首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polar residues play important roles in the association of transmembrane helices and the stabilities of membrane proteins. Although a single Ser residue in a transmembrane helix is unable to mediate a strong association of the helices, the cooperative interactions of two or more appropriately placed serine hydroxyl groups per helix has been hypothesized to allow formation of a "serine zipper" that can stabilize transmembrane helix association. In particular, a heptad repeat Sera Xxx Xxx Leud Xxx Xxx Xxx (Xxx is a hydrophobic amino acid) appears in both antiparallel helical pairs of polytopic membrane proteins as well as the parallel helical dimerization motif found in the murine erythropoietin receptor. To examine the intrinsic conformational preferences of this motif independent of its context within a larger protein, we synthesized a peptide containing three copies of a SeraLeud heptad motif. Computational results are consistent with the designed peptide adopting either a parallel or antiparallel structure, and conformational search calculations yield the parallel dimer as the lowest energy configuration, which is also significantly more stable than the parallel trimer. Analytical ultracentrifugation indicated that the peptide exists in a monomer-dimer equilibrium in dodecylphosphocholine micelles. Thiol disulfide interchange studies showed a preference for forming parallel dimers in micelles. In phospholipid vesicles, only the parallel dimer was formed. The stability of the SerZip peptide was studied in vesicles prepared from phosphatidylcholine (PC) lipids of different chain length: POPC (C16:0C18:1 PC) and DLPC (C12:0PC). The stability was greater in POPC, which has a good match between the length of the hydrophobic region of the peptide and the bilayer length. Finally, mutation to Ala of the Ser residues in the SerZip motif gave rise to a relatively small decrease in the stability of the dimer, indicating that packing interactions rather than hydrogen-bonding provided the primary driving force for association.  相似文献   

2.
A peptide containing glycine at a and d positions of a heptad motif was synthesized to investigate the possibility that membrane-soluble peptides with a Gly-based, left-handed helical packing motif would associate. Based on analytical ultracentrifugation in C14-betaine detergent micelles, the peptide did associate in a monomer-dimer equilibrium, although the association constant was significantly less than that reported for the right-handed dimer of the glycophorin A transmembrane peptide in similar detergents. Fluorescence resonance energy transfer (FRET) experiments conducted on peptides labeled at their N-termini with either tetramethylrhodamine (TMR) or 7-nitrobenz-2-oxa-1,3-diazole (NBD) also indicated association. However, analysis of the FRET data using the usual assumption of complete quenching for NBD-TMR pairs in the dimer could not be quantitatively reconciled with the analytical ultracentrifugation-measured dimerization constant. This led us to develop a general treatment for the association of helices to either parallel or antiparallel structures of any aggregation state. Applying this treatment to the FRET data, constraining the dimerization constant to be within experimental uncertainty of that measured by analytical ultracentrifugation, we found the data could be well described by a monomer-dimer equilibrium with only partial quenching of the dimer, suggesting that the helices are most probably antiparallel. These results also suggest that a left-handed Gly heptad repeat motif can drive membrane helix association, but the affinity is likely to be less strong than the previously reported right-handed motif described for glycophorin A.  相似文献   

