首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alyteserin-2a (ILGKLLSTAAGLLSNL.NH2) is a cationic, amphipathic α-helical cell-penetrating peptide, first isolated from skin secretions of the midwife toad Alytes obstetricans. Structure–activity relationships were investigated by synthesizing analogs of alyteserin-2a in which amino acids on the hydrophobic face of the helix were replaced by l-tryptophan and amino acids on the hydrophilic face were replaced by one or more l-lysine or d-lysine residues. The Trp-containing peptides display increased cytotoxic activity against non-small cell lung adenocarcinoma A549 cells (up to 11-fold), but hemolytic activity against human erythrocytes increases in parallel. The potency of the N15K analog against A549 cells (LC50 = 13 μM) increases sixfold relative to alyteserin-2a and the therapeutic index (ratio of LC50 for erythrocytes and tumor cells) increases twofold. Incorporation of a d-Lys11 residue into the N15K analog generates a peptide that retains potency against A549 cells (LC50 = 15 μM) but whose therapeutic index is 13-fold elevated relative to the native peptide. [G11k, N15K] alyteserin-2a is also active against human hepatocarcinoma HepG2 cells (LC50 = 26 μM), breast adenocarcinoma MDA-MB-231 cells (LC50 = 20 μM), and colorectal adenocarcinoma HT-29 cells (LC50 = 28 μM). [G11k, N15K] alyteserin-2a, in concentrations as low as 1 μg/mL, significantly (P < 0.05) inhibits the release of the immune-suppressive cytokines IL-10 and TGF-β from unstimulated and concanavalin A-stimulated peripheral blood mononuclear cells. The data suggest a strategy of increasing the cationicity while reducing the helicity of naturally occurring amphipathic α-helical peptides to generate analogs with improved cytotoxicity against tumor cells but decreased activity against non-neoplastic cells.  相似文献   

2.
Reported herein are efforts to profile 4-aryl-N-phenylpyrimidin-2-amines in terms of their anti-cancer activity towards non small-cell lung carcinoma (NSCLC) cells. We have synthesized new 4-aryl-N-phenylpyrimidin-2-amines and assessed them in terms of their cytotoxicity (A549, NCI-H187, MCF7, Vero & KB) and physicochemical properties (logD7.4 and solubility). 13f and 13c demonstrated potent anti-cancer activity in A549 cells (0.2 µM), compared to 0.4 μM for the NSCLC drug Doxorubicin. 13f also displayed low experimental logD7.4 (2.9) and the best solubility (~40 μM). Compounds 13b and 13d showed the best balance of A549 anti-cancer activity and selectivity. 13g showed good activity and selectivity comparable with the anti-cancer drug Doxorubicin.  相似文献   

3.
Solid tumors are often hypoxic and consequently the pH in the tumoral tissue is decreasing with increasing tumor size (pH 5.5-7.4 in solid tumors versus pH 7.4 in normal tissues). This marked difference in pH value is a problem for weak base organic drugs and could advantageously be used for the introduction of pH sensitive anticancer platinum drugs. Synthesis and structure determination of (SP-4-2)-bis(2-aminoethanolato-κ2N,O)platinum(II), its binding behavior to 5-GMP and its cytotoxicity against cisplatin sensitive cell lines under standard pH screening conditions (pH 7.4) as well as in acidified cell culture medium (pH 6.0) mimicking the conditions in a number of solid tumors is presented. There is evidence that this concept in anticancer platinum therapy, namely administration of rather unreactive drugs and activation under acidic pH conditions, can be realized.  相似文献   

