首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carnobacterium maltaromaticum UAL307, isolated from fresh pork, exhibits potent activity against a number of gram-positive organisms, including numerous Listeria species. Three bacteriocins were isolated from culture supernatant, and using matrix-assisted laser desorption ionization-time of flight mass spectrometry and Edman sequencing, two of these bacteriocins were identified as piscicolin 126 and carnobacteriocin BM1, both of which have previously been described. The remaining bacteriocin, with a molecular mass of 5,862 Da, could not be sequenced by traditional methods, suggesting that the peptide was either cyclic or N-terminally blocked. This bacteriocin showed remarkable stability over a wide temperature and pH range and was unaffected by a variety of proteases. After digestion with trypsin and α-chymotrypsin, the peptide was de novo sequenced by tandem mass spectrometry and a linear sequence deduced, consisting of 60 amino acids. Based on this sequence, the molecular mass was predicted to be 5,880 Da, 18 units higher than the observed molecular mass, which suggested that the peptide has a cyclic structure. Identification of the genetic sequence revealed that this peptide is circular, formed by a covalent linkage between the N and C termini following cleavage of a 4-residue peptide leader sequence. The results of structural studies suggest that the peptide is highly structured in aqueous conditions. This bacteriocin, named carnocyclin A, is the first reported example of a circular bacteriocin produced by Carnobacterium spp.  相似文献   

2.
A partially purified bacteriocin produced by Propionibacterium thoenii designated propionicin PLG-1 was found to be active against closely related species and exhibited a broad spectrum of activity against other microorganisms. Propionicin PLG-1 was found to be heat labile, sensitive to several proteolytic enzymes, and stable at pH 3 to 9. Propionicin PLG-1 was isolated from solid medium, partially purified by ammonium sulfate precipitation, and purified further by gel filtration. Gel filtration experiments revealed that bacteriocin PLG-1 was present as two different protein aggregates with apparent molecular weights of more than 150,000 and approximately 10,000. Resolution of these protein aggregates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a protein common to both with an apparent molecular weight of 10,000.  相似文献   

3.
Large-scale purification of the highly hydrophobic bacteriocin thurincin H was accomplished via a novel and simple two-step method: ammonia sulfate precipitation and C18 solid-phase extraction. The inhibition spectrum and stability of thurincin H as well as its antagonistic activity against Bacillus cereus F4552 spores were further characterized. In the purification method, secreted proteins contained in the supernatant of a 40 h incubated culture of B. thuringiensis SF361 were precipitated by 68 % ammonia sulfate and purified by reverse-phase chromatography, with a yield of 18.53 mg/l of pure thurincin H. Silver-stained SDS–PAGE, high-performance liquid chromatography, and liquid chromatography–mass spectrometry confirmed the high purity of the prepared sample. Thurincin H exhibited a broad antimicrobial activity against 22 tested bacterial strains among six different genera including Bacillus, Carnobacterium, Geobacillus, Enterococcus, Listeria, and Staphylococcus. There was no detectable activity against any of the selected yeast or fungi. The bacteriocin activity was stable for 30 min at 50 °C and decreased to undetectable levels within 10 min at temperatures above 80 °C. Thurincin H is also stable from pH 2–7 for at least 24 h at room temperature. Thurincin H is germicidal against B. cereus spores in brain heart infusion broth, but not in Tris–NaCl buffer. The efficient purification method enables the large-scale production of pure thurincin H. The broad inhibitory spectrum of this bacteriocin may be of interest as a potential natural biopreservative in the food industry, particularly in post-processed and ready-to-eat food.  相似文献   

4.
Lactic acid bacteria exhibiting activity against the gram-positive bacterium Bacillus subtilis were isolated from rice bran. One of the isolates, identified as Enterococcus faecalis RJ-11, exhibited a wide spectrum of growth inhibition with various gram-positive bacteria. A bacteriocin purified from culture fluid, designated enterocin RJ-11, was heat stable and was not sensitive to acid and alkaline conditions, but it was sensitive to several proteolytic enzymes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that enterocin RJ-11 had a molecular weight of 5,000 in its monomeric form. The amino acid sequence determined for purified enterocin RJ-11 exhibited high levels of similarity to the sequences of enterocins produced by Enterococcus faecium.  相似文献   