3.
De novo designed peptide based super secondary structures are expected to provide scaffolds for the incorporation of functional sites as in proteins. Self-association of peptide helices of similar screw sense, mediated by weak interactions, has been probed by the crystal structure determination of two closely related peptides: Ac-Gly1-Ala2-Delta Phe3-Leu4-Val5-DeltaPhe6-Leu7-Val8-DeltaPhe9-Ala10-Gly11-NH2 (I) and Ac-Gly1-Ala2-DeltaPhe3-Leu4-Ala5-DeltaPhe6-Leu7-Ala8-DeltaPhe9-Ala10-Gly11-NH2 (II). The crystal structures determined to atomic resolution and refined to R factors 8.12 and 4.01%, respectively, reveal right-handed 3(10)-helical conformations for both peptides. CD has also revealed the preferential formation of right-handed 3(10)-helical conformations for both molecules. Our aim was to critically analyze the packing of the helices in the solid state with a view to elicit clues for the design of super secondary structural motifs such as two, three, and four helical bundles based on helix-helix interactions. An important finding is that a packing motif could be identified common to both the structures, in which a given peptide helix is surrounded by six other helices reminiscent of transmembrane seven helical bundles. The outer helices are oriented either parallel or antiparallel to the central helix. The helices interact laterally through a combination of N--H...O, C--H...O, and C--H...pi hydrogen bonds. Layers of interacting leucine residues are seen in both peptide crystal structures. The packing of the peptide helices in the solid state appears to provide valuable leads for the design of super secondary structural modules such as two, three, or four helix bundles by connecting adjacent antiparallel helices through suitable linkers such as tetraglycine segments.  相似文献   

4.
Coiled coils are formed by two or more alpha-helices that align in a parallel or an antiparallel relative orientation. The factors that determine a preference for a given relative helix orientation are incompletely understood. The helix orientation preference for the designed coiled coil, Acid-a1-Base-a1, was measured previously. This model system therefore provides a means for the experimental determination of the energetic contribution of a variety of interactions to helix orientation specificity.The antiparallel preference for Acid-a1-Base-a1 is imparted by a single buried polar interaction. Interhelical Coulombic interactions between residues at the e and g positions have been proposed to influence helix orientation preference. In the Acid-a1-Base-a1 heterodimer, potentially attractive Coulombic interactions are expected in both orientations. To determine the energetic consequences of Coulombic interactions for helix orientation preference, we have positioned a single charged residue in each peptide such that exclusively favorable interhelical Coulombic interactions can occur only in the parallel orientation. In contrast, two potentially repulsive interactions are expected in the antiparallel orientation. Because the buried polar interaction can occur only in the antiparallel orientation, interhelical Coulombic interactions favor the parallel orientation and the potential to form a buried polar interaction favors the antiparallel orientation. We find no clear preference for an antiparallel orientation in the resulting heterodimer, Acid-Ke-Base-Eg, suggesting that interhelical Coulombic interactions and a buried polar interaction are of approximately equal importance for helix orientation specificity. Stability measurements indicate that maintenance of all favorable electrostatic interactions and/or avoidance of two potentially repulsive interactions contributes approximately 2.1 kcal/mol to helix orientation preference.  相似文献   

5.
Im W  Feig M  Brooks CL 《Biophysical journal》2003,85(5):2900-2918
Exploiting recent developments in generalized Born (GB) electrostatics theory, we have reformulated the calculation of the self-electrostatic solvation energy to account for the influence of biological membranes. Consistent with continuum Poisson-Boltzmann (PB) electrostatics, the membrane is approximated as an solvent-inaccessible infinite planar low-dielectric slab. The present membrane GB model closely reproduces the PB electrostatic solvation energy profile across the membrane. The nonpolar contribution to the solvation energy is taken to be proportional to the solvent-exposed surface area (SA) with a phenomenological surface tension coefficient. The proposed membrane GB/SA model requires minor modifications of the pre-existing GB model and appears to be quite efficient. By combining this implicit model for the solvent/bilayer environment with advanced computational sampling methods, like replica-exchange molecular dynamics, we are able to fold and assemble helical membrane peptides. We examine the reliability of this model and approach by applications to three membrane peptides: melittin from bee venom, the transmembrane domain of the M2 protein from Influenza A (M2-TMP), and the transmembrane domain of glycophorin A (GpA). In the context of these proteins, we explore the role of biological membranes (represented as a low-dielectric medium) in affecting the conformational changes in melittin, the tilt of transmembrane peptides with respect to the membrane normal (M2-TMP), helix-to-helix interactions in membranes (GpA), and the prediction of the configuration of transmembrane helical bundles (GpA). The present method is found to perform well in each of these cases and is anticipated to be useful in the study of folding and assembly of membrane proteins as well as in structure refinement and modeling of membrane proteins where a limited number of experimental observables are available.  相似文献   