4.
A series of novel salicyl-hydrazone analogues were synthesized and evaluated for their in vitro cytotoxic activities in five human cancer cell lines, namely, lung cancer (A549), ovarian cancer (SK-OV-3), skin cancer (SK-MEL-2), colon cancer (HCT15) and pancreatic cancer (MIA-PaCa-2) cells, and for their in vitro tropomyosin receptor kinase A (TrkA) inhibitory activities. Each of the compounds showed significant cytotoxicity against all cancer cells. Compound 3i was found to be most potent against all cancer cell lines with IC50 values of 2.46 (A549), 0.87 (SK-OV-3), 1.43 (SK-MEL-2), 0.89 (HCT15), and 0.48 μM (MIA-PaCa-2), followed by compound 3l. Cytotoxicity of 3i was similar to that of doxorubicin (0.87 μM) against HCT15 cells. Compounds 3i and 3l also showed highest TrkA inhibitory activities with IC50 values of 0.231 and 0.380 μM, respectively. A SAR study of the series revealed that compounds with hydroxyl groups showed better cytotoxicity and TrkA inhibitory potency (in the following order 2,4-OH > 2,3,4-OH > 3,4-OH > 4-OH) than compounds possessing electron donating or withdrawing groups on the benzylidenephenyl ring. Docking studies of compounds 3i and 3l conducted on the crystal structure of TrkA receptor (a promising target for anticancer agents) showed both had a high docking score and similar order of experimental TrkA inhibitory activities. The formation of several hydrogen bonds involving N and O containing moieties contributed most significantly to ligand binding and stabilization at the active site of the receptor. In addition, ligand-receptor complexes were further stabilized by π-cation, π-anion, amide-π stacked, and van der Waal’s interactions. Conformational analyses showed ligand molecules adopted similar conformations at the receptor active site during interactions, but that the low energy optimized conformations of compounds 3i and 3l differed.  相似文献   

5.
A series of dichloroplatinum(II) complexes of podophyllotoxin (PPT) were prepared, and their cytotoxicity against sensitive (A-549, HeLa, HCT-8, Hep-G2, K562) and resistant (ADM/K562) cell lines were evaluated. Complex cis-[4α-O-(2″,3″-diaminopropanoyl)-podophyllotoxin] dichloride platinum(II) (12) displayed most potent cytotoxicity with IC50 value in the range 0.071–2.98 μM. Complex 12 induces cell cycle arrest in the G2/M phase, and inhibits the formation of microtubules in HeLa cells. Furthermore, this complex exhibits potent DNA cleavage capabilities.  相似文献   

6.
The effects of the chemical inducers, gamma-aminobutyric acid (GABA) and potassium chloride (KCl), on the larval settlement and metamorphosis of the donkey-ear abalone, Haliotis asinina, was investigated. H. asinina larvae (5–6 h post-hatch) were exposed to a range of GABA (0.125–2.00 μM) and KCl (1.00–12.00 mM) concentrations for 72 h. Results of the dose response experiments showed that settlement and metamorphosis vary according to the dose levels of the inducer compounds. Under controlled laboratory conditions, 0.45–0.50 μM and 6.0 mM seemed to be the optima for GABA and KCl, respectively, as these concentrations elicited the greatest number of postlarvae that metamorphosed, settled or survived. However, GABA generally promoted better attachment and metamorphic response as well as survival than KCl in H. asinina postlarvae.  相似文献   

7.
Antimicrobial peptide Temporin-Ra was isolated from the skin secretions of marsh frog Rana ridibunda. Temporin-Ra was chemically synthesized and purified using RP-HPLC technique. The cytotoxicity of peptide on lung airway epithelial cell line (A549) and peripheral blood mononuclear cells (PBMC) was studied by MTT assay. Furthermore, the effect of Temporin-Ra on the expression of pro-inflammatory factors such as IL-1β and IL-8 in A549 cell line was evaluated at peptide concentrations of 15, 30 and 50 μg/mL for 6, 12 and 24 h using semi-quantitative RT-PCR and real-time PCR methods. The result of our experiments revealed that Temporin-Ra decreased cell viability about 3–13 % in A549 cells and 4–6 % in PBMC cells. Moreover, Temporin-Ra induced the mRNA expression of IL-1β and IL-8 genes in a dose- and time-dependent manner. According to our results, maximum IL-8 mRNA expression was observed after a 24-h treatment of cancer cells with 50 μg/mL peptide with approximately 18-fold increase in expression. The least expression level of IL-1β was observed after 6-h of incubation in the presence of 15 μg/mL peptide with 2.5-fold increase in expression whereas the most expression level was obtained following 24 h-treatment with 50 μg/mL peptide with 26-fold increase in mRNA expression. Eventually, the present study highlights the role of Temporin-Ra as a potent antimicrobial peptide in the activation and maintenance of inflammatory processes.  相似文献   

