首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

The patient population receiving long-term oxygen therapy has increased with the rising morbidity of COPD. Although high-dose oxygen induces pulmonary edema and interstitial fibrosis, potential lung injury caused by long-term exposure to low-dose oxygen has not been fully analyzed. This study was designed to clarify the effects of long-term low-dose oxygen inhalation on pulmonary epithelial function, edema formation, collagen metabolism, and alveolar fibrosis.

Methods

Guinea pigs (n = 159) were exposed to either 21% or 40% oxygen for a maximum of 16 weeks, and to 90% oxygen for a maximum of 120 hours. Clearance of inhaled technetium-labeled diethylene triamine pentaacetate (Tc-DTPA) and bronchoalveolar lavage fluid-to-serum ratio (BAL/Serum) of albumin (ALB) were used as markers of epithelial permeability. Lung wet-to-dry weight ratio (W/D) was measured to evaluate pulmonary edema, and types I and III collagenolytic activities and hydroxyproline content in the lung were analyzed as indices of collagen metabolism. Pulmonary fibrotic state was evaluated by histological quantification of fibrous tissue area stained with aniline blue.

Results

The clearance of Tc-DTPA was higher with 2 week exposure to 40% oxygen, while BAL/Serum Alb and W/D did not differ between the 40% and 21% groups. In the 40% oxygen group, type I collagenolytic activities at 2 and 4 weeks and type III collagenolytic activity at 2 weeks were increased. Hydroxyproline and fibrous tissue area were also increased at 2 weeks. No discernible injury was histologically observed in the 40% group, while progressive alveolar damage was observed in the 90% group.

Conclusion

These results indicate that epithelial function is damaged, collagen metabolism is affected, and both breakdown of collagen fibrils and fibrogenesis are transiently induced even with low-dose 40% oxygen exposure. However, these changes are successfully compensated even with continuous exposure to low-dose oxygen. We conclude that long-term low-dose oxygen exposure does not significantly induce permanent lung injury in guinea pigs.  相似文献   

2.
3.
4.

Background

Endothelial dysfunction is a major complication of pulmonary endarterectomy (PTE) that can lead to pulmonary edema and persistent pulmonary hypertension. We hypothesized that endothelial dysfunction is related to increased endothelial-cell (EC) death.

Methods

In piglets, the left pulmonary artery (PA) was ligated to induce lung ischemia then reimplanted into the main PA to reperfuse the lung. Animals sacrificed 5 weeks after ligation (n = 5), 2 days after reperfusion (n = 5), or 5 weeks after reperfusion (n = 5) were compared to a sham-operated group (n = 5). PA vasoreactivity was studied and eNOS assayed. EC apoptosis was assessed by TUNEL in the proximal and distal PA and by caspase-3 activity assay in the proximal PA. Gene expression of pro-apoptotic factors (thrombospondin-1 (Thsp-1) and plasminogen activator inhibitor 1 (PAI-1)) and anti-apoptotic factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was investigated by QRT-PCR.

Results

Endothelium-dependent relaxation was altered 5 weeks after ligation (p = 0.04). The alterations were exacerbated 2 days after reperfusion (p = 0.002) but recovered within 5 weeks after reperfusion. EC apoptosis was increased 5 weeks after PA ligation (p = 0.02), increased further within 2 days after reperfusion (p < 0.0001), and returned to normal within 5 weeks after reperfusion. Whereas VEGF and bFGF expressions remained unchanged, TSP and PAI-1 expressions peaked 5 weeks after ligation (p = 0.001) and returned to normal within 2 days after reperfusion.

Conclusion

Chronic lung ischemia induces over-expression of pro-apoptotic factors. Lung reperfusion is followed by a dramatic transient increase in EC death that may explain the development of endothelial dysfunction after PE. Anti-apoptotic agents may hold considerable potential for preventing postoperative complications.  相似文献   

5.

Introduction

The present study objective was to evaluate the incidence of methotrexate (MTX)-specific liver lesions from the analysis of a liver biopsy of inflammatory arthritis patients with elevated liver enzymes.