6.
The energies of two and three-chain antiparallel and parallel β-sheets have been minimized. The chains were considered to be equivalent. In each case, chains consisting of four and of eight l-alanine residues, respectively, with CH3CO- and -NHCH3 end groups were examined. Computations were carried out both for chains constrained to have a regular structure (i.e. the same φ and ψ dihedral angles for each residue) and for chains in which the regularity constraint was relaxed. All computed minimum-energy β-sheets were found to have a right-handed twist, as observed in proteins. As in the case of right-handed α-helices, it is the intrastrand non-bonded interaction energy that plays the key role in forcing β-sheets of l-amino acid residues to adopt a right-handed twist. The non-bonded energy contribution favoring the right-handed twist is the result of many small pairwise interatomic interactions involving the CβH3 groups. Polyglycine β-sheets, lacking the CβH3 side-chains, are not twisted. The twist of the poly-l-alanine sheet diminishes as the number of residues per chain increases, in agreement with observations. The twist of the four-residue chain increases somewhat (because of interstrand non-bonded interactions, also involving the CβH3 groups) in going from a single chain to a two-chain antiparallel structure, but then decreases slightly in going from a two-chain to a three-chain structure. β-Sheets in observed protein structures sometimes have a larger twist than those in the structures computed here. This may be due to irregularities in amino acid sequence and in hydrogenbonding patterns in the observed sheets, or to long-range interactions in proteins. The minimized energies of parallel β-sheets are considerably higher than those of the corresponding antiparallel β-sheets, indicating that parallel β-sheets are intrinsically less stable. This finding about the two kinds of β-sheets agrees with suggestions based on analyses of β-sheets observed in proteins. The energy difference between antiparallel and parallel β-sheets is due to closer packing of the chains and a more favorable alignment of the peptide dipoles in the antiparallel structures. The hydrogen-bond geometry in the computed antiparallel structures is very close to that proposed by Arnott et al. (1967) for the β-form of poly-l-alanine.  相似文献   

7.
We develop a protocol for estimating the free energy difference between different conformations of the same polypeptide chain. The conformational free energy evaluation combines the CHARMM force field with a continuum treatment of the solvent. In almost all cases studied, experimentally determined structures are predicted to be more stable than misfolded "decoys." This is due in part to the fact that the Coulomb energy of the native protein is consistently lower than that of the decoys. The solvation free energy generally favors the decoys, although the total electrostatic free energy (sum of Coulomb and solvation terms) favors the native structure. The behavior of the solvation free energy is somewhat counterintuitive and, surprisingly, is not correlated with differences in the burial of polar area between native structures and decoys. Rather. the effect is due to a more favorable charge distribution in the native protein, which, as is discussed, will tend to decrease its interaction with the solvent. Our results thus suggest, in keeping with a number of recent studies, that electrostatic interactions may play an important role in determining the native topology of a folded protein. On this basis, a simplified scoring function is derived that combines a Coulomb term with a hydrophobic contact term. This function performs as well as the more complete free energy evaluation in distinguishing the native structure from misfolded decoys. Its computational efficiency suggests that it can be used in protein structure prediction applications, and that it provides a physically well-defined alternative to statistically derived scoring functions.  相似文献   

8.
Johnson RM  Rath A  Melnyk RA  Deber CM 《Biochemistry》2006,45(28):8507-8515
Interactions between transmembrane helices are mediated by the concave Gly-xxx-Gly motif surface. Whether Gly residues per se are sufficient for selection of this motif has not been established. Here, we used the in vivo TOXCAT assay to measure the relative affinities of all 18 combinations of Gly, Ala, and Ser "small-xxx-small" mutations in glycophorin A (GpA) and bacteriophage M13 major coat protein (MCP) homodimers. Affinity values were compared with the accessibility to a methylene-sized probe of the total surface area of each helix monomer as a measure of solvation by membrane components. A strong inverse correlation was found between nonpolar-group lipid accessibility and dimer affinity (R = 0.75 for GpA, p = 0.013, and R = 0.81 for MCP, p = 0.004), suggesting that lipid as a poor membrane protein solvent, conceptually analogous to water in soluble protein folding, can contribute to dimer stability and help to define helix-helix interfaces.  相似文献   

