首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamine depletion induces apoptosis through mitochondria-mediated pathway   总被引:4,自引:0,他引:4  
Polyamines, namely putrescine, spermidine, and spermine, are essential for cell survival and proliferation. A decrease in intracellular polyamine levels is associated with apoptosis. In this study, we used inhibitors of polyamine biosynthesis to examine the effect of polyamine depletion. A combination of inhibitors of ornithine decarboxylase, S-adenosylmethionine decarboxylase, or spermidine synthase decreased intracellular polyamine levels and induced cell death in a WEHI231 murine B cell line. These cells exhibited apoptotic features including chromatin condensation and oligonucleosomal DNA fragmentation. Addition of exogenous polyamines reversed the observed features of apoptotic cell death. Similar effects were also observed in other cell lines: a human B cell line Ramos and a human T cell line Jurkat. Depletion of polyamines induced activation of caspase-3 and disruption of the mitochondrial membrane potential (Delta psi m). Inhibition of caspase activities by an inhibitor prevented the apoptotic nuclear changes but not Delta psi m disruption induced by polyamine depletion. Overexpression of Bcl-xl, an anti-apoptotic Bcl-2 family protein, completely inhibited Delta psi m disruption, caspase activation, and cell death. These results indicate that the depletion of intracellular polyamines triggers the mitochondria-mediated pathway for apoptosis, resulting in caspase activation and apoptotic cell death.  相似文献   

2.
Zhang L  Wei LJ 《Life sciences》2007,80(13):1189-1197
ACTX-8 is a protein isolated from Agkistrodon acutus snake venom in our laboratory. It demonstrates cytotoxic activity on various carcinoma cell lines in vitro. However, the mechanism by which ACTX-8 inhibits cell proliferation remains poorly understood. In this study the influence of ACTX-8 on the activation of apoptotic pathway in Hela cells was investigated. We demonstrated that cell death induced by ACTX-8 was concentration- and time-dependent. Apoptotic changes such as phosphatidyl serine externalization and DNA fragmentation were detected in ACTX-8-treated cells. Caspase activation and reactive oxygen species (ROS) production were involved in ACTX-8-induced apoptosis, but pan caspase inhibitor, z-VAD-fmk, could not inhibit cell death induced by ACTX-8 completely, which proved the existence of another pathway for ACTX-8-induced cell death. We found cytochrome c release into cytosol and mitochondrial membrane potential (MMP) dissipation in ACTX-8-treated cells, which indicated that mitochondrial pathway played a role in ACTX-8-induced cell apoptosis. The ratio of expression levels of pro- and anti-apoptotic Bcl-2 family members was not changed by ACTX-8 treatment. However Bad and Bax were translocated from cytosol into mitochondria, and the coimmunoprecipitation result indicated that in mitochondria Bak and Bcl-xL dissociation was followed by the binding of Bad and Bcl-xL. Taken together, the study indicated mitochondrial pathway played an important role in the ACTX-8-induced apoptosis, which was regulated by Bcl-2 family members.  相似文献   

3.
Phenylalanine analog, ρ-fluorophenylalanine (pFPhe)-mediated cytotoxicity and several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, Bid cleavage, degradation of PARP and PLCγ-1, and DNA fragmentation were more significant in p56lck-deficient Jurkat T cells (JCaM1.6) than in wild-type Jurkat T cells (E6.1). The susceptibility of JCaM1.6 toward apoptogenic activity of pFPhe decreased after acquisition of p56lck by transfection. The p56lck kinase activity increased 1.6-fold at 15-30 min after pFPhe treatment. The pan-caspase inhibitor (z-VAD-fmk) completely blocked the pFPhe-mediated apoptotic changes except caspase-9 activation. The caspase-8 inhibitor (z-IETD-fmk), which failed to influence pFPhe-induced caspase-9 activation, completely blocked caspase-8 activation and PLCγ-1 degradation with a marked reduction in caspase-3 activation and PARP degradation, indicating pFPhe-induced caspase-8 activation as a downstream event of mitochondria-dependent activation of caspase-9. These results indicate that the deficiency of p56lck augments pFPhe-induced mitochondrial cytochrome c release and resultant apoptotic cell death in Jurkat T cells.  相似文献   