8.
A new hybrid template has been designed by integrating the structural features of nimesulide and the 1,2,3-triazole moiety in a single molecular entity at the same time eliminating the problematic nitro group of nimesulide. The template has been used for the generation of a library of molecules as potential anticancer agents. A mild and greener CuAAC approach has been used to synthesize these compounds via the reaction of 4-azido derivative of nimesulide and terminal alkynes in water. Three of these compounds showed promising growth inhibition (IC50 ~6–10 μM) of A549, HepG2, HeLa and DU145 cancer cell lines but no significant effects on HEK293 cell line. They also inhibited PDE4B in vitro (60–70% at 10 μM) that was supported by the docking studies (PLP score 87–94) in silico.  相似文献   

9.
Two halophilic archaeal strains, YC87T and YCA11, were isolated from Yuncheng salt lake in Shanxi, China. Cells of the two strains were observed to be pleomorphic rod-shaped, stained Gram-negative and produced red-pigmented colonies. Strain YC87T was able to grow at 20–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.1 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.3 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.0) while strain YCA11 was able to grow at 20–50 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0.01–0.7 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.5). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 8 % (w/v) for strain YC87T and 12 % (w/v) for strain YCA11. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether; another major glycolipid and trace amounts of several unidentified lipids were also detected. The 16S rRNA gene sequences of the two strains were 99.8 % identical, showing 93.2–98.2 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene similarity between strains YC87T and YCA11 was 99.3 % and showed 87.5–95.2 % similarity to the closest relative members of the genus Halorubrum. The DNA G+C content of strains YC87T and YCA11 were determined to be 64.9 and 64.5 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain YC77 was 87 % and the two strains showed low DNA–DNA relatedness with Halorubrum cibi JCM 15757T and Halorubrum aquaticum CGMCC 1.6377T, the most related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC87T and YCA11 represent a novel species of the genus Halorubrum, for which the name Halorubrum rubrum sp. nov. is proposed. The type strain is YC87T (=CGMCC 1.12124T = JCM 18365T).  相似文献   

10.
As our continuing research, a series of 2-aryl-8-OR-3,4-dihydroisoquinolin-2-ium bromides were evaluated for cytotoxic activity on cancer cells and apoptosis induction in the present study. SAR was derived also. Among them, 23 compounds showed the higher cytotoxicity on MKN-45 cells with IC50 values of 1.99–11.3 μM than a standard anticancer drug cis-platinum (IC50 = 11.4 μM) or their natural model compound chelerythrine (IC50 = 12.7 μM); 16 compounds possessed the medium to high activity on NB4 cells with IC50 values of 1.67–4.62 μM. SAR analysis showed that both substitution patterns of the N-aromatic ring and the type of 8-OR significantly impact the activity. AO/EB staining and flow cytometry analysis with Annexin V/PI double staining showed that the compounds were able to induce apoptosis in a concentration-dependent manner. The results above suggested that the title compounds are a class of promising compounds for the development of new anti-cancer drugs.  相似文献   

