首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Thiamin transport in human erythrocytes and resealed pink ghosts was evaluated by incubating both preparations at 37 or 20°C in the presence of [3H]-thiamin of high specific activity. The rate of uptake was consistently higher in erythrocytes than in ghosts. In both preparations, the time course of uptake was independent from the presence of Na+ and did not reach equilibrium after 60 min incubation. At concentrations below 0.5 m and at 37°C, thiamin was taken up predominantly by a saturable mechanism in both erythrocytes and ghosts. Apparent kinetic constants were: for erythrocytes,K m =0.12, 0.11 and 0.10 m andJ max=0.01, 0.02 and 0.03 pmol·l–1 intracellular water after 3, 15, and 30 min incubation times, respectively; for ghosts,K m =0.16 and 0.51 m andJ max=0.01 and 0.04 pmol·l–1 intracellular water after 15 and 30 min incubation times, respectively. At 20°C, the saturable component disappeared in both preparations. Erythrocyte thiamin transport was not influenced by the presence ofd-glucose or metabolic inhibitors. In both preparations, thiamin transport was inhibited competitively by unlabeled thiamin, pyrithiamin, amprolium and, to a lesser extent, oxythiamin, the inhibiting effect being always more marked in erythrocytes than in ghosts. Only approximately 20% of the thiamin taken up by erythrocytes was protein-(probably membrane-) bound. A similar proportion was esterified to thiamin pyrophosphate. Separate experiments using valinomycin and SCN showed that the transport of thiamin, which is a cation at pH 7.4, is unaffected by changes in membrane potential in both preparations.  相似文献   

2.
Summary Specificity of DNA methylation enzymes from the E. coli SK cells and conditions for their separation have been investigated. Column chromatography on carboxymethylcellulose permits fractionation of methylase activity into six discrete peaks whose specificity to the methylated base has been determined in vitro with H3-SAM as precursor. All methylases specific for adenine produced 6-methylaminopurine, all methylases specific for cytosine yielded 5-methylcytosine.The first enzymatic activity peak containing cytosine methylase free of traces of adenine-methyiating activity (E1), and the second peak containing both the enzymes (E2) were not adsorbed on the ion exchanger and went off the column with the effluent (column buffer). Adenine specific methylase E2 is retarded to a small extent during the passage through the column. The second adenine methylases (W) was characterized by weak bonds with the ion exchanger and was removed when washing the column with column buffer. The elution with NaCl gradient produced successively three enzymatic activity peaks: adenine methylase (GI), cytosine methylase (GII), and one more adenine methylase (GIII) removed from the column by 0.16 m, 0.24 m and 0.43 m NaCl respectively.Using a new modification of the complementary methylation test, the specificity with regard to recognition site was examined for all enzymes, except for W and GIII, which were extremely unstable. The adenine methylases E2 and GI and the cytosine methylases E1 and GII were shown to recognize different sites and to be different enzymes. In view of the drastic differences in their chromatographic behaviour and physical stability, the adenine methylases W and GIII are probably also different enzymes.  相似文献   

3.
The effects of guanine nucleotides were tested on basal and agonist-modulated adenylate cyclase in guinea-pig superior cervical ganglion crude membrane preparations. GTPS and Gpp(NH)p dose-dependently stimulate, while GDPS inhibits, both the basal and the prostaglandin E2-stimulated enzyme activity. Low GTP doses, up to 10–5M, stimulate, while higher doses inhibit, the ganglionic adenylate cyclase. The GTP-induced diphasic pattern is maintained also in the presence of prostaglandin E2,d-Ala2-Met-enkephalinamide, or a combination of the two drugs. However, the opioid inhibits the enzyme activity, but only at high GTP doses, while the prostaglandin stimulates the enzyme at all GTP concentrations. The effect is potentiated by a combination of prostaglandin and enkephalin. The enhancing effect of the prostaglandin and of the combination with enkephalin is maximally expressed at high, almost physiological, GTP doses.  相似文献   