9.
Does aqueous solvent discriminate among peptide conformers? To address this question, we computed the solvation free energy of a blocked, 12‐residue polyalanyl‐peptide in explicit water and analyzed its solvent structure. The peptide was modeled in each of 4 conformers: α‐helix, antiparallel β‐strand, parallel β‐strand, and polyproline II helix (PII). Monte Carlo simulations in the canonical ensemble were performed at 300 K using the CHARMM 22 forcefield with TIP3P water. The simulations indicate that the solvation free energy of PII is favored over that of other conformers for reasons that defy conventional explanation. Specifically, in these 4 conformers, an almost perfect correlation is found between a residue's solvent‐accessible surface area and the volume of its first solvent shell, but neither quantity is correlated with the observed differences in solvation free energy. Instead, solvation free energy tracks with the interaction energy between the peptide and its first‐shell water. An additional, previously unrecognized contribution involves the conformation‐dependent perturbation of first‐shell solvent organization. Unlike PII, β‐strands induce formation of entropically disfavored peptide:water bridges that order vicinal water in a manner reminiscent of the hydrophobic effect. The use of explicit water allows us to capture and characterize these dynamic water bridges that form and dissolve during our simulations. Proteins 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

10.
A detailed understanding of the mechanisms by which particular amino acid sequences can give rise to more than one folded structure, such as for proteins that undergo large conformational changes or misfolding, is a long-standing objective of protein chemistry. Here, we describe the crystal structures of a single coiled-coil peptide in distinct parallel and antiparallel tetrameric configurations and further describe the parallel or antiparallel crystal structures of several related peptide sequences; the antiparallel tetrameric assemblies represent the first crystal structures of GCN4-derived peptides exhibiting such a configuration. Intriguingly, substitution of a single solvent-exposed residue enabled the parallel coiled-coil tetramer GCN4-pLI to populate the antiparallel configuration, suggesting that the two configurations are close enough in energy for subtle sequence changes to have important structural consequences. We present a structural analysis of the small changes to the helix register and side-chain conformations that accommodate the two configurations and have supplemented these results using solution studies and a molecular dynamics energetic analysis using a replica exchange methodology. Considering the previous examples of structural nonspecificity in coiled-coil peptides, the findings reported here not only emphasize the predisposition of the coiled-coil motif to adopt multiple configurations but also call attention to the associated risk that observed crytstal structures may not represent the only (or even the major) species present in solution.  相似文献   

11.
Helix-helix interactions are important for the folding, stability, and function of membrane proteins. Here, two independent and complementary methods are used to investigate the nature and distribution of amino acids that mediate helix-helix interactions in membrane and soluble alpha-bundle proteins. The first method characterizes the packing density of individual amino acids in helical proteins based on the van der Waals surface area occluded by surrounding atoms. We have recently used this method to show that transmembrane helices pack more tightly, on average, than helices in soluble proteins. These studies are extended here to characterize the packing of interfacial and noninterfacial amino acids and the packing of amino acids in the interfaces of helices that have either right- or left-handed crossing angles, and either parallel or antiparallel orientations. We show that the most abundant tightly packed interfacial residues in membrane proteins are Gly, Ala, and Ser, and that helices with left-handed crossing angles are more tightly packed on average than helices with right-handed crossing angles. The second method used to characterize helix-helix interactions involves the use of helix contact plots. We find that helices in membrane proteins exhibit a broader distribution of interhelical contacts than helices in soluble proteins. Both helical membrane and soluble proteins make use of a general motif for helix interactions that relies mainly on four residues (Leu, Ala, Ile, Val) to mediate helix interactions in a fashion characteristic of left-handed helical coiled coils. However, a second motif for mediating helix interactions is revealed by the high occurrence and high average packing values of small and polar residues (Ala, Gly, Ser, Thr) in the helix interfaces of membrane proteins. Finally, we show that there is a strong linear correlation between the occurrence of residues in helix-helix interfaces and their packing values, and discuss these results with respect to membrane protein structure prediction and membrane protein stability.  相似文献   