4.
Achacin, which belongs to the L-amino acid oxidase group, oxidizes free amino acids and produces hydrogen peroxide in cell culture systems. Morphological changes in cells incubated with achacin were similar to those of cells incubated with H(2)O(2). In both cases, the end result was cell death. To examine the mechanism of achacin-associated cytotoxicity, the H(2)O(2) scavenger catalase was added to culture media. Features typical of apoptosis, including morphological changes, DNA fragmentation, and PARP cleavage, were observed when cells were incubated with achacin in the presence of catalase. Moreover, apoptosis was inhibited by Z-VAD-fmk, a broad-spectrum caspase inhibitor. Herein, we present evidence that two pathways are involved in achacin-induced cell death. One is direct generation of H(2)O(2) through the L-amino acid oxidase activity of achacin. The other is the caspase-mediated apoptotic pathway that is induced by depletion of L-amino acids by achacin.  相似文献   

5.
The ability of the derivatives of macrosphelides (MS) core (simplified 16-membered core structure of natural MS) to induce apoptosis in human lymphoma U937 cells was investigated. Of the five compounds examined, MS core with ketones at 8 and 14 positions (MS5) showed the highest potency to induce apoptosis, while another, MS3 with one ketone, was minimal potent. MS5 was found to induce apoptosis in the U937 cells in a time- and dose-dependent fashion, as confirmed by DNA fragmentation analysis. MS5 treated cells showed increase in intracellular reactive oxygen species (ROS), glutathione depletion, Bid activation and lipid peroxidation. Pretreatment of cells with pancaspase inhibitor resulted in the complete inhibition of MS5-induced apoptosis. N-Acetyl-l-cysteine (NAC) pretreatment resulted in the increase in glutathione concentration, reduction of intracellular ROS, complete inhibition of DNA fragmentation, mitochondrial membrane potential (MMP) collapse, Fas externalization and caspase-8 activation. Furthermore, MS5-induced oxidative stress also triggered transient increase in intracellular calcium ion ([Ca2+]i) concentration which was completely inhibited by NAC. Pretreatment with an intracellular Ca2+ chelator, BAPTA-AM reduced MS5-induced DNA fragmentation and caspase-8 activation while it has marginal effects on MMP collapse. Taken together our present data showed that a rapid increase in intracellular ROS by MS5 triggers apoptosis via the Fas/caspase-8-mediated mitochondrial pathway suggesting that the presence of diketone makes the compound more potent to induce apoptosis. These characteristics of MS5 will make it useful for therapeutic applications of targeted apoptosis.  相似文献   

6.
We have previously reported that in a MOLT-4 leukemia cell line the acquired resistance to 9-beta-D-arabinofuranosylguanine (Ara-G) is due to deficiency of the activating enzymes deoxyguanosine kinase and deoxycytidine kinase [Biochem. Biophys. Res. Commun. 293 (5) (2002) 1489]. In this study we investigated whether apoptotic pathways are affected in two human T-cell lymphoblastic MOLT-4 cell lines with acquired resistance to Ara-G. In contrast to the MOLT-4 wild type cells, Ara-G resistant cells displayed no increase in caspase-3 or caspase-9 activity, DNA fragmentation, cytochrome c release or a drop in the mitochondrial membrane potential (DeltaPsi(mito)) upon Ara-G treatment. A drop in the DeltaPsi(mito) was induced in wild type cells after treatment with tributyltin, an inducer of mitochondrial permeability transition, and with carbonyl cyanide m-chlorophenylhydrazone, an uncoupling agent that reduces the DeltaPsi(mito), although not in Ara-G resistant cells. Ara-G resistant cells displayed higher levels of the anti-apoptotic protein Bcl-xL in immunoblots. A recent study indicates that Ara-G-induced apoptosis is mediated in part via the Fas pathway [Cancer Res. 43 (2047) (2002) 411]. When cells were treated with anti-Fas antibody, the wild type cell line exhibited increased caspase-3-like activity but the Ara-G resistant cells did not. Using FACS analysis and semi-quantitative PCR, 3-6-fold decreased protein levels and almost no detectable mRNA levels of Fas in the resistant cells were recorded. These data indicate that the inability to induce apoptosis via both the apoptosome pathway and the Fas pathway, due to increased levels of Bcl-xL and a lack of Fas, contributes to Ara-G resistance. This resistance to apoptosis in Ara-G resistant cells may serve to explain the overall resistance to a variety of anti-neoplastic drugs.  相似文献   