4.
5.
Summary Cell K activity,a k, was measured in the short-circuited frog skin by simultaneous cell punctures from the apical surface with open-tip and K-selective microelectrodes. Strict criteria for acceptance of impalements included constancy of the open-tip microelectrode resistance, agreement within 3% of the fractional apical voltage measured with open-tip and K-selective microelectrodes, and constancy of the differential voltage recorded between the open-tip and the K microelectrodes 30–60 sec after application of amiloride or substitution of apical Na. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular Cl conductance and effects of amiloride on paracellular conductance, with NaNO3 Ringer on the apical surface.Under control conditionsa k r was nearly constant among skins (mean±SD=92±8mM, 14 skins) in spite of a wide range of cellular currents (5 to 70 A/cm2). Cell current (and transcellular Na transport) was inhibited by either apical addition of amiloride or substitution of Na by other cations. Although in some experiments the expected small increase ina k r after inhibition of cell current was observed, on the average the change was not significant (98±11mM after amiloride, 101±12mM after Na substitution), even 30 min after the inhibition of cell current. The membrane potential, which in the control state ranged from –42 to –77 mV, hyperpolarized after inhibition of cell current, initially to –109±5mV, then depolarizing to a stable value (–88±5mV) after 15–25 min. At this time K was above equilibrium (E k=98±2mV), indicating that the active pump mechanism is still operating after inhibition of transcellular Na transport.The measurement ofa k r permitted the calculation of the passive K current and pump current under control conditions. assuming a constant current source with almost all of the basolateral conductance attributable to K. We found a significant correlation between pump current and cell current with a slope of 0.31, indicating that about one-third of the cell current is carried by the pump, i.e., a pump stoichiometry of 3Na/2K.  相似文献   

6.
Summary Equilibrium binding of [3H]dipyridamole identified high-affinity (K i 10nm) binding sites on human erythrocytes (5×105 sites/cell) and on HeLa cells (5×106 sites/cell). The equilibration of dipyridamole with these sites on human erythrocytes was compatible with a second-order process which proceeded at 22°C with a rate constant of about 6×106 m –1 sec–1. Binding of dipyridamole to these sites correlated kinetically with the inhibition of the equilibrium exchange of 500 m uridine in these cells and was inhibited in a concentration-dependent manner by nucleosides and other inhibitors of nucleoside transport, such as nitrobenzylthioinosine, dilazep and lidoflazine, but not by hypoxanthine, which is not a substrate for the nucleoside transporter of human erythrocytes. The results indicate that the substrate binding site of the transporter is part of the high-affinity dipyridamole binding site. Bound [3H]dipyridamole became displaced from these sites on human erythrocytes by incubation with an excess of unlabeled dipyridamole or high concentrations of nucleosides and inhibitors of nucleoside transport, but neither by hypoxanthine nor sugars. Dissociation of [3H]dipyridamole behaved as a simple first-order process, but the rate constant was about one order of magnitude lower (about 3×10–3 sec–1) than anticipated for typical ligand-protein binding on the basis of the measured association rate and equilibrium constants. The reason for this discrepancy has not been resolved. No high-affinity dipyridamole binding sites were detected on Novikoff rat hepatoma cells, P388, L1210 and S49 mouse leukemia cells or Chinese hamster ovary cells, and their absence correlated with a greater resistance of nucleoside transport in these cells to inhibition by dipyridamole. All cells expressed considerable low affinity (K d>0.5 m) and nonspecific binding of dipyridamole.  相似文献   

7.
Summary Cell Na activity,a Na c , was measured in the short-circuited frog skin by simulaneous cell punctures from the apical surface with open-tip and Na-selective microelectrodes. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular conductance, with NaNO3 Ringer on the apical surface. Under control conditionsa Na c averaged 8±2mm (n=9,sd). Apical addition of amiloride (20 m) or Na replacement reduceda Na c to 3mm in 6–15 min. Sequential decreases in apical [Na] induced parallel reductions ina Na c and cell current,I c . On restoring Na after several minutes of exposure to apical Na-free solutionI c rose rapidly to a stable value whilea Na c increased exponentially, with a time constant of 1.8±0.7 min (n=8). Analysis of the time course ofa Na c indicates that the pump Na flux is linearly related toa Na c in the range 2–12mm. These results indicate thata Na c plays an important role in relating apical Na entry to basolateral active Na flux.  相似文献   

