sleepers had no sleep abnormalities and showed signs of increased sleep pressure consistent with a behavioral pattern of habitual sleep curtailment. Compared to participants who slept ≥6 h/night, short sleepers had 27% fewer daily activity counts (P = 0.042), spent less time in moderate‐plus‐vigorous physical activity (?43 min/day; P = 0.010), and remained more sedentary (+69 min/day; P = 0.026). Our results indicate that young urban adults with parental history of type 2 diabetes who habitually curtail their sleep have less daily physical activity and more sedentary living, which may enhance their metabolic risk.  相似文献   

5.
ABSTRACT

We compared performance in deriving sleep variables by both Fitbit Charge 2?, which couples body movement (accelerometry) and heart rate variability (HRV) in combination with its proprietary interpretative algorithm (IA), and standard actigraphy (Motionlogger® Micro Watch Actigraph: MMWA), which relies solely on accelerometry in combination with its best performing ‘Sadeh’ IA, to electroencephalography (EEG: Zmachine® Insight+ and its proprietary IA) used as reference. We conducted home sleep studies on 35 healthy adults, 33 of whom provided complete datasets of the three simultaneously assessed technologies. Relative to the Zmachine EEG method, Fitbit showed an overall Kappa agreement of 54% in distinguishing wake/sleep epochs and sensitivity of 95% and specificity of 57% in detecting sleep epochs. Fitbit, relative to EEG, underestimated sleep onset latency (SOL) by ~11 min and overestimated sleep efficiency (SE) by ~4%. There was no statistically significant difference between Fitbit and EEG methods in measuring wake after sleep onset (WASO) and total sleep time (TST). Fitbit showed substantial agreement with EEG in detecting rapid eye movement and deep sleep, but only moderate agreement in detecting light sleep. The MMWA method showed 51% overall Kappa agreement with the EEG one in detecting wake/sleep epochs, with sensitivity of 94% and specificity of 53% in detecting sleep epochs. MMWA, relative to EEG, underestimated SOL by ~10 min. There was no significant difference between Fitbit and MMWA methods in amount of bias in estimating SOL, WASO, TST, and SE; however, the minimum detectable change (MDC) per sleep variable with Fitbit was better (smaller) than with MMWA, respectively, by ~10 min, ~16 min, ~22 min, and ~8%. Overall, performance of Fitbit accelerometry and HRV technology in conjunction with its proprietary IA to detect sleep vs. wake episodes is slightly better than wrist actigraphy that relies solely on accelerometry and best performing Sadeh IA. Moreover, the smaller MDC of Fitbit technology in deriving sleep parameters in comparison to wrist actigraphy makes it a suitable option for assessing changes in sleep quality over time, longitudinally, and/or in response to interventions.  相似文献   

6.
The purpose of this study was to formulate a "sleep/wake" scoring algorithm for processing activity measurements obtained using a newly developed nonwear actigraphy (NWA) device, and to test its validity. The NWA device has a highly sensitive pressure sensor and is placed under a mattress. It can continuously record the activity of a person lying on the mattress and identify an "in-bed/out-of-bed" state from the vibrations of the mattress. We formulated the sleep/wake scoring algorithm by using data obtained simultaneously by wrist actigraphy (Act) and the NWA device in 33 healthy participants. Agreement rate, sensitivity, and specificity with Act were 95.7%, 97.6%, and 75.8% (33 healthy people); the corresponding values were 85.9%, 89.1%, and 79.8% for 12 nursing home residents and 93.7%, 97.2%, and 60.8% for 60 nights for 6 healthy persons who slept 10 nights on their futons. Agreement rate, sensitivity, and specificity with polysomnography were in almost perfect agreement with Act (12 nights; 6 healthy persons who slept 2 nights). All our validation results indicate that the NWA device, placed under a mattress or a futon, can produce almost identical sleep/wake scores to Act. It is expected that the NWA device, a nonwear device for scoring sleep/wake and in-bed/out-of-bed, enables convenient long-term sleep-related evaluation in various fields, including hospital settings, home-care settings, and care facility settings such as nursing homes.  相似文献   