7.
Apoptosis can be induced by various stimuli such as the ligands of death receptors, chemotherapeutic drugs and irradiation. It is generally believed that chemotherapeutic drugs induce mitochondrial damage, cytochrome c release and activation of caspase-9, leading to apoptosis. Here, we found that an isoprenoid antibiotic, 4-O-methyl ascochlorin, significantly induces typical apoptotic events in Jurkat cells including the degradation of poly (ADP-ribose) polymerase, DNA fragmentation, activation of caspase-3, -9 and -8, and cytochrome c release from mitochondria. Similar to Fas stimulation, 4-O-methyl ascochlorin but not staurosporine, cycloheximide and actinomycin D, induced apoptosis in SKW6.4 cells, in which apoptosis is strongly dependent on death-inducing signaling-complex. Bcl-2 overexpression in Jurkat cells completely suppressed the apoptosis, but procaspase-9 processing was partially induced. A caspase-8 inhibitor, IETD-fmk, effectively suppressed poly (ADP-ribose) polymerase cleavage and cytochrome c release. However, 4-O-methyl ascochlorin induced apoptosis in Jurkat cells deficient of caspase-8 or Fas-associated death domain protein. These results suggest that 4-O-methyl ascochlorin induces apoptosis through the mechanism distinct from conventional apoptosis inducers.  相似文献   

8.
Treatment of human promyelocytic leukemia HL-60 cells with apigeninidin could induce cytotoxicity (IC50 = ~80 μM), along with apoptotic sub-G1 cells, TUNEL-positive apoptotic DNA fragmentation, activation of the multidomain pro-apoptotic Bcl-2 proteins (Bak and Bax), mitochondrial membrane potential (Δψm) loss, release of mitochondrial cytochrome c and AIF into the cytoplasm, activation of caspase-9, -3, -8, and -7, and cleavage of PARP and lamin B. These induced apoptotic events were accompanied by decrease of Bcl-2 level and increase of Bak and Bax levels. Apigeninidin-induced sub-G1 cells and activation of Bak and Bax were also detected in human acute leukemia Jurkat T cells, but not in Jurkat T cells overexpressing Bcl-2. Pretreatment of HL-60 cells with the pan-caspase inhibitor z-VAD-fmk reduced significantly apigeninidin-induced sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak and Bax activations, Δψm loss, and release of mitochondrial cytochrome c and AIF. None of FADD and caspase-8 deficiencies affected the sensitivity of Jurkat T cells to apigeninidin-induced cytotoxicity. These results demonstrated that apigeninidin-induced apoptosis was mediated by activation of Bak and Bax, mitochondrial damage and resultant release of not only cytochrome c, causing caspase cascade activation, but also caspase-independent death effector AIF in HL-60 cells.  相似文献   