8.
Zusammenfassung Der Einfluß von acht Redoxindicatoren mit abgestuften Normalpotentialen zwischen E 0=-340 mV und E 0=+115 mV ist in einem Flüssigsubstrat auf die Säurebildung von Streptococcus lactis untersucht worden.Durch Farbstoffe mit Normalpotentialen zwischen-122 mV und +115 mV (Nilblau, Methylenblau, Brillantkresylblau, Toluylenblau) konnte die Milchsäurebildung, besonders bei niederen Farbstoffkonzentrationen (4·10-5 und 10-4 m/l), signifikant gefördert werden. Farbstoffe mit Normalpotentialen zwischen-289 mV und-122 mV (Safranin T, Phenosafranin, Janusgrün, Nilblau) hemmten dagegen die Produktion von Milchsäure in allen oder in der Mehrzahl der angewendeten Konzentrationen. Niblau, das am übergang der beiden Potentialbereiche liegt, förderte die Milchsäurebildung sehr stark bei niederen und hemmte ebenso stark bei höheren Konzentrationen.Die Bildung von flüchtigen Säuren wurde durch keinen der Farbstoffe gefördert. Eine Hemmung trat durch Farbstoffe mit Normalpotentialen zwischen-289 mV und +47 mV (Safranin T, Phenosafranin, Janusgrün, Nilblau, Methylenblau, Brillantkresylblau) ein. Janusgrün hemmte die Bildung flüchtiger Säuren in allen untersuchten Konzentrationen zwischen 4·10-5 und 4·10-4 m/l. Je weiter das Normalpotential des hemmenden Farbstoffes von dem Normalpotential des Janusgrüns abwich, desto geringer wurde die Hemmung in der geringsten Konzentrationsstufe von 4·10-5 m/l. Diese Unterbindung der Hemmwirkung wirkte sich in Richtung auf negativere Normalpotentiale mehr aus als in Richtung auf positivere Normalpotentiale.Durch die beiden Farbstoffe mit den extremsten Normalpotentialen (Neutralrot E 0=-340 mV, Toluylenblau E 0=+115 mV) wurde weder die Produktion von Milchsäure noch die von flüchtigen Säuren merklich gehemmt. Eine Förderung der Milchsäurebildung konnte von beiden Farbstoffen nur durch Toluylenblan in der geringsten Konzentration (4×10-5 m/l) erzielt werden.
The influence of redox indicators on the acid formation in Streptococcus lactis
Summary The influence of 8 redox indicators with graded standard redox potentials between E 0=-340 mV and E 0=+115 mV was tested for the acidification by Streptococcus lactis in a liquid medium.By redox indicators with standard redox potentials between-122 mV and +115 mV (Nile blue, methylene blue, brillant cresyl blue, and toluylene blue) the formation of lactic acid could be significantly increased, especially with low dye concentrations (4×10-5 and 10-4 m/l). Dyes with standard redox potentials between-289 mV and-122 mV (safranine T, phenosafranine, Janus green, Nile blue) on the other hand retarded the production of lactic acid by Strept. lactis in all or most of the dye concentrations used. Nile blue-representing the transition point between the two sections of redox indicators-increased the production of lactic acid very much in low concentrations and inhibited it as much in high concentrations.The production of volatile acids was not increased by any dyestuff. It was delayed by dyes with standard redox potentials between-289 mV and +47 mV (safranine T, phenosafranine, Janus green, Nile blue, methylene blue, brillant cresyl blue). Janus green retarded the production of volatile acids in all analysed concentrations between 4×10-5 and 4×10-4 m/l. The greater the difference between the standard redox potential of the inhibiting dye and the standard redox potential of Janus green the smaller was the retarding effect in the lowest degree of concentration of 4×10-5 m/l. This stopping of the retarding effect was more effective towards standard redox potentials more negative then towards more positive ones.The two dyes with the most extreme standard redox potentials (neutral red E 0=-340 mV, toluylene blue E 0=+115 mV) didn't obviously delay any acid formation, neither the production of lactic acid nor that of volatile acids. Of the two dyes only toluylene blue in the lowest concentration used (4×10-5 m/l) caused an increased production of lactic acid.
  相似文献   