7.
Previous results have indicated that valsartan administration at bed‐time, as opposed to upon wakening, improves the diurnal/nocturnal ratio of blood pressure (BP) toward a normal dipping pattern, without loss of 24 h efficacy. This ratio is characterized by a progressive decrease with aging. Accordingly, we investigated the administration time‐dependent antihypertensive efficacy of valsartan, an angiotensin blocking agent, in elderly hypertensive patients. We studied 100 elderly patients with grade 1–2 essential hypertension (34 men and 66 women), 68.2±4.9 years of age, randomly assigned to receive valsartan (160 mg/d) as a monotherapy either upon awakening or at bed‐time. BP was measured for 48 h by ambulatory monitoring, at 20 min intervals between 07∶00 to 23∶00 h and at 30 min intervals at night, before and after 3 months of therapy. Physical activity was simultaneously monitored every minute by wrist actigraphy to accurately determine the duration of sleep and wake spans to enable the accurate calculation of the diurnal and nocturnal means of BP for each subject. There was a highly significant BP reduction after 3 months of valsartan treatment (p<0.001). The reduction was slightly larger with bed‐time dosing (15.3 and 9.2 mm Hg reduction in the 24 h mean of systolic and diastolic BP, respectively) than with morning dosing (12.3 and 6.3 mm Hg reduction in the 24 h mean of systolic and diastolic BP, respectively). The diurnal/nocturnal ratio, measured as the nocturnal decline of BP relative to the diurnal mean, was unchanged in the group ingesting valsartan upon awakening (?1.0 and ?0.3 for systolic and diastolic BP; p>0.195). This ratio was significantly increased (6.6 and 5.4 for systolic and diastolic BP; p<0.001) when valsartan was ingested at bed‐time. The reduction of the nocturnal mean was doubled in the group ingesting valsartan at bed‐time, as compared to the group ingesting it in the morning (p<0.001). In elderly hypertensive patients, mainly characterized by a diminished nocturnal decline in BP, bed‐time valsartan dosing is better than morning dosing since it improves efficacy during the nighttime sleep span, with the potential reduction in cardiovascular risk that has been associated with a normalized diurnal/nocturnal BP ratio.  相似文献   

8.

The purpose of this study was to formulate an algorithm for assessing sleep/waking from activity intensities measured with a waist-worn actigraphy, the Lifecorder PLUS (LC; Suzuken Co. Ltd., Nagoya, Japan), and to test the validity of the algorithm. The study consisted of 31 healthy subjects (M/F = 20/11, mean age 31.7 years) who underwent one night of simultaneous measurement of activity intensity by LC and polysomnography (PSG). A sleep(S)/wake(W) scoring algorithm based on a linear model was determined through discriminant analysis of activity intensities measured by LC over a total of 235 h and 56 min and the corresponding PSG-based S/W data. The formulated S/W scoring algorithm was then used to score S/W during the monitoring epochs (2 min each, 7078 epochs in total) for each subject. The mean agreement rate with the corresponding PSG-based S/W data was 86.9%, with a mean sensitivity (sleep detection) of 89.4% and mean specificity (wakefulness detection) of 58.2%. The agreement rates for the individual stages of sleep were 60.6% for Stage 1, 89.3% for Stage 2, 99.2% for Stage 3 + 4, and 90.1% for Stage REM. These results demonstrate that sleep/wake activity in young to middle-aged healthy subjects can be assessed with a reliability comparable to that of conventional actigraphy through LC waist actigraphy and the optimal S/W scoring algorithm.

  相似文献   

9.
The current study investigated the link between poor sleep and ADHD symptomatology. The effects of extending versus restricting sleep on subjective (questionnaires) and objective (actigraphy) measures of daytime movement were examined in 25 typically developing children aged 8–12 years. Subjective measures demonstrated an increase in ADHD symptomology following sleep restriction, with follow-up analyses indicating that findings were due to poorer attention, not changes in hyperactivity. The results of actigraphy data indicated that there were no differences found for mean or median daytime activity, but the standard deviation of activity was found to be significantly higher following sleep restriction. Contrary to the popular belief that sleep restriction results in increased overall activity, this study instead found an increase in variability of activity. This suggests that a sleep-restricted child’s activity level may appear as alternating periods of high and low activity levels throughout the day.  相似文献   