11.
2-Butanone thiosemicarbazone ligand was prepared by condensation reaction between thiosemicarbazide and butanone. The ligand was characterized by 1H NMR, 13C NMR, FT-IR, mass spectrometry and UV spectroscopic studies. Docking studies were performed to study inhibitory action against topoisomerase II (Topo II) and ribonucleoside diphosphate reductase (RR) enzymes. Inhibition constants (K i ) of the ligand were 437.87 and 327.4 μM for the two enzymes, respectively. The ligand was tested for its potential anticancer activity against two cancer cell lines MDA-MB-231 and A549 using MTT assay and was found to exhibit good activity at higher doses with an IC50 = 80 μM against human breast cancer cell line MDA-MB-231. On the other hand, no significant activity was obtained against the lung carcinoma cell line A549. Antibacterial activity of the ligand was tested against Staphylococcus aureus and E. coli using the disc diffusion method. Ligand did not exhibit any significant antibacterial activity. Four complexes of Co(III), Fe(II), Cu(II), and Zn(II) were prepared with the ligand and characterized by various spectroscopic studies. Low molar conductance values were obtained for all complexes displaying non-electrolyte nature except in Co(III) complex. As expected, complexation with metal ions significantly increased the cytotoxicity of the ligand against the tested cell lines viz. IC50 values of <20 μM for Co, Fe, and Zn complexes and approx. 80 μM against MDA cells versus IC50 value of <20 μM for Co and Cu complexes and that of 30 and 50 μM for Fe and Zn complexes, respectively, against A549 cells. The Cu complex was found to be active against E. coli and S. aureus with MIC values in the range of 6–10 mg/mL. Other than Cu, only Co complex was found to possess antibacterial activity with MIC values of 5–10 mg/mL when tested against S. aureus. Bioactivity score and Prediction of Activity Spectra for Substances (PASS) analysis also depicted the drug-like nature of ligand and complexes.  相似文献   

12.
A new series of glucose-conjugated Pt(IV) complexes that target tumor-specific glucose transporters (GLUTs) was designed, synthesized, and evaluated for their anticancer activities. All six compounds, namely, A1-A6, exhibited increased cytotoxicity that were almost six fold higher than that of oxaliplatin to MCF-7 cells. These Pt(IV) complexes can be reduced to release Pt(II) complexes and cause the death of tumor cells. Simultaneously, the glycosylated Pt(IV) complexes (30.21–91.33?μM) showed lower cytotoxicity that normal LO2 cells compared with cisplatin (5.25?μM) and oxaliplatin (8.34?μM). The intervention of phlorizin as a GLUTs inhibitor increased the IC50 value of the glycosylated Pt(IV) complexes, thereby indicating the potential GLUT transportability. The introduction of glucose moiety to Pt(IV) complexes can effectively enhance the Pt cellular uptake and DNA platination. Results suggested glucose-conjugated Pt(IV) complexes had potential for further study as new anticancer agents.  相似文献   

13.
Bisnaphthalimido compounds bisintercalate to DNA via the major groove and are potentially potent cancer therapeutics. We incorporated natural polyamines as linkers connecting the two-naphthalimido ring moieties to create a series of novel soluble cytotoxic bisnaphthalimidopropyl polyamines (BNIPPs). Here, we determined the cytotoxicity of bisnaphthalimidopropyl spermidine (BNIPSpd) towards Caco-2 and HT-29 colon adenocarcinoma cells revealing an IC50 value of 0.15 and 1.64 μM after 48 h exposure within Caco-2 and HT-29 cells, respectively. After 4 h, ≥0.5 μM BNIPSpd treatment-induced significant DNA damage. After 24 h exposure a concentration-dependent increase in active caspase-3 expression, chromatin condensation and internucleosomal DNA fragmentation identified apoptosis as the principal manifestation for the cytotoxicity within both cell lines. By 24 h exposure, there was also a significant decline in cellular spermine and spermidine levels. It is concluded that bisnaphthalimidopropyl spermidine (BNIPSpd) toxicity primarily results from apoptosis and that BNISpd has potential to be further developed as an anti-tumour agent.  相似文献   

14.
Photosynthetic bacteria are known to utilize volatile fatty acids as a carbon source for growth and product formation. In this study, a new isolate, Rubrivivax benzoatilyticus PS-5, possessing self-flocculation properties, was cultivated in modified glutamate-malate (GM) medium containing glutamate and malate as carbon sources. The effect of acetic acid, propionic acid and butyric acid (at 1–4 g L?1) as co-substrates and 7.5 mM glycine, 10 mM succinic acid as precursors for 5-aminolevulinic acid (ALA) production from R. benzoatilyticus PS-5 was investigated. Among the volatile fatty acids tested, acetic acid was preferred to butyric acid and propionic acid, with the optimum concentrations of 3 g L?1, 1 g L?1 and 3 g L?1, respectively. The highest ALA production was 169.71 μM, 162.16 μM and 46.18 μM, respectively, while the highest productivity was 2.57 μM h?1, 2.25 μM h?1 and 0.96 μM h?1, respectively. The precursor was consumed completely (100 %) while the assimilation of the acetic acid and butyric acid was 62.50 % and 48.65 %, respectively. Supplementation of propionic acid (at 1–4 g l?1) had a negative effect on growth and ALA production. To increase production efficiency, the pH-control strategy (at pH 6.0–8.0) during fermentation was tested. The optimum pH was 7.0, giving the maximum ALA production of 286.18 μM and a productivity of 3.97 μM h?1. These values were 1.68-fold and 1.54-fold higher, respectively, than those under uncontrolled pH conditions.  相似文献   

