首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent gene sequence and crystal structure determinations of salivary proteins from several blood-sucking arthropods have revealed an unusual evolutionary relationship: many such proteins derive their functions from lipocalin protein folds. Many blood-sucking arthropods have independently evolved the ability to overcome a host organism's means of preventing blood loss (called hemostasis). Most blood feeders have proteins that induce vasodilation, inhibit blood coagulation, and reduce inflammation, but do so by distinctly different mechanisms. Despite this diversity, in many cases the antihemostatic activities in such organisms reside in proteins with lipocalin folds. Thirteen such lipocalins are described in this review, with a particular focus on the heme-containing nitrophorins from Rhodnius prolixus, which transport nitric oxide, sequester histamine, and disrupt blood coagulation. Also described are the antiplatelet compounds RPAI, moubatin, and pallidipin from R. prolixus, Ornithodoros moubata, and Triatoma pallidipennis; the antithrombin protein triabin from T. pallidipennis; and the tick histamine binding proteins from Rhipicephalus appendiculatus.  相似文献   

2.
The saliva of ticks contains anti-haemostatic, anti-inflammatory and immunomodulatory molecules that allow these parasites to obtain a blood meal from the host and help tick-borne pathogens to infect the vertebrate host more efficiently. This makes the salivary molecules attractive targets to control ticks and tick-borne pathogens. Although Ornithodoros moubata and O. erraticus are important argasid ticks that transmit severe diseases, to date only a few of their salivary proteins have been identified. Here we report our initial studies using proteomic approaches to characterize the protein profiles of salivary gland extracts (SGE) from these two argasids. The present work describes the proteome of the SGEs of both tick species, their antigenic spots, and the identification of several of their proteins. The whole number of identifications was low despite the good general quality of the peptide mass maps obtained. In the O. moubata SGE, 18 isoforms of a protein similar to O. savignyi TSGP1 were identified. In the O. erraticus SGE we identified 6 novel proteins similar to unknown secreted protein DS-1 precursor, NADPH dehydrogenase subunit 5, proteasome alpha subunit, ATP synthase F0 subunit 6, lipocalin and alpha tubulin. Finally, the current drawbacks of proteomics when applied to the identification of acarine peptides and proteins are discussed.  相似文献   

3.
Rhodnius prolixus is a Hemiptera that feeds exclusively on vertebrate blood in all life stages. Its salivary glands produce potent pharmacological substances that counteract host hemostasis, including anti-clotting, anti-platelet, and vasodilatory substances. To obtain a further insight into the salivary biochemical and pharmacological complexity of this insect, a cDNA library was randomly sequenced, and salivary gland homogenates were fractionated by HPLC to obtain aminoterminal sequences of abundantly expressed proteins. Results indicate a remarkable expansion of the lipocalin family in Rhodnius salivary glands, among other protein sequences described. A summary of 31 new full length proteins deducted from their mRNA sequence is described, including several new members of the nitrophorin, triabin, and pallidipin families. The electronic version of the complete tables is available at http://www.ncbi.nlm.nih.gov/projects/vectors/rhodnius_prolixus.  相似文献   

4.
Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to the lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.  相似文献   