Methods

A case-control study was performed with 1,571 arthritis patients on long-term low-dose MTX therapy. Results of liver biopsy were analyzed in 41 patients with elevated liver enzymes. The expression of autoimmune markers was also assessed. This population was compared with 41 disease control subjects obtained from the same database, also on MTX but without elevated liver enzymes, matched for age, sex and rheumatic disease.

Results

Compared with the disease controls, patients with liver biopsy showed lower disease duration and lower MTX exposure, weekly and cumulative doses, reflecting shorter treatment duration due to liver abnormalities. Liver biopsies showed 17 autoimmune hepatitis-like (AIH-like) lesions, 13 nonalcoholic steatohepatitis-like lesions, seven limited liver lesions, and two primary biliary cirrhoses. However, MTX-specific lesions with dystrophic nuclei in hepatocytes were seen in only two cases. Liver biopsy lesions were associated with autoimmune markers (P = 0.007); notably, AIH-like lesions were associated with rheumatoid arthritis and with the presence of the HLA-DR shared epitope.

Conclusions

MTX-specific liver lesions are rarely observed in arthritis patients under long-term MTX therapy and elevated liver enzymes.  相似文献   

6.

Background

Cigarette smoke (CS) is known to initiate a cascade of mediator release and accumulation of immune and inflammatory cells in the lower airways. We investigated and compared the effects of CS on upper and lower airways, in a mouse model of subacute and chronic CS exposure.

Methods

C57BL/6 mice were whole-body exposed to mainstream CS or air, for 2, 4 and 24 weeks. Bronchoalveolar lavage fluid (BAL) was obtained and tissue cryosections from nasal turbinates were stained for neutrophils and T cells. Furthermore, we evaluated GCP-2, KC, MCP-1, MIP-3α, RORc, IL-17, FoxP3, and TGF-β1 in nasal turbinates and lungs by RT-PCR.

Results

In both upper and lower airways, subacute CS-exposure induced the expression of GCP-2, MCP-1, MIP-3α and resulted in a neutrophilic influx. However, after chronic CS-exposure, there was a significant downregulation of inflammation in the upper airways, while on the contrary, lower airway inflammation remained present. Whereas nasal FoxP3 mRNA levels already increased after 2 weeks, lung FoxP3 mRNA increased only after 4 weeks, suggesting that mechanisms to suppress inflammation occur earlier and are more efficient in nose than in lungs.

Conclusions

Altogether, these data demonstrate that CS induced inflammation may be differently regulated in the upper versus lower airways in mice. Furthermore, these data may help to identify new therapeutic targets in this disease model.  相似文献   

7.

Background

New animal models of chronic pulmonary hypertension in mice are needed. The injection of monocrotaline is an established model of pulmonary hypertension in rats. The aim of this study was to establish a murine model of pulmonary hypertension by injection of the active metabolite, monocrotaline pyrrole.

Methods

Survival studies, computed tomographic scanning, histology, bronchoalveolar lavage were performed, and arterial blood gases and hemodynamics were measured in animals which received an intravenous injection of different doses of monocrotaline pyrrole.

Results

Monocrotaline pyrrole induced pulmonary hypertension in Sprague Dawley rats. When injected into mice, monocrotaline pyrrole induced dose-dependant mortality in C57Bl6/N and BALB/c mice (dose range 6–15 mg/kg bodyweight). At a dose of 10 mg/kg bodyweight, mice developed a typical early-phase acute lung injury, characterized by lung edema, neutrophil influx, hypoxemia and reduced lung compliance. In the late phase, monocrotaline pyrrole injection resulted in limited lung fibrosis and no obvious pulmonary hypertension.

Conclusion

Monocrotaline and monocrotaline pyrrole pneumotoxicity substantially differs between the animal species.  相似文献   

8.

Background

Allergic sensitization and reactions to guinea pig (Cavia porcellus) have been well documented in laboratory animal handlers, primarily manifesting as rhinitis, conjunctivitis, and asthma. Severe allergic reactions, however, are rare.

Methods

We report two patients with severe allergic reactions following non-occupational exposure to guinea pigs. The first patient, an 11-year-old female, developed ocular, nasal, skin and laryngeal edema symptoms immediately after handling a guinea pig. The second patient, a 24-year-old female, developed symptoms of isolated laryngeal edema after cleaning a guinea pig cage. Percutaneous skin testing, RAST, ELISA and ELISA inhibition testing with guinea pig extract were performed.