9.
The apoptosis-inducing ability of hybrid compounds composed of macrosphelide and thiazole-containing side chain of epothilones was investigated. Among the tested series of hybrid compounds the one containing thiazole side chain at C15 (MSt-2) showed the maximum potency to induce apoptosis, while another containing thiazole side chain at C3 (MSt-6) was less potent. MSt-2 was found to induce apoptosis in human lymphoma (U937) cells in a dose- and time-dependent manner as confirmed by DNA fragmentation analysis. MSt-2 treated cells showed rapid reactive oxygen species (ROS) formation and c-Jun N-terminal kinase (JNK) activation. Furthermore, significant activation of extrinsic pathway as evident by Fas expression and caspase-8 activation was also observed. MSt-2-mediated decreased expression of Bid is an important event for cross talk between intrinsic and extrinsic signaling. N-acetyl-l-cysteine pre-treatment rescued cells from MSt-2-induced ROS formation, mitochondrial membrane potential (Δψm) loss, Fas expression, caspase-8 and -3 activation and DNA fragmentation. Moreover, antioxidant enzymes catalase and/or superoxide dismutase conjugated with polyethylene glycol also inhibit MSt-2-induced ROS formation, apoptosis and Δψm loss suggesting thereby pro-oxidant effects of MSt-2. Furthermore, JNK and pan-caspase inhibitors also protect cells from MSt-2-induced apoptosis. In addition to this, MSt-2 was found to be more potent in human colon carcinoma (HCT116) and human gastric cancer (AGS) cells while it has no effect on human normal dermal fibroblast. The important structure-activity relationship observed in the current study which makes MSt-2 more potent than MSt-6 is the position of thiazole side chain and stereochemistry of position 3 in chemical structure. In short the results of our study demonstrate that MSt-2-induced rapid ROS generation and mitochondrial dysfunction in cells trigger events responsible for mitochondria-dependent apoptosis pathway.  相似文献   

10.
It is shown in literature that stress, such as deprivation of trophic factors and hypoxia, induces apoptosis in cultured cells and in tissues. In light of these results, we explored the possibility of protecting cells from programmed death by improving the metabolism of the mitochondrion. To this end, acetyl-L-carnitine was administered at various concentrations under conditions of serum deprivation. The choice of this drug was based on the accepted notion that acetyl-L-carnitine is able to stabilize mitochondrial membranes and to increase the supply of energy to the organelle. The results presented here indicate that the drug protects cells from apoptotic death: this is demonstrated by a lower positivity to the TUNEL reaction and by a strong reduction of the apoptotic DNA ladder in serum-deprived cells. The involvement of the mitochondrial apoptotic pathway was assessed by cytochrome C release and immunoreactivity to caspase 3. Moreover, acetyl-L-carnitine stimulates cell proliferation.  相似文献   

11.
In this study, we investigated whether there is a signalling interaction between calpain and caspase-3 during apoptosis in Jurkat T cells by Entamoeba histolytica. When Jurkat cells were co-incubated with E. histolytica, phosphatidylserine externalisation and DNA fragmentation markedly increased compared with results for cells incubated with medium alone. In addition, E. histolytica strongly induced cleavage of caspases-3, -6, -7 and poly(ADP-ribose) polymerase. A rise in intracellular calcium levels and activation of calpain were seen in Jurkat cells after exposure to E. histolytica. Pretreatment of Jurkat cells with calpain inhibitor calpeptin effectively blocked E. histolytica-triggered cleavage of caspase-3 as well as calpain. In contrast, pan-caspase inhibitor did not affect E. histolytica-induced calpain activation. In addition, incubation with E. histolytica resulted in multiple fragmented bands of calpastatin, which is an endogenous inhibitor of calpain, in Jurkat T cells. Moreover, Entamoeba-induced calpastatin degradation was dramatically suppressed by pretreatment with calpeptin, but not by z-VAD-fmk. Entamoeba-induced DNA fragmentation was strongly retarded by z-VAD-fmk, but not calpeptin. Our results suggest that calpain-mediated calpastatin degradation plays a crucial role in regulation of caspase-3 activation during apoptosis of Jurkat T cells by E. histolytica.  相似文献   