5.
Leuconostoc MF215B was found to produce a two-peptide bacteriocin referred to as leucocin H. The two peptides were termed leucocin Hα and leucocin Hβ. When acting together, they inhibit, among others, Listeria monocytogenes, Bacillus cereus, and Clostridium perfringens. Production of leucocin H in growth medium takes place at temperatures down to 6°C and at pH below 7. The highest activity of leucocin H in growth medium was demonstrated in the late exponential growth phase. The bacteriocin was purified by precipitation with ammonium sulfate, ion-exchange (SP Sepharose) and reverse phase chromatography. Upon purification, specific activity increased 105-fold, and the final specific activity was 2 × 107 BU/OD280. Amino acid composition analyses of leucocin Hα and leucocin Hβ indicated that both peptides consisted of around 40 amino acid residues. Their N-termini were blocked for Edman degradation, and the methionin residues of leucocin Hβ did not respond to Cyanogen Bromide (CNBr) cleavage. Absorbance at 280 nm indicated the presence of tryptophan residues and tryptophan-fracturing opened for partial sequencing by Edman degradation. From leucocin Hα, the sequence of 20 amino acids was obtained; from leucocin Hβ the sequence of 28 amino acid residues was obtained. No sequence homology to other known bacteriocins could be demonstrated. It also appeared that the two peptides themselves shared little or no sequence homology. The presence of soy oil did not affect the activity of leucocin H in agar. Received: 10 February 1999 / Accepted: 15 March 1999  相似文献   

6.
The aim of this study is to investigate the antimicrobial potential of Lactobacillus plantarum ZJ5, a strain isolated from fermented mustard with a broad range of inhibitory activity against both Gram-positive and Gram-negative bacteria. Here we present the peptide plantaricin ZJ5 (PZJ5), which is an extreme pH and heat-stable. However, it can be digested by pepsin and proteinase K. This peptide has strong activity against Staphylococcus aureus. PZJ5 has been purified using a multi-step process, including ammonium sulfate precipitation, cation-exchange chromatography, hydrophobic interactions and reverse-phase chromatography. The molecular mass of the peptide was found to be 2572.9 Da using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The primary structure of this peptide was determined using amino acid sequencing and DNA sequencing, and these analyses revealed that the DNA sequence translated as a 44-residue precursor containing a 22-amino-acid N-terminal extension that was of the double-glycine type. The bacteriocin sequence exhibited no homology with known bacteriocins when compared with those available in the database, indicating that it was a new class IId bacteriocin. PZJ5 from a food-borne strain may be useful as a promising probiotic candidate.  相似文献   

7.
In this study we characterized a bacteriocin, warnericin RB4, produced by Staphylococcus warneri RB4. Warnericin RB4 activity was completely inactivated by trypsin and actinase E. The activity was stable at 100°C for 15 min, and had a pH range of 2 to 6. S. warneri RB4 showed antibacterial activity against only Alicyclobacillus acidoterrestris, A. acidocaldarius, and Micrococcus luteus, among 34 bacterial species tested. The amino acid sequence of the purified bacteriocin contained 27 amino acid residues (K-K-K-S-G-V-I-P-X-V-X-H-D-X-H-M-N-X-F-Q-F-V-F-X-X-X-S). The molecular mass of the bacteriocin was estimated to be 2,958.2 Da by ESI-MS. These results show that the Warnericin RB4 exhibiting specific antibacterial activity against thermo-acidophiles, Alicyclobacillus spp., is a Nukacin ISK-1 or closely related bacteriocin, classified with class IA (Lacticin 481 types). This is the first report that Warnericin RB-4 is effective to inhibit the growth of causative microorganisms of spoilage in various acidic drinks. Warnericin RB4 might prove useful in fruit juices and fruit juice–containing drinks.  相似文献   

8.
A dramatic increase in bacterial resistance towards currently available antibiotics has raised worldwide concerns for public health. Therefore, antimicrobial peptides (AMPs) have emerged as a promisingly new group of therapeutic agents for managing infectious diseases. The present investigation focusses on the isolation and purification of a novel bacteriocin from an indigenous sample of cow milk and it’s mode of action. The bacteriocin was isolated from Weissella confusa A3 that was isolated from the sample and was shown to have inhibitory activity towards pathogenic bacteria namely Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Micrococcus luteus. The bacteriocin was shown to be heat stable and functioned well at low pH (2 to 6). Reduction of activity was shown after treatment with proteinase K, trypsin and peptidase that confirmed the proteinaceous nature of the compound. MALDI-TOF analysis of the sample gave a mass approximating 2.7 kDa. The membrane of the bacteria was disrupted by the bacteriocin causing SYTOX® green dye to enter the cell and bind to the bacterial DNA giving fluorescence signal. Bacterial cell treated with the bacteriocin also showed significant morphological changes under transmission electron microscope. No virulence and disease related genes can be detected from the genome of the strain.  相似文献   