Results

Both patients had IgE-mediated allergy to guinea pig confirmed by ELISA and either RAST or skin testing. ELISA inhibition studies confirmed the specificity of the IgE reactivity to guinea pig.

Conclusion

Severe IgE-mediated reactions can occur following non-occupational guinea pig exposure. Physicians should be aware of this possibility.  相似文献   

9.

Introduction

We have previously demonstrated that ex vivo inhibition of costimulatory molecules on antigen-pulsed dendritic cells (DCs) can be useful for induction of antigen-specific immune deviation and suppression of autoimmune arthritis in the collagen induced arthritis (CIA) model. The current study evaluated a practical method of immune modulation through temporary systemic inhibition of the costimulatory molecule CD40.

Methods

Mice with collagen II (CII)-induced arthritis (CIA) were administered siRNA targeting the CD40 molecule. Therapeutic effects were evaluated by clinical symptoms, histopathology, Ag-specific T cell and B cell immune responses.

Results

Systemic administration of CD40-targeting siRNA can inhibit antigen-specific T cell response to collagen II, as well as prevent pathogenesis of disease in both a pre- and post-immunization manner in the CIA model. Disease amelioration was associated with suppression of Th1 cytokines, attenuation of antibody production, and upregulation of T regulatory cells.

Conclusions

These studies support the feasibility of transient gene silencing at a systemic level as a mechanism of resetting autoreactive immunity.  相似文献   

10.

Background

It has been reported that Chlamydophila (C.) pneumoniae is involved in the initiation and promotion of asthma and chronic obstructive pulmonary diseases (COPD). Surprisingly, the effect of C. pneumoniae on airway function has never been investigated.

Methods

In this study, mice were inoculated intranasally with C. pneumoniae (strain AR39) on day 0 and experiments were performed on day 2, 7, 14 and 21.

Results

We found that from day 7, C. pneumoniae infection causes both a sustained airway hyperresponsiveness and an inflammation. Interferon-γ (IFN-γ) and macrophage inflammatory chemokine-2 (MIP-2) levels in bronchoalveolar lavage (BAL)-fluid were increased on all experimental days with exception of day 7 where MIP-2 concentrations dropped to control levels. In contrast, tumor necrosis factor-α (TNF-α) levels were only increased on day 7. From day 7 to 21 epithelial damage and secretory cell hypertrophy was observed. It is suggested that, the inflammatory cells/mediators, the epithelial damage and secretory cell hypertrophy contribute to initiation of airway hyperresponsiveness.

Conclusion

Our study demonstrates for the first time that C. pneumoniae infection can modify bronchial responsiveness. This has clinical implications, since additional changes in airway responsiveness and inflammation-status induced by this bacterium may worsen and/or provoke breathlessness in asthma and COPD.  相似文献   

11.
12.

Background

Idiopathic pulmonary fibrosis (IPF) is a chronically progressive interstitial lung disease of unknown etiology. Previously, we have demonstrated the selective upregulation of the macrophage-derived chemokine CCL22 and the thymus activation-regulated chemokine CCL17 among chemokines, in a rat model of radiation pneumonitis/pulmonary fibrosis and preliminarily observed an increase in bronchoalveolar (BAL) fluid CCL22 levels of IPF patients.

Methods

We examined the expression of CCR4, a specific receptor for CCL22 and CCL17, in bronchoalveolar lavage (BAL) fluid cells, as well as the levels of CCL22 and CCL17, to elucidate their pathophysiological roles in pulmonary fibrosis. We also studied their immunohistochemical localization.

Results

BAL fluid CCL22 and CCL17 levels were significantly higher in patients with IPF than those with collagen vascular diseases and healthy volunteers, and there was a significant correlation between the levels of CCL22 and CCL17 in patients with IPF. CCL22 levels in the BAL fluid did not correlate with the total cell numbers, alveolar lymphocytes, or macrophages in BAL fluid. However, the CCL22 levels significantly correlated with the numbers of CCR4-expressing alveolar macrophages. By immunohistochemical and immunofluorescence analysis, localization of CCL22 and CCR4 to CD68-positive alveolar macrophages as well as that of CCL17 to hyperplastic epithelial cells were shown. Clinically, CCL22 BAL fluid levels inversely correlated with DLco/VA values in IPF patients.