12.
M Totrov  R Abagyan 《Biopolymers》2001,60(2):124-133
Solvation effects play a profound role in the energetics of protein folding. While a continuum dielectric model of solvation may provide a sufficiently accurate estimate of the solvation effects, until now this model was too computationally expensive and unstable for folding simulations. Here we proposed a fast yet accurate and robust implementation of the boundary element solution of the Poisson equation, the REBEL algorithm. Using our earlier double-energy scheme, we included for the first time the mathematically rigorous continuous REBEL solvation term in our Biased Probability Monte Carlo (BPMC) simulations of the peptide folding. The free energy of a 23-residue beta beta alpha-peptide was then globally optimized with and without the solvation electrostatics contribution. An ensemble of beta beta alpha conformations was found at and near the global minimum of the energy function with the REBEL electrostatic solvation term. Much poorer correspondence to the native solution structure was found in the "control" simulations with a traditional method to account for solvation via a distance-dependent dielectric constant. Each simulation took less than 40 h (21 h without electrostatic solvation calculation) on a single Alpha 677 MHz CPU and involved more than 40,000 solvation energy evaluations. This work demonstrates for the first time that such a simulation can be performed in a realistic time frame. The proposed procedure may eliminate the energy evaluation accuracy bottleneck in folding simulations.  相似文献   

13.
The GxxxG sequence motif mediates the association of transmembrane (TM) helices by providing a site of close contact between them. However, it is not sufficient for strong association. For example, both bacteriophage M13 major coat protein (MCP) and human erythrocyte protein glycophorin A (GpA) contain a GxxxG motif in their TM domains and form a homodimer, but the association affinity of MCP, measured by the ToxCAT in vivo assay, is dramatically weaker than that of GpA. Even when all interfacial residues of MCP were substituted for those of GpA (MCP-GpA), association remained significantly weaker than in GpA. Here we provide an explanation for these experimental observations using molecular dynamics simulations in an implicit membrane (IMM1-GC). The association free energies of GpA29 (GpA with 29 residues all from the wild-type sequence), GpA15p11 (GpA with 15 residues from the wild-type sequence plus 11 flanking residues from the ToxCAT construct), MCP, and MCP-GpA TM helices were calculated and compared. MCP and MCP-GpA have the same flanking residues used in the ToxCAT assay as those in GpA15p11, but the position of the flanking residues relative to the GxxxG motif is different. The calculated association free energies follow experimental observations: the association affinity of MCP-GpA falls between those of GpA15p11 and MCP wild-type. MCP exhibits an equally strong interhelical interaction in the TM domain. A major reason for the weaker association of MCP in the calculations was the noninterfacial residue Lys-40, which in the dimer structure is forced to be buried in the membrane interior. To alleviate the desolvation cost, in MCP and MCP-GpA dimers, Lys-40 gets deprotonated. A second factor that modulates association affinity is the flanking residues. Thanks to them, GpA15p11 exhibits a much stronger association affinity than GpA29. The positioning of the flanking residues is also important, as evidenced by the difference in association affinity between MCP and MCP-GpA on one hand and GpA15p11 on the other. Thus, residues outside the contact interface can exert a significant influence on transmembrane helix association affinity.  相似文献   