9.
The effect of bradykinin on prostaglandin E2 formation in cells from human trabecular bone has been studied. The cells responded to parathyroid hormone with enhanced cyclic AMP formation and were growing as cuboidal-shaped, osteoblast-like cells. In these isolated human osteoblast-like cells, bradykinin (1 mol/l) caused a rapid (5 min) stimulation of prostaglandin E2 formation. This finding indicates that human osteoblasts are equipped with receptors for bradykinin linked to an increase in prostaglandin formation.  相似文献   

10.
Summary Hagfish,Myxine glutinosa, were used in an investigation of the possible effects of various eicosanoids and the prostaglandin synthetase inhibitor indomethacin, on cortisol production, blood pressure control, urine flow and electrolyte balance.Cortisol levels in plasma of untreated control animals and plasma from animals 1 h following injection of 50 g kg–1 prostaglandin E1, E2, A2, F2 TXB2 and indomethacin were not detectable. However, plasma cortisol levels rose to between 10 and 26 pg ml–1 1 h following injection of either 50 g kg–1 arachidonic acid or prostaglandin E2. This rise was similar in magnitude to that produced 1 h following administration of 50 g kg–1 porcine ACTH.The resting dorsal aortic blood pressure of between 3.50 and 3.75 mmHg was reduced on average by 50% for 12–15 min when animals received 10 g kg–1 arachidonic acid, prostaglandin E1, E2, A2, and TXB2 and was effectively reduced to zero for 20 min or more following 50 g kg–1 of these eicosanoids. Similar doses of prostaglandin F2, however, evoked an increase in blood pressure (19–33%) whilst indomethacin was without effect.Control measurements of urine flow inMyxine were estimated to be between 540 and 660 l h–1 kg–1. There was a marked reduction in urine output following the arterial vasodepression induced by arachidonic acid, prostaglandin E1, E2, A2 and TXB2 in doses of 10 g kg–1, an effect which became even more pronouced following injection of 50 g kg–1 quantities, leading in some cases to complete anuria. There was no significant change in urine volume following either the vasopressor action of prostaglandin F2 or following indomethacin.None of the compounds tested in this study significantly influenced the plasma or urine electrolyte status ofMyxine.  相似文献   

11.
12.
Summary Prostaglandins (E1, E2 and F2) stimulated the chloride transport of the frog corneal epithelium with maximal effects at 10–5 m in the aqueus side. This stimulation does not occur in Cl-free solutions and the net36Cl flux increased proportionally to the short-circuit current. Polyphloretin phosphate (PPP) and diphloretin phosphate (DPP) inhibited the response if added within 3 min before PGE1. The maximal response to epinephrine 10–5 m and dibutyryl cyclic AMP 10–3 m was not changed by further addition of prostaglandins, but these drugs produced their full effect when administered at the peak of the response of prostaglandins. The maximal response to theophylline 10–5 m was increased by PGE1. PPP and DPP did not modify the response to epinephrine. Prostaglandin stimulation of the chloride transport was accompanied by increased light transmission through partially opaque corneas. The known release of prostaglandins in the aqueous humor can be associated to a direct action on the corneal epithelium manifested in the activation described herein.  相似文献   