Conclusion

We speculated that locally overexpressed CCL22 may induce lung dysfunction through recruitment and activation of CCR4-positive alveolar macrophages.  相似文献   

13.

Background

We have developed a rat cell model for studying collagen type I production in coronary artery adventitial fibroblasts. Increased deposition of adventitial collagen type I leads to stiffening of the blood vessel, increased blood pressure, arteriosclerosis and coronary heart disease. Although the source and mechanism of collagen deposition is yet unknown, the adventitia appears to play a significant role. To demonstrate the application of our cell model, cultured adventitial fibroblasts were treated with sex hormones and the effect on collagen production measured.

Methods

Hearts (10–12 weeks) were harvested and the left anterior descending coronary artery (LAD) was isolated and removed. Tissue explants were cultured and cells (passages 2–4) were confirmed as fibroblasts using immunohistochemistry. Optimal conditions were determined for cell tissue harvest, timing, proliferation and culture conditions. Fibroblasts were exposed to 10-7 M testosterone or 10-7 M estrogen for 24 hours and either immunostained for collagen type I or subjected to ELISA.

Results

Results showed increased collagen staining in fibroblasts treated with testosterone compared to control and decreased staining with estrogen. ELISA results showed that testosterone increased collagen I by 20% whereas estrogen decreased collagen I by 15%.

Conclusion

Data demonstrates the usefulness of our cell model in studying the specific role of the adventitia apart from other blood vessel tissue in rat coronary arteries. Results suggest opposite effects of testosterone and estrogen on collagen synthesis in the rat coronary artery adventitial fibroblasts.  相似文献   

14.

Background

The breakdown of alveolar barrier dysfunction contributes to Lipopolysaccharide stimulated pulmonary edema and acute lung injury. Actin cytoskeleton has been implicated to be critical in regulation of epithelial barrier. Here, we performed in vivo and in vitro study to investigate role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced ALI.

Methods

For in vivo studies, 6–8-week-old C57 mice were used, Bronchoalveolar lavage Fluid /Blood fluorescent ratio, wet-to-dry lung weight ratio, as well as protein concentrations and neutrophil cell counts in BALF were detected as either directly or indirectly indicators of pulmonary alveolar barrier dysfunction. And hematoxylin and eosin staining was performed to estimate pulmonary injury. The in vitro explorations of transepithelial permeability were achieved through transepithelial electrical resistance measurement and testing of FITC-Dextran transepithelial flux in A549. In addition, cytoskeletal rearrangement was tested through F-actin immunostaining. And SB203580 was used to inhibit p38 MAPK activation, while siRNA was administered to genetically knockdown specific protein.

Results

We showed that LPS triggered activation of p38 MAPK, rearrangement of cytoskeleton which resulted in severe epithelial hyperpermeability and lung edema. A549 pretreated with TLR4 siRNA、p38 MAPK siRNA and its inhibitor SB203580 displayed a lower permeability and fewer stress fibers formation after LPS stimulation, accompanied with lower phosphorylation level of p38 MAPK and Hsp27, which verified the involvement of TLR4-p38 MAPK-Hsp27 in LPS-evoked alveolar epithelial injury. Inhibition of p38 MAPK activity with SB203580 in vivo attenuated pulmonary edema formation and hyperpermeability in response to LPS.

Conclusions

Our study demonstrated that LPS increased alveolar epithelial permeability both in vitro and in vivo and that TLR4- p38 MAPK- Hsp27 signal pathway dependent actin remolding was involved in this process.
  相似文献   

15.

Background

Nitrous oxide (N2O) provides sedation for procedures that result in constant low-intensity pain. How long do individuals remain sleepy after receiving N2O? We hypothesized that drug effects would be apparent for an hour or more.

Methods

This was a randomized, double blind controlled study. On three separate occasions, volunteers (N = 12) received 100% oxygen or 20% or 40% N2O for 30 min. Dependent measures included the multiple sleep latency test (MSLT), a Drug Effects/Liking questionnaire, visual analogue scales, and five psychomotor tests. Repeated measures analysis of variance was performed with drug and time as factors.