9.
Lacticin 481, a bacteriocin produced during the growth of Lactococcus lactis subsp. lactis CNRZ 481, was purified sequentially by ammonium sulfate precipitation, gel filtration, and preparative and analytical reversed-phase high-pressure liquid chromatography. Ammonium sulfate precipitations resulted in a 455-fold increase in total lacticin 481 activity. The entire purification protocol led to a 107, 506-fold increase in the specific activity of lacticin 481. On the basis of its electrophoretic pattern in sodium dodecyl sulfate-polyacrylamide gels, lacticin 481 appeared as a single peptide band of 1.7 kDa. However, dimers of 3.4 kDa also exhibiting lacticin activity were detected. Derivatives of the lacticin-producing strain which did not produce lacticin 481 (Bac-) were sensitive to this bacteriocin (Bacs) and failed to produce the 1.7-kDa band. Amino acid composition analysis of purified lacticin 481 revealed the presence of lanthionine residues, suggesting that lacticin 481 is a member of the lantibiotic family of antimicrobial peptides. Seven residues (K G G S G V I) were sequenced from the N-terminal portion of lacticin 481, and these did not shown any homology with nisin or other known bacteriocin sequences.  相似文献   

10.
Carnobacterium piscicola CP5, isolated from a French mold-ripened soft cheese, produced a bacteriocin activity named carnocin CP5, which inhibited Carnobacterium, Enterococcus and Listeria spp. strains, and among the Lactobacillus spp. only Lactobacillus delbrueckii spp. [24]. The activity was purified by ammonium sulfate precipitation, anion exchange, and hydrophobic interaction chromatography followed by reverse-phase high-performance liquid chromatography (RP-HPLC). This latter step separated two peaks with anti-listerial activity (CP51 and CP52). Carnocin CP51 was partially sequenced, and the N-terminal part revealed the presence of the “pediocin-like consensus” sequence-Tyr-Gly-Asn-Gly-Val-. Then, a degenerated 24-mer oligonucleotide probe was constructed from the N-terminal sequence and used to detect the structural gene. It was localized on a plasmid of about 40 kb. Cloning of restriction fragments of this one, followed by DNA sequencing, revealed the presence of the second anti-Listeria bacteriocin gene (CP52). By comparing sequences in data banks and confirming results with PCR reactions, carnocin CP51 shared homologies with carnobacteriocin BM1, and carnocin CP52 was similar to carnobacteriocin B2, both produced by C. piscicola LV17 [2]. However, carnobacteriocin A from C. piscicola LV17 gene was lacking in C. piscicola CP5, and the two microorganisms have been isolated from different ecological environments: C. piscicola CP5 and C. piscicola LV17 were isolated from soft cheese and vacuum-packed meat respectively. This fact could allow different application perspectives for C. piscicola CP5. Received: 16 April 1997 / Accepted: 9 May 1997  相似文献   

11.
Liquid cultures of Staphylococcus epidermidis 1580 contained rather small amounts of a bacteriocin, staphylococcin 1580, which was found both in the supernatant fluid and in the cell pellet. It could be extracted from the cells with 5% NaCl solution. The staphylococcin production could not be induced by ultraviolet irradiation or treatment with mitomycin C. Bacteria grown on semisolid medium produced a much larger amount of the compound with a high specific activity. The staphylococcin was purified by ammonium sulfate precipitation, ultracentrifugation, and chromatography on Sephadex columns. The purified material was homogeneous on polyacrylamide gel electrophoresis. The molecular weight was between 150,000 and 400,000. The bacteriocin was composed of protein, carbohydrate, and lipid and consisted of subunits exhibiting a molecular weight of about 20,000.  相似文献   