14.
A theoretical and computational approach to ab initio structure prediction for polypeptides in water is described and applied to selected amino acid sequences for testing and preliminary validation. The method builds systematically on the extensive efforts applied to parameterization of molecular dynamics (MD) force fields, employs an empirically well-validated continuum dielectric model for solvation, and an eminently parallelizable approach to conformational search. The effective free energy of polypeptide chains is estimated from AMBER united atom potential functions, with internal degrees of freedom for both backbone and amino acid side chains explicitly treated. The hydration free energy of each structure is determined using the Generalized Born/Solvent Accessibility (GBSA) method, modified and reparameterized to include atom types consistent with the AMBER force field. The conformational search procedure employs a multiple copy, Monte Carlo simulated annealing (MCSA) protocol in full torsion angle space, applied iteratively on sets of structures of progressively lower free energy until a prediction of a structure with lowest effective free energy is obtained. Calibration tests for the effective energy function and search algorithm are performed on the alanine dipeptide, selected protein crystal structures, and united atom decoys on barnase, crambin, and six examples from the Rosetta set. Specific demonstration cases of the method are provided for the 8-mer sequence of Ala residues, a 12-residue peptide with longer side chains QLLKKLLQQLKQ, a de novo designed 16 residue peptide of sequence (AAQAA)3Y, a 15-residue sequence with a beta sheet motif, GEWTWDATKTFTVTE, and a 36 residue small protein, Villin headpiece. The Ala 8-mer readily formed an alpha-helix. An alpha-helix structure was predicted for the 16-mer, consistent with observed results from IR and CD spectroscopy and with the pattern in psi/straight phi angles of known protein structures. The predicted structure for the 12-mer, composed of a mix of helix and less regular elements of secondary structure, lies 2.65 A RMS from the observed crystal structure. Structure prediction for the 8-mer beta-motif resulted in form 4.50 A RMS from the crystal geometry. For Villin, the predicted native form is very close to the crystal structure, RMS values of 3.5 A (including sidechains), and 1.01 A (main chain only). The methodology permits a detailed analysis of the molecular forces which dominate various segments of the predicted folding trajectory. Analysis of the results in terms of internal torsional, electrostatic and van der Waals and the electrostatic and non-electrostatic contributions to hydration, including the hydrophobic effect, is presented.  相似文献   

15.
J F Collawn  Y Paterson 《Biopolymers》1990,29(8-9):1289-1296
The conformations of two 17-residue peptide analogues derived from the C-terminal sequence of pigeon cytochrome c (native sequence = KAERADLIAYLKQATAK) were examined in aqueous and lipid environments by CD spectroscopy. The two analogues, KKLLKKLIAYLKQATAK (K peptide) and EELLEELIAYLKQATAK (E peptide), were made amphipathic with respect to helical segregation by substituting a 6-residue sequence at the N-terminus of the native peptide. Their structures were compared to the native peptide under aqueous conditions of varying pH and temperature, and in the presence of liposomes composed of phosphatidylcholine and phosphatidylserine in the ratio of 9:1. The results indicated that the native peptide remains unstructured under all the conditions examined even though this region of the native molecule is surface exposed and helical. The E peptide, however, was helical under aqueous conditions at 25 degrees C from pH 2-10 with a maximum helicity at pH 4 (54% helix from analysis of CD data). The ellipticity of the E peptide at pH 4 and 8 was concentration dependent, indicating an aggregation phenomenon. In studies in which the CD spectrum was measured at different temperatures, the E peptide became more helical at lower temperatures at pH 4 but not at pH 8. Upon interaction with a lipid membrane in the form of liposomes, there appeared to be a slight destabilization in the structure of the E peptide. The K peptide in an aqueous environment behaved like the native peptide in that it was structureless at all pHs and temperatures examined. In the presence of liposomes, however, this peptide had a high helical content (75% helix from analysis of CD data). These findings suggest that while stabilization of the helix dipole with negative charges at the N-terminus are important in inducing helical conformation in the E peptide, hydrophobic interactions created during aggregation appear to provide the principal stabilizing force. The results with the K peptide demonstrate that the positive N-terminal sequence of this peptide is able to interact with the negatively charged head groups in the phospholipid membrane in such a fashion as to stabilize a helical structure that is not apparent in an aqueous environment alone.  相似文献   