15.
Anti-cancer tyrosine kinase inhibitors (TKIs) are effective in many types of cancers including non-small cell lung cancer, while appearance of TKI-resistant tumors suggests a need for the development of their potentiation strategies. We have previously shown that a methoxyflavanone derivative from the Asian medicinal herb Perilla frutescens (Perilla-derived methoxyflavanone; PDMF) shows a prominent anti-tumor activity against A549 human lung adenocarcinoma. Here we show that PDMF and anti-cancer TKIs (nilotinib, bosutinib, dasatinib, and ponatinib) synergistically suppress proliferation of A549 cells. Flow cytometric analysis indicated that co-stimulation with nilotinib (4 μM) and PDMF induced G2/M cell cycle arrest in low PDMF doses (10–50 μM), whereas this combination triggered de novo G1 arrest in higher PDMF dosages (50–125 μM). We also found that co-administration with nilotinib and PDMF significantly suppressed in vivo tumorigenicity of A549 cells in athymic nude mice.  相似文献   

16.
Soybean isoflavonoids have received significant attention due to their potential anticarcinogenic and antiproliferative effects and possible role in many signal transduction pathways. However, their mechanisms of action and their molecular targets remain to be further elucidated. In this paper, we demonstrated that two soybean isoflavones (genistein and daidzein) reduced the proliferation of the human colon adenocarcinoma grade II cell line (HT-29) at concentrations of 25 and 50–100 μM, respectively. We then investigated the effects of genistein and daidzein by RT-PCR on molecules that involved in tumor development and progression by their regulation of cell proliferation. At a concentration of 50 μM genistein, there was suppressed expression of β-catenin (CTNNBIP1). Neither genistein nor daidzein affected APC (adenomatous polyposis coli) or survivin (BIRC5) expression when cells were treated with concentrations of 10 or 50 μM. These data suggest that the down-regulation of β-catenin by genistein may constitute an important determinant of the suppression of HT-29 cell growth and may be exploited for the prevention and treatment of colon cancer.  相似文献   

17.
Two halophilic archaea, strains GX21T and R35T, were isolated from a marine solar saltern and an aquaculture farm in China, respectively. Cells of the two strains were observed to be pleomorphic, flat, to contain gas vesicles, stain Gram-negative and produce red-pigmented colonies. Strain GX21T was found to be able to grow at 25–50 °C (optimum 37 °C), at 2.6–4.8 M NaCl (optimum 3.4 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–8.5 (optimum pH 6.5) while strain R35T was found to be able to grow at 25–45 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0–0.7 M MgCl2 (optimum 0.03 M MgCl2) and at pH 5.5–9.5 (optimum pH 6.5–7.0). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 15 % (w/v) for strain GX21T and 12 % (w/v) for strain R35T. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid and a minor lipid chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. 16S rRNA gene sequence analysis revealed that strains GX21T and R35T show 97.1 % sequence similarity to each other and are closely related to Haloplanus aerogenes TBN37T (96.8 and 95.8 %), Haloplanus vescus RO5-8T (96.7 and 96.1 %), Haloplanus salinus YGH66T (96.4 and 95.8 %) and Haloplanus natans JCM 14081T (96.3 and 95.4 %). The rpoB′ gene similarity between strains GX21T and R35T is 90.5 % and show 88.5–90.8 % similarity to the Haloplanus species with validly published names. The DNA G+C content of strain GX21T and R35T were determined to be 65.8 and 66.0 mol%, respectively. The DNA–DNA hybridization values between strain GX21T and strain R35T, and the two strains with the Haloplanus species with validly published names, showed less than 50 % DNA–DNA relatedness. It was concluded that strain GX21T (=CGMCC 1.10456T = JCM 17092T) and strain R35T (=CGMCC 1.10594 T = JCM 17271T) represent two new species of Haloplanus, for which the names Haloplanus litoreus sp. nov. and Haloplanus ruber sp. nov. are proposed.  相似文献   