5.
The origins of tick toxicoses remain a subject of controversy because no molecular data are yet available to study the evolution of tick-derived toxins. In this study we describe the molecular structure of toxins from the soft tick, Ornithodoros savignyi. The tick salivary gland proteins (TSGPs) are four highly abundant proteins proposed to play a role in salivary gland granule biogenesis of the soft tick O. savignyi, of which the toxins TSGP2 and TSGP4 are a part. They were assigned to the lipocalin family based on sequence similarity to known tick lipocalins. Several other tick lipocalins were also identified using Smith-Waterman database searches, bringing the tick lipocalin family up to 20. Phylogenetic analysis showed that most tick lipocalins group within genus-specific clades, suggesting that gene duplication and divergence of tick lipocalin function occurred after tick speciation, most probably during the evolution of a hematophagous lifestyle. TSGP2 and TSGP3 show high sequence identity and group terminal to moubatin, an inhibitor of collagen-induced platelet aggregation from the tick, O. moubata. However, no platelet aggregation inhibitory activity is associated with the TSGPs using ADP or collagen as agonists, suggesting that TSGP2 and TSGP3 duplicated after divergence of O. savignyi and O. moubata. This timing is supported by the absence of TSGP2-4 in the salivary gland extracts of O. moubata. The absence of TSGP2 and TSGP4 in salivary gland extracts from O. moubata correlates with the nontoxicity of this tick species. The implications of this study are that the various forms of tick toxicoses do not have a common origin, but must have evolved independently in those tick species that cause pathogenesis.  相似文献   

6.
During feeding ticks secrete bioactive components into the host to counter-act its immune and hemostatic defense systems. These bioactive components are stored in secretory granules that are secreted during feeding in an exocrine stimulus-response type of mechanism. All proteins destined for secretion are packaged into these granules during granule biogenesis. Up to date no mechanism for granule biogenesis has been proposed, except to note that biogenesis occurs under conditions of high protein and calcium concentrations in an acidic environment. Previously, the most abundant proteins (TSGPs) found in the salivary glands of the soft tick, Ornithodoros savignyi, were suggested to play a part in granule biogenesis, based on their high abundance. The TSGPs are part of the lipocalin family, of which numerous members have been identified in ticks. We consider here the high concentrations of the TSGPs in salivary glands and what effect this will have on the crowded environment inside the secretory granules. It is shown that the TSGPs occur at concentrations that will lead to molecular crowding of which one result is the non-specific aggregation of components to reduce crowding effects. Aggregation of proteins as a mechanism of granule biogenesis has been proposed before, but not in terms of molecular crowding. We thus propose molecular crowding as the general mechanism of granule biogenesis, in tick secretory granules, but can also be extended to other forms of secretory granules in general.  相似文献   

7.
Savicalin, is a lipocalin found in the hemocytes of the soft tick, Ornithodoros savignyi. It could be assigned to the tick lipocalin family based on BLAST analysis. Savicalin is the first non-salivary gland lipocalin described in ticks. The mature sequence is composed of 188 amino acids with a molecular mass of 21481.9 Da. A homolog for savicalin was found in a whole body EST-library from a related soft tick O. porcinus, while other tick salivary gland derived lipocalins retrieved from the non-redundant sequence database are more distantly related. Homology modeling supports the inclusion of savicalin into the lipocalin family. The model as well as multiple alignments suggests the presence of five disulphide bonds. Two conserved disulphide bonds are found in hard and soft tick lipocalins. A third disulphide bond is shared with the TSGP4-clade of leukotriene C4 binding soft tick lipocalins and a fourth is shared with a lipocalin from the hard tick Ixodes scapularis. The fifth disulphide bond is unique and links strands D-E. Phylogenetic analysis showed that savicalin is a distant relative of salivary gland derived lipocalins, but groups within a clade that is possibly non-salivary gland derived. It lacks the biogenic amine-binding motif associated with tick histamine and serotonin binding proteins. Expression profiles indicate that savicalin is found in hemocytes, midgut and ovaries, but not in the salivary glands. Up-regulation occurs in hemocytes after bacterial challenge and in midguts and ovaries after feeding. Given its tissue distribution and up-regulation of expression, it is possible that this lipocalin functions in tick development after feeding or in an anti-microbial capacity.  相似文献   