12.
Acidocin 8912, a bacteriocin produced by Lactobacillus acidophilus TK8912, was purified by ammonium sulfate fractionation and successive chromatographies on CM-cellulose, Sephadex G-50, Sephadex G-25, and reversed-phase HPLC on Aquapore RP-300. The purified acidocin 8912 migrated as a single band on SDS–PAGE. The molecular weight was estimated to be 5200 by SDS–PAGE, and 5400 by HPLC gel filtration on TSKgel G3000PWXL. Both the amino acid composition and the N-terminal amino acid sequence analysis indicated that acidocin 8912 was a peptide composed of presumably 50 amino acids containing a Lys residue at the N-terminus. The purified acidocin 8912 showed a bactericidal effect on sensitive cells but not a bacteriolytic effect.  相似文献   

13.
Bacteriocin Production by Transformable Group H Streptococci   总被引:14,自引:6,他引:8       下载免费PDF全文
Group H streptococci (strain Challis) which are competent for transformation release a bacteriocin into liquid medium which is bacteriocidal for another group H streptococcus (strain Wicky). The streptocin (STH(1)) is resistant to treatment with deoxyribonuclease and ribonuclease but is sensitive to trypsin, phospholipase C, and alkaline phosphatase. Such enzyme sensitivity experiments indicate that the bacteriocin may be a complex molecule (protein and lipid) containing phosphate groups essential for activity. STH(1), which is readily distinguishable from competence factor and bacteriophage activity, appears to have no role in the initiation of the competent state in strain Wicky. The presence of this factor in Challis culture supernatant fluids indicates that a reevaluation of earlier studies performed with the Challis-Wicky transformation system may be necessary.  相似文献   

14.
Brevicin 27, a bacteriocin produced by Lactobacillus brevis SB27, is inhibitory mainly against closely related Lactobacillus brevis and Lactobacillus büchneri strains. It was purified from the culture supernatant by a four-step purification procedure including ammonium sulfate precipitation, cation exchange, hydrophobic interaction, and reverse-phase, high performance liquid chromatographies. The purified bacteriocin was subjected to mass spectrometry, amino acid composition analysis, and sequencing by Edman degradation. It was shown to be an about 5200-Da basic protein containing a high proportion of lysine and of hydrophobic amino acids. The partial N-terminal amino acid sequence (25 residues) was unique when compared with the Protein Data Bank (PDB), Swiss Prot, and Protein Information Resource (PIR) data banks and to the translated Gen Bank. Received: 24 July 1996 / Accepted: 10 September 1996  相似文献   

15.
A novel bacteriocin, lacticin Z, produced by Lactococcus lactis QU 14 isolated from a horse’s intestinal tract was identified. Lacticin Z was purified through a three step procedure comprised of hydrophobic-interaction, cation-exchange chromatography, and reverse-phase HPLC. ESI-TOF MS determined the molecular mass of lacticin Z to be 5,968.9 Da. The primary structure of lacticin Z was found to consist of 53 amino acid residues without any leader sequence or signal peptide. Lacticin Z showed homology to lacticin Q from L. lactis QU 5, aureocin A53 from Staphylococcus aureus A53, and mutacin BHT-B from Streptococcus rattus strain BHT. It exhibited a nanomolar range of MICs against various Gram-positive bacteria, and the activity was completely stable up to 100 °C. Unlike many of other LAB bacteriocins, the stability of lacticin Z was emphasized under alkaline conditions rather than acidic conditions. All the results indicated that lacticin Z belongs to a novel type of bacteriocin.  相似文献   

16.
Colicin M (ColM) is the only enzymatic colicin reported to date that inhibits cell wall peptidoglycan biosynthesis. It catalyzes the specific degradation of the lipid intermediates involved in this pathway, thereby provoking lysis of susceptible Escherichia coli cells. A gene encoding a homologue of ColM was detected within the exoU-containing genomic island A carried by certain pathogenic Pseudomonas aeruginosa strains. This bacteriocin (pyocin) that we have named PaeM was crystallized, and its structure with and without an Mg2+ ion bound was solved. In parallel, site-directed mutagenesis of conserved PaeM residues from the C-terminal domain was performed, confirming their essentiality for the protein activity both in vitro (lipid II-degrading activity) and in vivo (cytotoxicity against a susceptible P. aeruginosa strain). Although PaeM is structurally similar to ColM, the conformation of their active sites differs radically; in PaeM, residues essential for enzymatic activity and cytotoxicity converge toward a same pocket, whereas in ColM they are spread along a particularly elongated active site. We have also isolated a minimal domain corresponding to the C-terminal half of the PaeM protein and exhibiting a 70-fold higher enzymatic activity as compared with the full-length protein. This isolated domain of the PaeM bacteriocin was further shown to kill E. coli cells when addressed to the periplasm of these bacteria.  相似文献   