10.
The aim of the present study was to evaluate the characteristics of the circadian rest-activity rhythm of cancer patients. Thirty-one in-patients, consisting of 19 males and 12 females, were randomly selected from the Regional Cancer Center, Pandit Jawaharlal Nehru Medical College, Raipur, India. The rest-activity rhythm was studied non-invasively by wrist actigraphy, and compared with 35 age-matched apparently healthy subjects (22 males and 13 females). All subjects wore an Actiwatch (AW64, Mini Mitter Co. Inc., USA) for at least 4-7 consecutive days. Fifteen-second epoch length was selected for gathering actigraphy data. In addition, several sleep parameters, such as time in bed, assumed sleep, actual sleep time, actual wake time, sleep efficiency, sleep latency, sleep bouts, wake bouts, and fragmentation index, were also recorded. Data were analyzed using several statistical techniques, such as cosinor rhythmometry, spectral analysis, ANOVA, Duncan's multiple-range test, and t-test. Dichotomy index (I相似文献   

11.
The purpose of this study was to determine whether a sleep log parameter could be used to estimate the circadian phase of normal, healthy, young adults who sleep at their normal times, and thus naturally have day-to-day variability in their times of sleep. Thus, we did not impose any restrictions on the sleep schedules of our subjects (n = 26). For 14 d, they completed daily sleep logs that were verified with wrist activity monitors. On day 14, salivary melatonin was sampled every 30 min in dim light from 19:00 to 07:30 h to determine the dim light melatonin onset (DLMO). Daily sleep parameters (onset, midpoint, and wake) were taken from sleep logs and averaged over the last 5, 7, and 14 d before determination of the DLMO. The mean DLMO was 22:48 +/- 01:30 h. Sleep onset and wake time averaged over the last 5 d were 01:44 +/- 01:41 and 08:44 +/- 01:26 h, respectively. The DLMO was significantly correlated with sleep onset, midpoint, and wake time, but was most strongly correlated with the mean midpoint of sleep from the last 5 d (r = 0.89). The DLMO predicted using the mean midpoint of sleep from the last 5 d was within 1 h of the DLMO determined from salivary melatonin for 92% of the subjects; in no case did the difference exceed 1.5 h. The correlation between the DLMO and the score on the morningness-eveningness questionnaire was significant but comparatively weak (r = -0.48). We conclude that the circadian phase of normal, healthy day-active young adults can be accurately predicted using sleep times recorded on sleep logs (and verified by actigraphy), even when the sleep schedules are irregular.  相似文献   

12.
Since there is less movement during sleep than during wake, the recording of body movements by actigraphy has been used to indirectly evaluate the sleep–wake cycle. In general, most actigraphic devices are placed on the wrist and their measures are based on acceleration detection. Here, we propose an alternative way of measuring actigraphy at the level of the arm for joint evaluation of activity and body position. This method analyzes the tilt of three axes, scoring activity as the cumulative change of degrees per minute with respect to the previous sampling, and measuring arm tilt for the body position inference. In this study, subjects (N?=?13) went about their daily routine for 7 days, kept daily sleep logs, wore three ambulatory monitoring devices and collected sequential saliva samples during evenings for the measurement of dim light melatonin onset (DLMO). These devices measured motor activity (arm activity, AA) and body position (P) using the tilt sensing of the arm, with acceleration (wrist acceleration, WA) and skin temperature at wrist level (WT). Cosinor, Fourier and non-parametric rhythmic analyses were performed for the different variables, and the results were compared by the ANOVA test. Linear correlations were also performed between actimetry methods (AA and WA) and WT. The AA and WA suitability for circadian phase prediction and for evaluating the sleep–wake cycle was assessed by comparison with the DLMO and sleep logs, respectively. All correlations between rhythmic parameters obtained from AA and WA were highly significant. Only parameters related to activity levels, such as mesor, RA (relative amplitude), VL5 and VM10 (value for the 5 and 10 consecutive hours of minimum and maximum activity, respectively) showed significant differences between AA and WA records. However, when a correlation analysis was performed on the phase markers acrophase, mid-time for the 10 consecutive hours of highest (M10) and mid-time for the five consecutive hours of lowest activity (L5) with DLMO, all of them showed a significant correlation for AA (R?=?0.607, p?=?0.028; R?=?0.582, p?=?0.037; R?=?0.620, p?=?0.031, respectively), while for WA, only acrophase did (R?=?0.621, p?=?0.031). Regarding sleep detection, WA showed higher specificity than AA (0.95?±?0.01 versus 0.86?±?0.02), while the agreement rate and sensitivity were higher for AA (0.76?±?0.02 versus 0.66?±?0.02 and 0.71?±?0.03 versus 0.53?±?0.03, respectively). Cohen’s kappa coefficient also presented the highest values for AA (0.49?±?0.04) and AP (0.64?±?0.04), followed by WT (0.45?±?0.06) and WA (0.37?±?0.04). The findings demonstrate that this alternative actigraphy method (AA), based on tilt sensing of the arm, can be used to reliably evaluate the activity and sleep–wake rhythm, since it presents a higher agreement rate and sensitivity for detecting sleep, at the same time allows the detection of body position and improves circadian phase assessment compared to the classical actigraphic method based on wrist acceleration.  相似文献   