16.
Horng JC  Moroz V  Rigotti DJ  Fairman R  Raleigh DP 《Biochemistry》2002,41(45):13360-13369
A set of peptides derived from the N-terminal domain of the ribosomal protein L9 (NTL9) have been characterized in an effort to define the minimum unit of this domain required to fold and to provide model peptides for the analysis of electrostatic interactions in the unfolded state. NTL9 is a 56-residue alpha-beta protein with a beta1-loop-beta2-alpha1-beta3-alpha2 topology. The beta-sheet together with the first helix comprise a simple example of a common supersecondary motif called the split beta-alpha-beta fold. Peptides corresponding to the beta1-loop-beta2 unit are unstructured even when constrained by an introduced disulfide. The pK(a)s of Asp-8 and Glu-17 in these peptides are slightly lower than the values found for shorter peptides but are considerably higher than the values in NTL9. A 34-residue peptide, which represents the beta1-loop-beta2-alpha1 portion of NTL9, is also unstructured. In contrast, a 39-residue peptide corresponding to the entire split beta-alpha-beta motif is folded and monomeric as judged by near- and far-UV CD, two-dimensional NMR, ANS binding experiments, pK(a) measurements, and analytical ultracentrifugation. The fold is very similar to the structure of this region in the intact protein. Thermal and urea unfolding experiments show that it is cooperatively folded with a DeltaG degrees of unfolding of 1.8-2.0 kcal/mol and a T(m) of 58 degrees C. This peptide represents the first demonstration of the independent folding of an isolated split beta-alpha-beta motif, and is one of only four naturally occurring sequences of fewer than 40 residues that has been shown to fold cooperatively in the absence of disulfides or ligand binding.  相似文献   

17.
Assuming that the protein primary sequence contains all information required to fold a protein into its native tertiary structure, we propose a new computational approach to protein folding by distributing the total energy of the macromolecular system along the torsional axes.We further derive a new semiempirical equation to calculate the total energy of a macromolecular system including its free energy of solvation. The energy of solvation makes an important contribution to the stability of biological structures. The segregation of hydrophilic and hydrophobic domains is essential for the formation of micelles, lipid bilayers, and biological membranes, and it is also important for protein folding. The free energy of solvation consists of two components: one derived from interactions between the atoms of the protein, and the second resulting from interactions between the protein and the solvent. The latter component is expressed as a function of the fractional area of protein atoms accessible to the solvent.The protein-folding procedure described in this article consists of two successive steps: a theoretical transition from an ideal α helix to an ideal β sheet is first imposed on the protein conformation, in order to calculate an initial secondary structure. The most stable secondary structure is built from a combination of the lowest energy structures calculated for each amino acid during this transition. An angular molecular dynamics step is then applied to this secondary structure. In this computational step, the total energy of the system consisting of the sum of the torsional energy, the van der Waals energy, the electrostatic energy, and the solvation energy is minimized. This process yields 3-D structures of minimal total energy that are considered to be the most probable native-like structures for the protein.This method therefore requires no prior hypothesis about either the secondary or the tertiary structure of the protein and restricts the input of data to its sequence. The validity of the results is tested by comparing the crystalline and computed structures of four proteins, i.e., the avian and bovine pancreatic polypeptide (36 residues each), uteroglobin (70 residues), and the calcium-binding protein (75 residues); the Cα-Cα maps show significant homologies and the position of secondary structure domains; that of the α helices is particularly close.  相似文献   