8.
9.
10.
Function and evolution of a mosquito salivary protein family   总被引:3,自引:0,他引:3  
Saliva of blood-sucking arthropods contains a complex and diverse mixture of antihemostatic, antiinflammatory, and immunomodulatory compounds. The D7 salivary family of proteins is abundantly expressed in blood-feeding Diptera and is distantly related to the odorant-binding protein superfamily. In mosquitoes, two subfamilies exist, the long and short D7 proteins. Ticks and kissing bugs evolved salivary lipocalins that act as efficient scavengers of biogenic amines, and a similar function was postulated for the D7 proteins. Accordingly, we expressed the five members of the small D7 family of the African malaria vector Anopheles gambiae and a D7 long form from Aedes aegypti and showed by isothermal microcalorimetry, a modified and very sensitive non-equilibrium chromatography/spectrum distortion method, and by smooth muscle bioassay that four of these five short D7 proteins and the D7 long form bind serotonin with high affinity, as well as histamine and norepinephrine. The nonbinding D7 protein is poorly expressed in the salivary glands and appears to be on the path to becoming a pseudogene. Scavenging of host amines would antagonize their vasoconstrictor, platelet-aggregating, and pain-inducing properties. It appears that counteracting biogenic amines is of strong adaptive value in the convergent evolution of arthropods to hematophagy. This adaptation has been solved independently in ticks, bugs, and mosquitoes by co-option of either member of the lipocalin or, as shown here, by the odorant-binding protein families.  相似文献   

11.
12.
Ticks evolved various mechanisms to modulate their host's hemostatic and immune defenses. Differences in the anti-hemostatic repertoires suggest that hard and soft ticks evolved anti-hemostatic mechanisms independently, but raise questions on the conservation of salivary gland proteins in the ancestral tick lineage. To address this issue, the sialome (salivary gland secretory proteome) from the soft tick, Argas monolakensis, was determined by proteomic analysis and cDNA library construction of salivary glands from fed and unfed adult female ticks. The sialome is composed of approximately 130 secretory proteins of which the most abundant protein folds are the lipocalin, BTSP, BPTI and metalloprotease families which also comprise the most abundant proteins found in the salivary glands. Comparative analysis indicates that the major protein families are conserved in hard and soft ticks. Phylogenetic analysis shows, however, that most gene duplications are lineage specific, indicating that the protein families analyzed possibly evolved most of their functions after divergence of the two major tick families. In conclusion, the ancestral tick may have possessed a simple (few members for each family), but diverse (many different protein families) salivary gland protein domain repertoire.  相似文献   

13.
Three different lines of analysis have been applied to approach the problem of the allergenicity of certain proteins: biological functions, molecular structures and immunological properties. It is immediately obvious that these three are interdependent. The lipocalin family of proteins includes a significant number of allergens. A considerable amount of data is already available of lipocalins and some insights about allergenic determinants can now be presented. However, more information on the molecular structures and immunological parameters of lipocalin allergens is required.  相似文献   

14.
First identified as a neutrophil granule component, neutrophil gelatinase-associated lipocalin (NGAL; also called human neutrophil lipocalin, 24p3, uterocalin, or neu-related lipocalin) is a member of the lipocalin family of binding proteins. Putative NGAL ligands, including neutrophil chemotactic agents such as N-formylated tripeptides, have all been refuted by recent biochemical and structural results. NGAL has subsequently been implicated in diverse cellular processes, but without a characterized ligand, the molecular basis of these functions remained mysterious. Here we report that NGAL tightly binds bacterial catecholate-type ferric siderophores through a cyclically permuted, hybrid electrostatic/cation-pi interaction and is a potent bacteriostatic agent in iron-limiting conditions. We therefore propose that NGAL participates in the antibacterial iron depletion strategy of the innate immune system.  相似文献   