Results

During inhalation, drug effects were apparent based on the questionnaire, visual analogue scales, and psychomotor tests. Three hours after inhaling 100% oxygen or 20% N2O, subjects were sleepier than if they breathed 40% N2O. No other drug effects were apparent 1 hour after inhalation ceased. Patients did not demonstrate increased sleepiness after N2O inhalation.

Conclusion

We found no evidence for increased sleepiness greater than 1 hour after N2O inhalation. Our study suggests that long-term effects of N2O are not significant.  相似文献   

16.

Background

Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo.

Methods

Wild-type (WT) and TLR9-deficient (TLR9-D) mice received CpG-ODN intraperitoneally (1668-Thioat, 1 nmol/g BW) and were observed for up to 6 hrs. Lung tissue and plasma samples were taken and various inflammatory markers were measured.

Results

In WT mice, CpG-ODN induced a strong activation of pulmonary NFκB as well as a significant increase in pulmonary TNF-α and IL-1β mRNA/protein. In addition, cytokine serum levels were significantly elevated in WT mice. Increased pulmonary content of lung myeloperoxidase (MPO) was documented in WT mice following application of CpG-ODN. Bronchoalveolar lavage (BAL) revealed that CpG-ODN stimulation significantly increased total cell number as well as neutrophil count in WT animals. In contrast, the CpG-ODN-induced inflammatory response was abolished in TLR9-D mice.

Conclusion

This study suggests that bacterial CpG-ODN causes lung inflammation via TLR9.  相似文献   

17.

Background

Reactive oxygen species and tissue remodeling regulators, such as metalloproteinases (MMPs) and their inhibitors (TIMPs), are thought to be involved in the development of pulmonary fibrosis. We investigated these factors in the fibrotic response to bleomycin of p47phox -/- (KO) mice, deficient for ROS production through the NADPH-oxidase pathway.

Methods

Mice are administered by intranasal instillation of 0.1 mg bleomycin. Either 24 h or 14 days after, mice were anesthetized and underwent either bronchoalveolar lavage (BAL) or lung removal.

Results

BAL cells from bleomycin treated WT mice showed enhanced ROS production after PMA stimulation, whereas no change was observed with BAL cells from p47phox -/- mice. At day 1, the bleomycin-induced acute inflammatory response (increased neutrophil count and MMP-9 activity in the BAL fluid) was strikingly greater in KO than wild-type (WT) mice, while IL-6 levels increased significantly more in the latter. Hydroxyproline assays in the lung tissue 14 days after bleomycin administration revealed the absence of collagen deposition in the lungs of the KO mice, which had significantly lower hydroxyproline levels than the WT mice. The MMP-9/TIMP-1 ratio did not change at day 1 after bleomycin administration in WT mice, but increased significantly in the KO mice. By day 14, the ratio fell significantly from baseline in both strains, but more in the WT than KO strains.

Conclusions

These results suggest that NADPH-oxidase-derived ROS are essential to the development of pulmonary fibrosis. The absence of collagen deposition in KO mice seems to be associated with an elevated MMP-9/TIMP-1 ratio in the lungs. This finding highlights the importance of metalloproteinases and protease/anti-protease imbalances in pulmonary fibrosis.  相似文献   

18.

Background

Lung fibrosis is a devastating pulmonary disorder characterized by alveolar epithelial injury, extracellular matrix deposition and scar tissue formation. Due to its potent collagenolytic activity, cathepsin K, a lysosomal cysteine protease is an interesting target molecule with therapeutic potential to attenuate bleomycin-induced pulmonary fibrosis in mice. We here tested the hypothesis that over-expression of cathepsin K in the lungs of mice is protective in bleomycin-induced pulmonary fibrosis.

Methods

Wild-type and cathepsin K overexpressing (cathepsin K transgenic; cath K tg) mice were challenged intratracheally with bleomycin and sacrificed at 1, 2, 3 and 4 weeks post-treatment followed by determination of lung fibrosis by estimating lung collagen content, lung histopathology, leukocytic infiltrates and lung function. In addition, changes in cathepsin K protein levels in the lung were determined by immunohistochemistry, real time RT-PCR and western blotting.