13.
Among the most co-occurring conditions in autism spectrum disorders (ASD), there are sleep disorders which may exacerbate associated behavioral disorders and lead to intensification of existing autistic symptoms. Several studies investigating the use of melatonin in the treatment of sleep disorders in ASD have shown comparative efficiency in sleep with little or no side effects. Here we report a case of ASD with non-24-hour rhythm and the effect of melatonin in circadian parameters by actigraphy. Visual analysis of the first 10 days recorded and the periodogram suggest that this patient showed a non-24-hour rhythm. This ASD subject showed before melatonin administration an activity/rest rhythm lower than 24 hours. The results show that melatonin increased approximately 4.7 times the regularity of circadian activity rhythm and resting staying on average between 00:00 and 06:00 and showed positive effects in improving the quality of sleep and behavior. So, the actigraphy showed an ASD subject with a non-24-hour activity/rest rhythm which changed this rhythm to a 24-hour rhythm after melatonin administration. This result reinforces the prospect of therapy with melatonin for synchronization (increased regularity) of endogenous rhythms and improve sleep quality and hence behavior and indicates the actigraphy as a choice tool to characterize several parameters of the activity/rest rhythm of ASD individuals.  相似文献   

14.
《Chronobiology international》2013,30(9):1278-1293
Genes involved in circadian regulation, such as circadian locomotor output cycles kaput [CLOCK], cryptochrome [CRY1] and period [PER], have been associated with sleep outcomes in prior animal and human research. However, it is unclear whether polymorphisms in these genes are associated with the sleep disturbances commonly experienced by adults living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of this study was to describe polymorphisms in selected circadian genes that are associated with sleep duration or disruption as well as the sleep–wake rhythm strength and phase timing among adults living with HIV/AIDS. A convenience sample of 289 adults with HIV/AIDS was recruited from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn for 72?h on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or percentage of wake after sleep onset (WASO) and several circadian rhythm parameters: mesor, amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-h autocorrelation. Circadian phase measures included clock time for peak activity (acrophase) from actigraphy movement data, and bed time and final wake time from actigraphy and self-report. Genotyping was conducted for polymorphisms in five candidate genes involved in circadian regulation: CLOCK, CRY1, PER1, PER2 and PER3. Demographic and clinical variables were evaluated as potential covariates. Interactions between genotype and HIV variables (i.e. viral load, years since HIV diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g. race, gender, CD4+ T-cell count, waist circumference, medication use, smoking and depressive symptoms), CLOCK was associated with WASO, 24-h autocorrelation and objectively-measured bed time; CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported habitual wake time; PER2 was associated with TST, mesor, circadian quotient, 24-h autocorrelation and bed and wake times; PER3 was associated with amplitude, 24-h autocorrelation, acrophase and bed and wake times. Most of the observed associations involved a significant interaction between genotype and HIV. In this chronic illness population, polymorphisms in several circadian genes were associated with measures of sleep disruption and timing. These findings extend the evidence for an association between genetic variability in circadian regulation and sleep outcomes to include the sleep–wake patterns experienced by adults living with HIV/AIDS. These results provide direction for future intervention research related to circadian sleep–wake behavior patterns.  相似文献   