12.
Collinin, which was isolated from the leaves of Zanthoxylum schinifolium, could exert cytotoxic effect on various human tumor cells with IC50 values in the range of 38.1–111.6 μM, whereas the IC50 value for human normal mammary epithelial MCF-10A cells was 124.4 μM. To examine the contribution of apoptosis to the cytotoxicity of collinin toward tumor cells, collinin-induced apoptotic events of Jurkat T cells transfected with vector (JT/Neo) were compared with those of Jurkat T cells transfected with Bcl-2 gene (JT/Bcl-2). Treatment of JT/Neo cells with collinin (30–60 μM) resulted in induction of sub-G1 peak representing apoptotic cells along with activation of Bak and Bax, mitochondrial membrane potential (Δψm) loss, activation of caspase-9, -3, -8, and -7, degradation of PARP, and DNA fragmentation dose-dependently, but these apoptotic events were abrogated by overexpression of Bcl-2, which could prevent the induced activation of Bak and Bax, and subsequent mitochondrial damage. Under these conditions, necrosis was not accompanied. Pretreatment of JT/Neo cells with the pan-caspase inhibitor z-VAD-fmk completely blocked collinin-induced apoptotic sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak activation and Δψm loss. Neither FADD-deficiency nor caspase-8-deficiency affected the susceptibility of Jurkat T cells to collinin-induced cytotoxicity and apoptotic cell death. These results demonstrate that the apoptogenic activity of collinin was mediated by the intrinsic mitochondrial apoptotic pathway which was preceded by activation of pro-apoptotic multidomain Bcl-2 family members Bak and Bax, mitochondrial damage, and resultant activation of caspase cascade, leading to PARP degradation, which could be regulated by Bcl-2.  相似文献   

13.
Caspases and c-Jun N-terminal kinase (JNK) are activated in tumor cells during induction of apoptosis. We investigated the signaling cascade and function of these enzymes in cisplatin-induced apoptosis. Treatment of Jurkat T-cells with cisplatin induced cell death with DNA fragmentation and activation of caspase and JNK. Bcl-2 overexpression suppressed activation of both enzymes, whereas p35 and CrmA inhibited only the DEVDase (caspase-3-like) activity, indicating that the activation of these enzymes may be differentially regulated. Cisplatin induced apoptosis with the cytochrome c release and caspase-3 activation in both wild-type and caspase-8-deficient JB-6 cells, while the Fas antibody induced these apoptotic events only in wild-type cells. This indicates that caspase-8 activation is required for Fas-mediated apoptosis, but not cisplatin-induced cell death. On the other hand, cisplatin induced the JNK activation in both the wild-type and JB-6 cells, and the caspase-3 inhibitor Z-DEVD-fmk did not inhibit this activation. The JNK overexpression resulted in a higher JNK activity, AP-1 DNA binding activity, and metallothionein expression than the empty vector-transfected cells following cisplatin treatment. It also partially protected the cells from cisplatin-induced apoptosis by decreasing DEVDase activity. These data suggest that the cisplatin-induced apoptotic signal is initiated by the caspase-8-independent cytochrome c release, and the JNK activation protects cells from cisplatin-induced apoptosis via the metallothionein expression.  相似文献   

14.
Bcl-2 and its relative, Bcl-xL, inhibit apoptotic cell death primarily by controlling the activation of caspase proteases. Previous reports have suggested at least two distinct mechanisms: Bcl-2 and Bcl-xL may inhibit either the formation of the cytochrome c/Apaf-1/caspase-9 apoptosome complex (by preventing cytochrome c release from mitochondria) or the function of this apoptosome (through a direct interaction of Bcl-2 or Bcl-xL with Apaf-1). To evaluate this latter possibility, we added recombinant Bcl-xL protein to cell-free apoptotic systems derived from Jurkat cells and Xenopus eggs. At low concentrations (50 nM), Bcl-xL was able to block the release of cytochrome c from mitochondria. However, although Bcl-xL did associate with Apaf-1, it was unable to inhibit caspase activation induced by the addition of cytochrome c, even at much higher concentrations (1-5 microM). These observations, together with previous results obtained with Bcl-2, argue that Bcl-xL and Bcl-2 cannot block the apoptosome-mediated activation of caspase-9.  相似文献   