17.
A bacteriocin producing strain Lactobacillus brevis UN isolated from Dulliachar—a salted pickle and identified by biochemical and molecular methods. L. brevis UN was found to produce bacteriocin with broad spectrum activity against spoilage causing/food borne pathogens viz. L. monocytogenes, C. perfringens, S. aureus, L. mesenteroides, L. plantarum and B. cereus. Bacteriocin production was optimized through classical one variable at a time method. The isolate showed maximum bacteriocin production at early stationary phase, pH 4.0, temperature 35 °C and with an inoculum size of 1.5 OD @ 10 %. Bacteriocin produced by L. brevis UN was purified to homogeneity by single step gel exclusion chromatography and was most active at pH 6.0 and 7.0, stable up to 100 °C and was proteinaceous in nature. The results of NMR revealed the presence of proline, glutamic acid, aspartic acid, leucine, isoleucine and serine in its peptide structure. PCR amplification analysis determined that bacteriocin encoded gene in L. brevis UN was plasmid bound.  相似文献   

18.
This study aimed to compare two different approaches for the purification of enterocin B from Enterococcus faecium strain W3 based on the observation that the bacteriocin was found both in cell associated form and in culture supernatant. The first approach employed ammonium sulfate precipitation, cation-exchange chromatography, and sequential reverse-phase high-performance liquid chromatography. The latter approach exploited a pH-mediated cell adsorption–desorption method to extract cell-bound bacteriocin, and one run of reverse-phase chromatography. The first method resulted in purification of enterocin B with a recovery of 4% of the initial bacteriocin activity found in culture supernatant. MALDI-TOF MS analysis and de novo peptide sequencing of the purified bacteriocin confirmed that the active peptide was enterocin B. The second method achieved the purification of enterocin B with a higher recovery (16%) and enabled us to achieve pure bacteriocin within a shorter period of time by avoiding time consuming purification protocols. The purity and identity of the active peptide were confirmed again by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF) mass spectrometry (MS) analysis. Although both approaches were satisfactory to obtain a sufficient amount of enterocin B for use in MS and amino acid sequence analysis, the latter was proved to be applicable in large-scale and rapid purification of enterocin B.  相似文献   

19.
A low-molecular-weight xylanase activity (XynI) was isolated from the fungus Acrophialophora nainiana after growth in a solid medium containing wheat bran. XynI was purified to apparent homogeneity by ultrafiltration and gel filtration chromatography. The purified enzyme had a molecular weight value of approx. 17 kDa, as determined by SDS-PAGE. This enzyme was most active at 50°C and pH 6.0. At 50°C the half-life was 150 min. The apparent K m value for birchwood xylan was much lower than the K m value for oat spelt xylan. XynI was activated by L-cysteine, DTE, β-mercaptoethanol, and L-tryptophan. XynI did not show significant sequence homology with other xylanases. The analysis of hydrolysis products of xylans and wood pulps showed that XynI was able to release xylooligomers ranging from X2 to X3 and X2 to X6, respectively. The enzyme was not active against acetylated xylan. A small amount of xylose was released from deacetylated, birchwood, and oat spelt xylans. The results obtained with enzymatic treatment of Kraft pulp indicated a reduction in the amount of chlorine compounds required for the process and enhanced brightness gain. Received: 6 May 1998 / Accepted: 29 July 1998  相似文献   

20.
Summary Xylanase was produced by growing Chaetomium thermophile NIBGE in a submerged liquid culture using wheat straw and urea as carbon and nitrogen sources respectively. The xylanase was purified to electrophoretic homogeneity after ammonium sulphate precipitation, anion exchange chromatography by FPLC and gel filtration. The molecular mass of this xylanase BII was 50 kDa. The pH and temperature optima were 6.5 and 70 °C respectively. The xylanase BII showed reasonable stability at high pH and 65 °C temperature. Some metal ions and EDTA caused little inhibition at low concentrations but complete inhibition was observed at concentrations higher than 2 mM. The Km and Vmax values with oat spelt xylan as the substrate were found to be 12.5 mg/ml and 83.3 IU/mg protein, respectively. Liberation of reducing sugars from commercial paper pulp samples suggest the feasibility of a biopulping process using this xylanase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号