13.
Summary On illumination with blue light the O2-uptake of Chlorella pyrenoidosa (211-8b) in which photosynthetic O2-liberation has been suppressed by 10-5M DCMU initially decreases, but in the course of 5–10 min increases over that in preceding darkness (Fig. 1). Whereas an enhancement of O2-uptake is already induced by traces of blue radiation and saturated at about 1.5x10-10einsteins cm-2sec-1, the initial inhibition of O2-uptake can be measured only after application of more than 1.5×10-10einsteins cm-2sec-1 (Fig. 2).The long induction time that passes before a steady enhancement in O2-uptake is reached, the low energy requirement of the enhancement, and its spectral dependence with greatest efficiency of wavelengths around 455 nm and 375 nm and no effect of wavelengths beyond 520 nm (Fig. 3) resemble the corresponding data found earlier for an enhancement of respiration by light in a chlorophyll-free, carotenoidcontaining Chlorella mutant. It is therefore likely that the increased O2-uptake in DCMU-poisoned cells of wild type Chlorella depends on an increase in respiration. The pigment involved is not known, but from the action spectrum it could be a flavin or a cis-carotenoid.In contrast to the increase the initial decrease in O2-uptake does not show up in strong blue light only, but is also present in red light in which it stays constant throughout the period of measurement of 20 min (Fig. 4). Its intensity dependence is similar in blue and in red light; the lower efficiency of blue, which appears in Fig. 5, is at least partially due to the time interval of 5 min chosen for its determination: in these first 5 min after the beginning of blue illumination the slow increase in respiration already begins. The spectral dependence of the decrease in O2-consumption in the red part of the visible spectrum yields greatest activity around 680 nm, a slow drop towards 525 nm and a steep one towards 743 nm (Fig. 6). From that and the absence of any after-effect of red light on the O2-consumption in following darkness (Fig. 8), which might be expected if phytochrome action were involved, we think chlorophyll to be the pigment responsible for light-dependent inhibition of O2-uptake. A mutant of Scenedesmus, Bishop's Nr. 11, which is unable to evolve photosynthetic oxygen, behaves just like DCMU-poisoned Chlorella (Fig. 7). We therefore consider the decreased O2-consumption in the light to result from a partial inhibition of respiration and not from remaining photosynthesis unaffected by 10-5M DCMU. As photosystem I still operates in Bishop's mutant 11 as well as in DCMU-poisoned Chlorella, illumination might lead to an accumulation of ATP by cyclic photophosphorylation and thus to a lowering of the cellular ADP level. This could result in a slowing down of glycolysis and consequently of respiratory O2-uptake.  相似文献   

14.
Summary The effect of membrane potential on sodium-dependent calcium uptake by vesicles in an isolated cardiac sarcolemma preparation was examined. Initial time course studies showed that the reaction deviated from initial velocity conditions within minutes. This appeared to be due, in part, to loss of the sodium gradient. Assays carried out to 10 sec revealed a linear component of uptake (2 to 10 sec) and a faster component (complete by 2 sec). The latter was eliminated by loading the preparation with ethyleneglycol-bis-(-aminoethyl ether)N,N-tetraacetic acid (EGTA). This maneuver did not affect the slow component, and subsequent studies used preparations containing EGTA. Potassium Nernst potentials (E K), established by potassium gradients in the presence of valinomycin, were varied from –100 to +30 mV by changing [K+] o from 1.18 to 153.7mM ([K+] i =50mM). The initial velocity of sodium-dependent calcium uptake was stimulated twofold by changingE K from –100 to 0 mV and another twofold by raisingE K from 0 to +30 mV. For the total range ofE K and [K+] o , 32 to 36% of the increase appeared to reflect stimulation by extravesicular potassium. The remainder appeared to be due to membrane potential. The profile of sodium-dependent calcium uptake versusE K suggested that calcium influx through electrogenic sodium/calcium exchange may be much more affected by the positive region of the cardiac action potential than by the negative region.  相似文献   

15.
A dual-wavelength fluorimeter was constructed, which used two light emitting diodes (LEDs) to excite the fluorescence dye RH 421 alternately with two different wavelengths. The ratio of the emissions at the two excitation wavelengths provided a drift-insensitive signal, which allowed detection of very small changes of the fluorescence intensity. Those small changes were induced by ion binding and release in conformation E1 of the Na,K-ATPase. Titration experiments were performed to determine equilibrium dissociation constants (± standard deviation) for each step in the complete binding and release sequence: 0.12 ± 0.01 mM (E2(K2) KE1), 0.08 ± 0.01 mM (KE1 E1), 3.0 ± 0.2 mM (NaE1 E1), 5.2 ± 0.4 mM (Na2E1 NaE1) and 6.5 ± 0.4 mM (Na3E1 Na2E1) at pH 7.2 and T=16°C. These numbers show that the affinities of the binding sites exposed to the cytoplasm, are higher for K+ than for Na+ ions, similar to what was found on the extracellular side. The physiological requirement for extrusion of Na+ from the cytoplasm, and for import of K+ from the extracellular medium seems to be facilitated not by favorable binding affinities in state E1 but by the two ATP-driven reaction steps of the cycle, E2(K2) + ATP K2E1 · ATP and Na3E1 · ATP (Na3) El-P, which border the ion exchange reactions at the binding sites in conformation E1. Correspondence to: H.-J. Apell  相似文献   