18.
Two previously undescribed steroidal alkaloids, compounds 1–2, were isolated from the ripe fruits of Solanum nigrum, along with seven known metabolites (3–9). Based on spectroscopic and chemical evidence, including IR, NMR, and HR-ESI-MS analyses, the structures of the isolated compounds were elucidated as 12β-hydroxy-(3β,22α,25R)-spirosol-5-en-27-acid-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)]-β-D-galacopyranoside and 12β-hydroxy-(3β,22α,25R)-spirosol-5-en-27-acid-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside. Four steroidal alkaloids (compounds 1–2 and 4–5) were tested for their anti-proliferative effects against the HT-29, A549, and Lewis cell lines. Both of the previously isolated compounds inhibited the proliferation of these three cell lines in a dose-dependent manner, with the most significant effect being in the A549 cells, but neither reached IC50 at 50 μM. These results revealed that S. nigrum had weak cytotoxicity, indicating its clinical safety as a traditional anti-tumor herbal medicine.  相似文献   

19.
Methylmercury (MeHg) is one of the most dangerous heavy metal for living organisms that may be found in environment. Given the crescent industrialization of Brazil and considering that mercury is a residue of several industrial processes, there is an increasing need to encounter and develop remediation approaches of mercury contaminated sites. The aim of this study was to isolate and characterize methylmercury resistant bacteria from soils and sludge sewage from Rio Grande do Sul, Brazil. Sixteen bacteria were isolated from these contaminated sites and some isolates were highly resistant to methylmercury (>8.7 μM). All the isolates were identified by 16S rDNA. Pseudomonas putida V1 was able to volatilize approximately 90 % of methylmercury added to growth media and to resist to copper, lead, nickel, chromate, zinc, cobalt, manganese and barium. In the presence of high concentrations of methylmercury (12 μM), cell growth was limited, but P. putida V1 was still able to remove up to 29 % of this compound from culture medium. This bacterium removed an average of 77 % of methylmercury from culture medium with pH in the range 4.0–6.0. In addition, methylmercury was efficiently removed (>80 %) in temperature of 21–25 °C. Polymerase chain reactions indicated the presence of merA but not merB in P. putida V1. The growth and ability of P. putida V1 to remove methylmercury in a wide range of pH (4.0 and 8.0) and temperature (10–35 °C), its tolerance to other heavy metals and ability to grow in the presence of up to 11.5 μM of methylmercury, suggest this strain as a new potential resource for degrading methylmercury contaminated sites.  相似文献   

20.
Leishmaniasis are infectious diseases caused by parasites of genus Leishmania that affect affects 12 million people in 98 countries mainly in Africa, Asia, and Latin America. Effective treatments for this disease are urgently needed. In this study, we present a computer-aided approach to investigate a set of 32 recently synthesized chalcone and chalcone-like compounds to act as antileishmanial agents. As a result, nine most promising compounds and three potentially inactive compounds were experimentally evaluated against Leishmania infantum amastigotes and mammalian cells. Four compounds exhibited EC50 in the range of 6.2–10.98 μM. In addition, two compounds, LabMol-65 and LabMol-73, exhibited cytotoxicity in macrophages >50 μM that resulted in better selectivity compared to standard drug amphotericin B. These two compounds also demonstrated low cytotoxicity and high selectivity towards Vero cells. The results of target fishing followed by homology modeling and docking studies suggest that these chalcone compounds could act in Leishmania because of their interaction with cysteine proteases, such as procathepsin L. Finally, we have provided structural recommendations for designing new antileishmanial chalcones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号