18.
The crystal and molecular structure of the nonapeptide antibiotic leucinostatin A, containing some uncommon amino acids and three Aib residues, has been determined by x-ray diffraction analysis. The molecule crystallizes in the orthorhombic space group P2(1)2(1)2(1), a = 10.924, b = 17.810, c = 40.50 A, C62H111N11O13, HCl.H2O, Z = 4. The peptide backbone folds in a regular right-handed alpha-helix conformation, with six intramolecular i----(i + 4) hydrogen bonds, forming C13 rings. The nonapeptide chain includes at the C end an unusual beta-Ala residue, which also adopts the helical structure of the other eight residues. In the crystal the helices are linked head to tail by electrostatic and hydrogen-bond interactions, forming continuous helical rods. The crystal packing is formed by adjacent parallel and antiparallel helical rods. Between adjacent parallel helical columns there are only van der Waals contacts, while between adjacent antiparallel helical columns hydrogen-bond interactions are formed.  相似文献   

19.
Ren J  Lew S  Wang J  London E 《Biochemistry》1999,38(18):5905-5912
We examined the effect of the length of the hydrophobic core of Lys-flanked poly(Leu) peptides on their behavior when inserted into model membranes. Peptide structure and membrane location were assessed by the fluorescence emission lambdamax of a Trp residue in the center of the peptide sequence, the quenching of Trp fluorescence by nitroxide-labeled lipids (parallax analysis), and circular dichroism. Peptides in which the hydrophobic core varied in length from 11 to 23 residues were found to be largely alpha-helical when inserted into the bilayer. In dioleoylphosphatidylcholine (diC18:1PC) bilayers, a peptide with a 19-residue hydrophobic core exhibited highly blue-shifted fluorescence, an indication of Trp location in a nonpolar environment, and quenching localized the Trp to the bilayer center, an indication of transmembrane structure. A peptide with an 11-residue hydrophobic core exhibited emission that was red-shifted, suggesting a more polar Trp environment, and quenching showed the Trp was significantly displaced from the bilayer center, indicating that this peptide formed a nontransmembranous structure. A peptide with a 23-residue hydrophobic core gave somewhat red-shifted fluorescence, but quenching demonstrated the Trp was still close to the bilayer center, consistent with a transmembrane structure. Analogous behavior was observed when the behavior of individual peptides was examined in model membranes with various bilayer widths. Other experiments demonstrated that in diC18:1PC bilayers the dilution of the membrane concentration of the peptide with a 23-residue hydrophobic core resulted in a blue shift of fluorescence, suggesting the red-shifted fluorescence at higher peptide concentrations was due to helix oligomerization. The intermolecular self-quenching of rhodamine observed when the peptide was rhodamine-labeled, and the concentration dependence of self-quenching, supported this conclusion. These studies indicate that the mismatch between helix length and bilayer width can control membrane location, orientation, and helix-helix interactions, and thus may mismatch control both membrane protein folding and the interactions between membrane proteins.  相似文献   

20.
Orientation, dynamics, and packing of transmembrane helical peptides are important determinants of membrane protein structure, dynamics, and function. Because it is difficult to investigate these aspects by studying real membrane proteins, model transmembrane helical peptides are widely used. NMR experiments provide information on both orientation and dynamics of peptides, but they require that motional models be interpreted. Different motional models yield different interpretations of quadrupolar splittings (QS) in terms of helix orientation and dynamics. Here, we use coarse-grained (CG) molecular dynamics (MD) simulations to investigate the behavior of a well-known model transmembrane peptide, WALP23, under different hydrophobic matching/mismatching conditions. We compare experimental 2H-NMR QS (directly measured in experiments), as well as helix tilt angle and azimuthal rotation (not directly measured), with CG MD simulation results. For QS, the agreement is significantly better than previously obtained with atomistic simulations, indicating that equilibrium sampling is more important than atomistic details for reproducing experimental QS. Calculations of helix orientation confirm that the interpretation of QS depends on the motional model used. Our simulations suggest that WALP23 can form dimers, which are more stable in an antiparallel arrangement. The origin of the preference for the antiparallel orientation lies not only in electrostatic interactions but also in better surface complementarity. In most cases, a mixture of monomers and antiparallel dimers provides better agreement with NMR data compared to the monomer and the parallel dimer. CG MD simulations allow predictions of helix orientation and dynamics and interpretation of QS data without requiring any assumption about the motional model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号