16.
Using high density and low density lipoproteins (HDL and LDL) labeled with fluorescent analogues of phosphatidylcholine or sphingomyelin it was found that low amounts (10–12 M) of prostaglandins E1 and F2 induced different structural rearrangements of the lipoprotein surface, whereas prostaglandins E2 and F1 had no effect. The effects of prostaglandin E1 on HDL were largely paralled by those of this prostaglandin on synthetic recombinants prepared from pure apolipoprotein A1, phospholipids and cholesterol and were demonstrated to be caused by prostaglandin-apolipoprotein interaction. The interaction resembled that of a ligand with a specific receptor protein because it was specific, reversible, concentration and temperature dependent and saturable. However the retaining capacity of HDL or LDL for prostaglandin E1 as determined by equilibrium dialysis was very low and a single prostaglandin E1 molecule was able to induce structural changes in large numbers of discrete lipoprotein particles. To explain this remarkable fact a non-equilibrium model of ligand-receptor interaction is proposed. According to that model in open systems characterized by weak ligand-receptor binding, high diffusion rate of the ligand and long relaxation times which exceed the interval between two successive receptor occupations, the ligand-induced changes will accumulate, resulting in transformation of the system into a new state which may be far away from equilibrium. It is emphasized that the low mobility of lipids constituting the environment of the receptor protein plays a critcal role in this type of signal amplification.It was further demonstrated that the PGE1-induced changes of the lipoprotein surface resulted in an enhancement of LDL-to-HDL transfer of cholesterol esters and phosphatidylcholine especially in the presence of serum lipid transfer proteins. The acceleration of the interlipoprotein transfer caused by prostaglandin E1 in turn increases the rate of cholesterol esterification in serum. It is suggested that in such a way prostaglandin E1 may influence the homeostasis of cholesterol.Abbreviations LDL low density lioproteins - HDL high density lipoproteins - PG prostaglandin - ASM anthrylvinyl-labeled sphingomyelin (N-12-(9-anthryl)-11-trans-dodecanoylsphingosin-1-phosphocholine - APC anthrylvinylphosphatidylcholine (1-radyl-2-[(9-anthryl)-11-transdodecanoyl)-sn-glycerophosphocholine - NAP-SM nitroazidophenyl labeled sphingomyelin (N-[N-(2-nitro-4azidophenyl)-12-aminododecanoyl]-sphingosin-1-phosphocholine) - NAP-PC adizophenyl labeled phosphatidylcholine (1-radyl-2-[N-(2-nitro-4azidophenyl)-12-aminododecanoyl]-sn-glycero-3-phosphocholine - DPPC dipalmitoylphosphatidylcholine - P fluorescence polarization - E parameter of tryptophanyl to ASM resonance energy transfer - LEP lipid-exchange protein  相似文献   

17.
Summary The effects of various agents on active sodium transport were studied in the toad bladder in terms of the equivalent circuit comprising an active conductanceK a, an electromotive forceE Na, and a parallel passive conductanceK p. For agents which affectK a, but notE Na orK p, the inverse slope of the plot of total conductance against short-circuit currentI 0 evaluatesE Na, and the intercept representsK p. Studies employing 5×10–7 m amiloride to depressK a indicate a changingE Na, invalidating the use of the slope technique with this agent. An alternative suitable technique employs 10–5 m amiloride, which reducesI 0 reversibly to near zero without effect onK p. Despite curvilinearity of the -I0 plot under these conditions,K p may therefore be estimated fairly precisely from the residual conductance. It then becomes possible to follow the dynamic behavior ofK a andE Na (in the absence of 10–5 m amiloride) by frequent measurements of andI 0, utilizing the relationshipsK a=K-K p, andK Na=I O/(K-K p). 2-deoxy-d-glucose (7.5×10–3 m) depressedK a without affectingE Na. Amiloride (5×10–7 m) depressedK a and enhancedE Na. Vasopressin (100 mU/ml) enhancedK a markedly and depressedE Na slightly. Ouabain (10–4 m) depressed bothK a andE Na. All of the above effects were noted promptly;K p was unaffected. The electromotive force of Na transportE Na appears not to be a pure energetic parameter, but to reflect kinetic factors as well, in accordance with thermodynamic considerations.  相似文献   