15.
ABSTRACT: BACKGROUND: The root bark of Paeonia suffruticosa Andrews (PSE), also known as Moutan Cortex, has been widely used in Asia to treat various diseases. The molecular mechanisms by which PSE exerts its anti-oxidant and anti-inflammatory activities are well known, but its anti-cancer activity is not yet well understood. Here, we present evidence demonstrating that PSE can be used as a potent anti-cancer agent to treat gastric cancer. METHODS: The effects of the ethanol extract of PSE on cell proliferation were determined using an MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan) assay. Cell cytotoxicity induced by the PSE extact is measured using an LDH leakage assay. Flow cytometry was used to analyze the cell cycle and to measure the subG0/G1 apoptotic cell fraction. Apoptosis induced by the PSE extact is also examined using a DNA fragmentation assay. Western blot analysis is used to measure the levels of apoptotic proteins such as Fas receptor, caspase-8, caspase-3, PARP, Bax, Bcl-2, MDM2, and p53. RESULTS: This study demonstrated that treating AGS cells with the PSE extact significantly inhibited cell proliferation and induced cytotoxicity in a dose- and time-dependent manner. The PSE extract also induced apoptosis in AGS cells, as measured by flow cytometry and a DNA fragmentation assay. We found that the PSE extract induced apoptosis via the extrinsic Fas-mediated apoptosis pathway, which was concurrent with the activation of caspases, including caspase-8 and caspase-3, and cleavage of PARP. The MDM2-p53 pathway also played a role in the apoptosis of AGS cells that was induced by the PSE extract. CONCLUSIONS: These results clearly demonstrate that the PSE extact displays growth-suppressive activity and induces apoptosis in AGS cells. Our data suggest that the PSE extact might be a potential anti-cancer agent for gastric cancer.  相似文献   

16.
An angiogenic factor, thymidine phosphorylase (TP), confers resistance to apoptosis induced by hypoxia. We investigated the molecular basis for the suppressive effect of TP on hypoxia-induced apoptosis using Jurkat cells transfected with TP cDNA, Jurkat/TP, and a mock transfectant, Jurkat/CV. TP and 2-deoxy-d-ribose, a degradation product of thymidine generated by TP enzymatic activity, suppressed hypoxia-induced apoptosis. They also inhibited the upregulation of hypoxia-inducible factor (HIF) 1α and the proapoptotic factor, BNIP3, and caspase 3 activation induced by hypoxia. Introduction of siRNA against BNIP3 in Jurkat cells decreased the proportion of apoptotic cells under hypoxic condition. These findings suggest that the suppression of BNIP3 expression by TP prevents, at least in part, hypoxia-induced apoptosis. Expression levels of TP are elevated in many malignant solid tumors and thus 2-deoxy-d-ribose generated by TP in these tumors might play an important role in tumor progression by preventing hypoxia-induced apoptosis.  相似文献   

17.
Exposure of human Jurkat T cells to aruncin B, purified from Aruncus dioicus, caused apoptosis along with microtubule damage, G(2)/M-arrest, Bcl-2 phosphorylation, Bak activation, mitochondrial membrane potential (Δψm) loss, cytochrome c release, activation of multiple caspases, and PARP degradation. Analyses by employing Bcl-2 overexpression and selective caspase inhibitors revealed that G(2)/M-arrest and Bcl-2 phosphorylation occurred prior to mitochondria-dependent activation of caspase-9, -3, and -8. The IC(50) values for human resting T cells, activated T cells, and Jurkat T cells were >60μg/ml, 49μg/ml, and 22μg/ml, respectively. These results demonstrate the apoptogenic activity of a novel microtubule-damaging agent aruncin B.  相似文献   

18.
Curcumin, a yellow pigment from Curcuma longa, exhibits anti-inflammatory, antitumor, and antioxidative properties. Although its precise mode of action has not been elucidated so far, numerous studies have shown that curcumin may induce apoptosis in normal and cancer cells. Previously, we showed that in Jurkat cells curcumin induced nontypical apoptosis-like pathway, which was independent of mitochondria and caspase-3. Now we show that the inhibition of caspase-3 by curcumin, which is accompanied by attenuation of internucleosomal DNA fragmentation, may be due to elevation of glutathione, which increased in curcumin-treated cells to 130% of control. We have demonstrated that glutathione depletion does not itself induce apoptosis in Jurkat cells; though, it can release cytochrome c from mitochondria and caspase-3 from inhibition by curcumin, as shown by Western blot. The level of Bcl-2 protein was not affected by glutathione depletion even upon curcumin treatment. Altogether, our results show that in Jurkat cells curcumin prevents glutathione decrease, thus protecting cells against caspase-3 activation and oligonucleosomal DNA fragmentation. On the other hand, it induces nonclassical apoptosis via a still-unrecognized mechanism, which leads to chromatin degradation and high-molecular-weight DNA fragmentation.  相似文献   