15.
16.
Lipocalins are functionally diverse proteins that are composed of 120–180 amino acid residues. Members of this family have several important biological functions including ligand transport, cryptic coloration, sensory transduction, endonuclease activity, stress response activity in plants, odorant binding, prostaglandin biosynthesis, cellular homeostasis regulation, immunity, immunotherapy and so on. Identification of lipocalins from protein sequence is more challenging due to the poor sequence identity which often falls below the twilight zone. So far, no specific method has been reported to identify lipocalins from primary sequence. In this paper, we report a support vector machine (SVM) approach to predict lipocalins from protein sequence using sequence-derived properties. LipoPred was trained using a dataset consisting of 325 lipocalin proteins and 325 non-lipocalin proteins, and evaluated by an independent set of 140 lipocalin proteins and 21,447 non-lipocalin proteins. LipoPred achieved 88.61% accuracy with 89.26% sensitivity, 85.27% specificity and 0.74 Matthew’s correlation coefficient (MCC). When applied on the test dataset, LipoPred achieved 84.25% accuracy with 88.57% sensitivity, 84.22% specificity and MCC of 0.16. LipoPred achieved better performance rate when compared with PSI-BLAST, HMM and SVM-Prot methods. Out of 218 lipocalins, LipoPred correctly predicted 194 proteins including 39 lipocalins that are non-homologous to any protein in the SWISSPROT database. This result shows that LipoPred is potentially useful for predicting the lipocalin proteins that have no sequence homologs in the sequence databases. Further, successful prediction of nine hypothetical lipocalin proteins and five new members of lipocalin family prove that LipoPred can be efficiently used to identify and annotate the new lipocalin proteins from sequence databases. The LipoPred software and dataset are available at .  相似文献   

17.
alpha(1)-Microglobulin: a yellow-brown lipocalin   总被引:2,自引:0,他引:2  
alpha(1)-Microglobulin, also called protein HC, is a lipocalin with immunosuppressive properties. The protein has been found in a number of vertebrate species including frogs and fish. This review summarizes the present knowledge of its structure, biosynthesis, tissue distribution and immunoregulatory properties. alpha(1)-Microglobulin has a yellow-brown color and is size and charge heterogeneous. This is caused by an array of small chromophore prosthetic groups, attached to amino acid residues at the entrance of the lipocalin pocket. A gene in the lipocalin cluster encodes alpha(1)-microglobulin together with a Kunitz-type proteinase inhibitor, bikunin. The gene is translated into the alpha(1)-microglobulin-bikunin precursor, which is subsequently cleaved and the two proteins secreted to the blood separately. alpha(1)-Microglobulin is found in blood and in connective tissue in most organs. It is most abundant at interfaces between the cells of the body and the environment, such as in lungs, intestine, kidneys and placenta. alpha(1)-Microglobulin inhibits immunological functions of white blood cells in vitro, and its distribution is consistent with an anti-inflammatory and protective role in vivo.  相似文献   

18.
19.
20.
The distribution of lipids in tears is critical to their function. Lipids in human tears may retard evaporation by forming a surface barrier at the air interface. Lipids complexed with the major lipid binding protein in tears, tear lipocalin, reside in the bulk (aqueous) and may have functions unrelated to the surface. Many new lipids species have been revealed through recent mass spectrometric studies. Their association with lipid binding proteins has not been studied. Squalene, (O-acyl) omega-hydroxy fatty acids (OAHFA) and ceramides are examples. Even well-known lipids such as wax and cholesteryl esters are only presumed to be unbound because extracts of protein fractions of tears were devoid of these lipids. Our purpose was to determine by direct binding assays if the aforementioned lipids can bind tear lipocalin. Lipids were screened for ability to displace DAUDA from tear lipocalin in a fluorescence displacement assay. Di- and tri-glycerides, squalene, OAHFA, wax and cholesterol esters did not displace DAUDA from tear lipocalin. However, ceramides displaced DAUDA. Apparent dissociation constants for ceramide-tear lipocalin complexes using fluorescent analogs were measured consistently in the submicromolar range with 3 methods, linear spectral summation, high speed centrifugal precipitation and standard fluorescence assays. At the relatively small concentrations in tears, all ceramides were complexed to tear lipocalin. The lack of binding of di- and tri-glycerides, squalene, OAHFA, as well as wax and cholesterol esters to tear lipocalin is consonant with residence of these lipids near the air interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号