18.
The OH N O H+N hydrogen bonds formed between tyrosine and lysine, and between glutamic acid and lysine residues are studied by infrared spectroscopy considering the following systems: (l-lys)n + phenol, copoly (l-lys, l-tyr)n, (l-lys)n + (l-tyr)n and (l-lys)n + (l-glu)n. The phenol-lysine hydrogen bonds are largely symmetrical in the average if the pKa of the protonated lysine is 2.2 units larger than that of the phenols. In the case of the hydrogen bonds between tyrosine and lysine residues in copoly (l-lys, l-tyr)n and (l-lys)n + (l-tyr)n, the weight of the proton limiting structure OH N is 80–90%, and that of the polar O H+N structure 10–20%. Double minimum proton potentials occur but the proton is preferentially present at the tyrosine residues. In the (l-lys)n + (l-glu)n system, the protons are present at the lysine residues. Thus, these hydrogen bonds have very large dipole moments (about 10 D). With the lysine-phenole hydrogen bonds, hydration shifts the proton transfer equilibrium a little in favour of the polar proton limiting structure O H+N. These hydrogen bonds are broken to a large extent, however, when only about 3 water molecules are present per lysine residue. When less water is present, as in the copoly (l-lys, l-tyr)n and (l-lys)n + (l-tyr)n systems, these hydrogen bonds are, however, formed quantitatively. Thus — as discussed in this paper — the tyrosine-lysine hydrogen bonds can participate in proton conducting hydrogen bonded systems — as, for instance, present in bacteriorhodopsin — performing the proton transport through hydrophobic regions of biological membranes.  相似文献   

19.
A toxic factor released from disrupted cells of Vibrio parahaemolyticus was partially purified by gel filtration after precipitation with (NH4)2SO4 at 40% saturation. The factor, which was a thermostable protein of 63 kDa, lysed human erythrocytes at a concentration of 0.15 g ml-1. Its LD50 by intravenous injection into mice was 6.4 g. Fluid accumulated in suckling mice force-fed with the toxic material (1 to 25 g). Haemolytic activity, which occurred maximall at 37°C and pH 7.0 was enhanced by Ca2+, Cu2+ and Zn2+, each at 1 mm. Anti-toxic-factor serum agglutinated V. parahaemolyticus cells. The factor may play a role in the pathogenesis of V. parahaemolyticus infections and in the host's defence mechanisms against infection by the microorganism.  相似文献   

20.
Summary The artificial insertion of increasing amounts of unsaturated fatty acids into human erythrocyte membranes modulated ATPase activities in a biphasic manner, depending on the number and position of double bonds, their configuration, and the chain length. Uncharged long-chain fatty acid derivatives with double bonds and short-chain fatty acids were ineffective. Stearic acid stimulated Na+K+-ATPase only. Anionic and non-ionic detergents and -lysophosphatidylcholine failed to stimulate ATPase activities at low, and inhibited them at high concentrations.Mg2+-ATPase activity was maximally enhanced by a factor of 2 in the presence of monoenoic fatty acids; half-maximal stimulation was achieved at a molar ratio ofcis(trans)-configurated C18 acids/membrane phopholipid of 0.16 (0.26).Na+K+-ATPase activity was maximally augmented by 20% in the presence of monoenoic C18 fatty acids at 37°C. Half-maximal effects were attained at a molar ratio oleic (elaidic) acid/phospholipid of 0.032 (0.075). Concentrations of free fatty acids which inhibited ATPase activities at 37°C were most stimulatory at reduced temperatures. AT 10°C, oleic acid increased Na+K+-ATPase activity fivefold (molar ratio 0.22).Unsaturated fatty acids simulated the effect of calmodulin on Ca2+-ATPase of native erythrocyte membranes (i.e., increase ofV max from 1.6 to 5 mol PO 4 3– ·phospholipid–1·hr–1, decrease of K Ca from 6 m to 1.4–1.8 m). Stearic acid decreasedK Ca (2 m) only, probably due to an increase of negative surface charges.A stimulation of Mg2+-ATPase, Na+K+-ATPase, and Ca2+-ATPase could be achieved by incubation of the membranes with phospholipase A2.An electrostatic segregation of free fatty acids by ATPases with ensuing alterations of surface charge densities and disordering of the hydrophobic environment of the enzymes provides an explanation of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号