15.
Sleep disruption is a commonly encountered clinical feature in schizophrenic patients, and one important concern is to determine the extent of this disruption under “real” life situations. Simultaneous wrist actigraphy, diary records, and repeated urine collection for urinary 6‐sulphatoxymelatonin (aMT6s) profiles are appropriate tools to assess circadian rhythms and sleep patterns in field studies. Their suitability for long‐term recordings of schizophrenic patients living in the community has not been evaluated. In this case report, we document long‐term simultaneous wrist actigraphy, light detection, repeated urine collection, and diary records as a suitable combination of non‐invasive techniques to quantify and assess changes in sleep‐wake cycles, light exposure, and melatonin profiles in a schizophrenic patient. The actigraph was well‐tolerated by the patient, and compliance to diary records and 48 h urine collection was particularly good with assistance from family members. The data obtained by these techniques are illustrated, and the results reveal remarkable abnormal patterns of rest‐activity patterns, light exposure, and melatonin production. We observed various rest‐activity patterns, including phase‐shifts, highly delayed sleep on‐ and offsets, and irregular rest‐activity phases. The period of the rest‐activity rhythm, light‐dark cycle, and melatonin rhythm was longer than 24 h. These circadian abnormalities may reinforce the altered sleep patterns and the problems of cognitive function and social engagement associated with schizophrenic.  相似文献   

16.
Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.  相似文献   

17.
Seafaring is a hazardous occupation with high death and injury rates, but the role of seafarer fatigue in these events is generally not well documented. The International Maritime Organization has identified seafarer fatigue as an important health and safety issue. Most research to date has focused on more regularly scheduled types of operations (e.g., merchant vessels, ferries), but there is relatively little information on commercial fishing, which often involves high day-to-day and seasonal variability in work patterns and workload. The present study was designed to monitor the sleep and sleepiness of commercial fishermen at home and during extended periods at sea during the peak of the hoki fishing season, with a view to developing better fatigue management strategies for this workforce. Sleep (wrist actigraphy and sleep diaries) and sleepiness (Karolinska Sleepiness Scale [KSS] before and after each sleep period) of 20 deckhands were monitored for 4-13 days at home and for 5-9 days at sea while working a nominal 12 h on/6 h off schedule. On the 12 h on/6 hoff schedule, there was still a clear preference for sleep at night. Comparing the last three days at home and the first three days at sea showed that fishermen were more likely to have split sleep at sea (Wilcoxon signed ranks p < 0.001), but the median sleep/24 h did not differ significantly by location (5.9 h at sea vs. 6.7 h at home). However, on 23% of days at sea, fishermen obtained < 4 h total sleep/24 h, compared to 3% of days at home ( p(chi 2) < 0.01). Sleep efficiency, mean activity counts/min sleep, and subjective ratings of sleep quality did not differ significantly between the last three days at home and the first three days at sea. However, sleepiness ratings remained higher after sleep at sea (Wilcoxon signed ranks p < 0.05), with fishermen having post-sleep KSS ratings >or= 7 on 24% of days at sea vs. 9% of days at home (Wilcoxon signed ranks p < 0.01). This work adds to the limited number of studies that objectively monitored the sleep of seafarers. It has the strength of operational fidelity but the weakness that large inter- and intra-individual variability in sleep, combined with the small sample size, limited the power of the study to detect statistically significant differences between sleep at home and at sea. The clear preference for sleep at night during the 12 h on/6 h off schedule at sea is consistent with the expectation that this 18 h duty/rest cycle is outside the range of entrainment of the circadian pacemaker. High levels of acute sleep loss, and residual sleepiness after sleep, were much more common at sea than at home. The longer duration of trips during the peak of the fishing season increases the risk of performance impairment due to greater cumulative sleep loss than would be expected on typical three-day trips. Key fatigue management strategies in this environment include that fishermen report to work as well rested as possible. Once at sea, the day-to-day variability in activities due to uncontrollable factors, such as fishing success, repairing gear, and weather conditions, mean that contingency planning is required for managing situations where the entire crew have experienced long periods of intensive work with minimum recovery opportunities.  相似文献   