Results

Cathepsin K protein levels were strongly increased in alveolar macrophages and lung parenchymal tissue of mock-treated cathepsin K transgenic (cath K tg) mice relative to wild-type mice and further increased particularly in cath K tg but also wild-type mice in response to bleomycin. Moreover, cath K tg mice responded with a lower collagen deposition in their lungs, which was accompanied by a significantly lower lung resistance (RL) compared to bleomycin-treated wild-type mice. In addition, cath K tg mice responded with a lower degree of lung fibrosis than wild-type mice, a process that was found to be independent of inflammatory leukocyte mobilization in response to bleomycin challenge.

Conclusion

Over-expression of cathepsin K reduced lung collagen deposition and improved lung function parameters in the lungs of transgenic mice, thereby providing at least partial protection against bleomycin-induced lung fibrosis.  相似文献   

19.

Background

Several studies have indicated that one of the most potent mediators involved in pulmonary vascular remodeling is vascular endothelial growth factor (VEGF). This study was designed to determine whether airway VEGF level reflects pulmonary vascular remodeling in patients with bronchitis-type of COPD.

Methods

VEGF levels in induced sputum were examined in 23 control subjects (12 non-smokers and 11 ex-smokers) and 29 patients with bronchitis-type of COPD. All bronchitis-type patients performed exercise testing with right heart catheterization.

Results

The mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) after exercise were markedly increased in all bronchitis-type patients. However, both parameters after exercise with breathing of oxygen was significantly lower than in those with breathing of room air. To attenuate the effect of hypoxia-induced pulmonary vasoconstriction during exercise, we used the change in mPAP or PVR during exercise with breathing of oxygen as a parameter of pulmonary vascular remodeling. Change in mPAP was significantly correlated with VEGF level in induced sputum from patients with chronic bronchitis (r = 0.73, p = 0.0001). Moreover, change in PVR was also correlated with VEGF level in those patients (r = 0.57, p = 0.003).

Conclusion

A close correlation between magnitude of pulmonary hypertension with exercise and VEGF level in bronchitis-type patients could be observed. Therefore, these findings suggest the possibility that VEGF level in induced sputum is a non-invasive marker of pulmonary vascular remodeling in patients with bronchitis-type of COPD.  相似文献   

20.

Background

Progressive airway inflammation and susceptibility to the airway colonisation and infection are characteristic for the pathophysiology of chronic obstructive pulmonary disease (COPD). Antimicrobial peptides (AMPs) are central to the function of the innate host immune response against microbial pathogens and are regulators of inflammation and immunity. S100A7/psoriasin, a recently described AMP, is an essential component of the human epithelia against invading pathogens and acts as an effector molecule of the host innate defence in the skin. We hypothesized that S100A7/psoriasin is involved in the airway mucosal immunity and differently regulated and expressed in the lung during progression of COPD.

Methods

S100A7/psoriasin gene expression was assessed in bronchial biopsies and bronchoalveolar lavage (BAL) fluid cells of healthy controls and COPD patients. Using confocal microscopy and immunohistochemistry, the protein expression of S100A7/psoriasin was investigated.

Results

Here, we report that S100A7/psoriasin, the major antimicrobial peptide of the human skin, is constitutively expressed in perinuclear granules of human bronchial epithelial cells and alveolar macrophages. Whereas typical activators of the innate immune response like TLR ligands and cytokines induced the upregulation of CXCL-8 mRNA and release of CXCL-8 by epithelial cells, S100A7/psoriasin mRNA expression was not modulated. To investigate a potential association of S100A7/psoriasin with COPD, S100A7/psoriasin mRNA expression was assessed in bronchial biopsies and BAL fluid cells of patients at different stages of COPD and controls. Overall, 10 healthy individuals and 34 COPD patients were enrolled in this study. We found an association of S100A7/psoriasin mRNA expression with bacterial detection in the tracheobronchial system (p = 0.0304), which was the strongest in individuals positive for with S. aureus (p = 0.0005). However, S100A7/psoriasin mRNA expression was not altered during the progression of COPD.

Conclusions

S100A7/psoriasin gene expression is unchanged in the airways during COPD. The newly identified association of S100A7/psoriasin with S. aureus may provide new insights into the antimicrobial defence response of the human airways, leading to the induction of S100A7/psoriasin upon microbial challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号