19.
Acinar cells in pancreatitis die through apoptosis and necrosis, the roles of which are different. The severity of experimental pancreatitis correlates directly with the extent of necrosis and inversely, with apoptosis. Apoptosis is mediated by the release of cytochrome c into the cytosol followed by caspase activation, whereas necrosis is associated with the mitochondrial membrane potential (ΔΨm) loss leading to ATP depletion. Here, we investigate the role of Bcl-2 proteins in apoptosis and necrosis in pancreatitis. We found up-regulation of prosurvival Bcl-2 proteins in pancreas in various experimental models of acute pancreatitis, most pronounced for Bcl-xL. This up-regulation translated into increased levels of Bcl-xL and Bcl-2 in pancreatic mitochondria. Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss and cytochrome c release in isolated mitochondria. Corroborating the results on mitochondria, Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss, ATP depletion and necrosis in pancreatic acinar cells, both untreated and hyperstimulated with CCK-8 (in vitro pancreatitis model). Together Bcl-xL/Bcl-2 inhibitors and CCK induced more necrosis than either treatment alone. Bcl-xL/Bcl-2 inhibitors also stimulated cytochrome c release in acinar cells leading to caspase-3 activation and apoptosis. However, different from their effect on pronecrotic signals, the stimulation by Bcl-xL/Bcl-2 inhibitors of apoptotic responses was less in CCK-treated than control cells. Therefore, Bcl-xL/Bcl-2 inhibitors potentiated CCK-induced necrosis but not apoptosis. Correspondingly, transfection with Bcl-xL siRNA stimulated necrosis but not apoptosis in the in vitro pancreatitis model. Further, in animal models of pancreatitis Bcl-xL up-regulation inversely correlated with necrosis, but not apoptosis. Results indicate that Bcl-xL and Bcl-2 protect acinar cells from necrosis in pancreatitis by stabilizing mitochondria against death signals. We conclude that Bcl-xL/Bcl-2 inhibition would aggravate acute pancreatitis, whereas Bcl-xL/Bcl-2 up-regulation presents a strategy to prevent or attenuate necrosis in pancreatitis.  相似文献   

20.
Pierisin-1, a 98-kDa protein that induces apoptosis in mammalian cell lines, is capable of being incorporated into cells where it ADP-ribosylates guanine residues in DNA. To investigate the apoptotic pathway induced by this unique protein, the bcl-2 gene was transfected into HeLa cells. Cy2-fluorescent pierisin-1 was incorporated into the resultant cells expressing Bcl-2 protein and ADP-ribosylated dG was detected to almost the same extent as in parent cells. However, bcl-2-transfected HeLa cells did not display apoptotic morphological changes, PARP cleavage, and DNA fragmentation, indicating acquisition of resistance. In parent HeLa cells, activation of caspase-9 and release of cytochrome c were observed after 8h treatment with 0.5ng/ml pierisin-1. Caspase substrate assays revealed further cleavage of Ac-DEVD-pNA, Ac-VDVAD-pNA, and Ac-VEID-pNA, suggesting activation of caspase-2, -3, and -6 in pierisin-1-treated HeLa cells. The caspase-3 inhibitor, Ac-DEVD-CHO, was also found to inhibit apoptosis. In contrast, this caspase activation was not observed in bcl-2-transfected HeLa cells. Our results thus indicate that pierisin-1-induced apoptosis is mediated primarily via a mitochondrial pathway involving Bcl-2 and caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号