18.
目的:应用Actigraphy仪检测酒石酸唑吡坦对非器质性失眠患者睡眠质量的影响。方法:选择非器质性失眠症患者36例,实验第二晚给予10 mg酒石酸唑吡坦,实验第一晚和第四晚采用Actigraph仪监测,观察用药后Actigraph指标的变化。同时设置正常对照组24名,进行基础Actigraph监测。结果:失眠组患者服用酒石酸唑吡坦后,夜间Actigraphy检测显示实际觉醒时间(AWT)、睡眠潜入期(SL)、平均每次觉醒时间(MWB T)与服药前相比,显著缩短(P0.01);睡眠效率(SE)、平均静息状态时长(MLI)与服药前相比,显著提高(P0.01),同时反映身体活动的参数平均活动分数(MAS)和睡眠总体破碎程度的割裂指数(FI)与对照组相比,显著降低(P0.05)。结论:酒石酸唑吡坦能明显改善非器质性失眠患者睡眠,在非器质性失眠症的诊断治疗中Actigraphy仪是一种有效、便捷的方法。  相似文献   

19.
The purpose of this study was to determine whether a sleep log parameter could be used to estimate the circadian phase of normal, healthy, young adults who sleep at their normal times, and thus naturally have day-to-day variability in their times of sleep. Thus, we did not impose any restrictions on the sleep schedules of our subjects (n=26). For 14 d, they completed daily sleep logs that were verified with wrist activity monitors. On day 14, salivary melatonin was sampled every 30 min in dim light from 19:00 to 07:30h to determine the dim light melatonin onset (DLMO). Daily sleep parameters (onset, midpoint, and wake) were taken from sleep logs and averaged over the last 5, 7, and 14 d before determination of the DLMO. The mean DLMO was 22:48±01:30 h. Sleep onset and wake time averaged over the last 5 d were 01:44±01:41 and 08:44±01:26 h, respectively. The DLMO was significantly correlated with sleep onset, midpoint, and wake time, but was most strongly correlated with the mean midpoint of sleep from the last 5 d (r=0.89). The DLMO predicted using the mean midpoint of sleep from the last 5 d was within 1 h of the DLMO determined from salivary melatonin for 92% of the subjects; in no case did the difference exceed 1.5 h. The correlation between the DLMO and the score on the morningness-eveningness questionnaire was significant but comparatively weak (r=-0.48). We conclude that the circadian phase of normal, healthy day-active young adults can be accurately predicted using sleep times recorded on sleep logs (and verified by actigraphy), even when the sleep schedules are irregular.  相似文献   

20.
《Chronobiology international》2013,30(7):1493-1508
Aviation, military, police, and health care personnel have been particularly interested in the operational impact of sleep restriction and work schedules given the potential severe consequences of making fatigue-related errors. Most studies examining the impact of sleep loss or circadian manipulations have been conducted in controlled laboratory settings using small sample sizes. This study examined whether the relationship between prior night sleep duration and performance on the psychomotor vigilance task could be reliably detected in a field study of healthy police academy recruits. Subjects (N?=?189) were medically and psychiatrically healthy. Sleep-wake activity was assessed with wrist actigraphy for 7 days. Subjects performed the psychomotor vigilance task (PVT) for 5?min on a personal digital assistant (PDA) device before and after their police academy workday and on comparable times during their days off. Mixed-effects logistic regression was used to estimate the probability of having ≥1 lapse on the PVT as a function of the previous night sleep duration during the 7 days of field testing. Valid estimates of sleep duration were obtained for 1082 nights of sleep. The probability of a lapse decreased by 3.5%/h sleep the night prior to testing. The overall probability of having a lapse decreased by 0.9%/h since awakening, holding hours of sleep constant. Perceived stress was not associated with sleep duration or probability of performance lapse. These findings demonstrate the feasibility of detecting sleep and circadian effects on cognitive performance in large field studies. These findings have implications regarding the daytime functioning of police officers. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号