首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.  相似文献   

2.
In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG) in lipid droplets (LD) during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL) production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with liquid chromatography and tandem mass spectrometry). We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2), which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity.  相似文献   

3.
Background information. Intestinal absorption of alimentary lipids is a complex process ensured by enterocytes and leading to TRL [TAG (triacylglycerol)‐rich lipoprotein] assembly and secretion. The accumulation of circulating intestine‐derived TRL is associated with atherosclerosis, stressing the importance of the control of postprandial hypertriglyceridaemia. During the postprandial period, TAGs are also transiently stored as CLDs (cytosolic lipid droplets) in enterocytes. As a first step for determining whether CLDs could play a role in the control of enterocyte TRL secretion, we analysed the protein endowment of CLDs isolated by sucrose‐gradient centrifugation from differentiated Caco‐2/TC7 enterocytes, the only human model able to secrete TRL in culture and to store transiently TAGs as CLDs when supplied with lipids. Cells were analysed after a 24 h incubation with lipid micelles and thus in a state of CLD‐associated TAG mobilization. Results. Among the 105 proteins identified in the CLD fraction by LC‐MS/MS (liquid chromatography coupled with tandem MS), 27 were directly involved in lipid metabolism pathways potentially relevant to enterocyte‐specific functions. The transient feature of CLDs was consistent with the presence of proteins necessary for fatty acid activation (acyl‐CoA synthetases) and for TAG hydrolysis. In differentiated Caco‐2/TC7 enterocytes, we identified for the first time LPCAT2 (lysophosphatidylcholine acyltransferase 2), involved in PC (phosphatidylcholine) synthesis, and 3BHS1 (3‐β‐hydroxysteroid dehydrogenase 1), involved in steroid metabolism, and confirmed their partial CLD localization by immunofluorescence. In enterocytes, LPCAT2 may provide an economical source of PC, necessary for membrane synthesis and lipoprotein assembly, from the lysoPC present in the intestinal lumen. We also identified proteins involved in lipoprotein metabolism, such as ApoA‐IV (apolipoprotein A‐IV), which is specifically expressed by enterocytes and has been proposed to play many functions in vivo, including the formation of lipoproteins and the control of their size. The association of ApoA‐IV with CLD was confirmed by confocal and immunoelectron microscopy and validated in vivo in the jejunum of mice fed with a high‐fat diet. Conclusions. We report for the first time the protein endowment of Caco‐2/TC7 enterocyte CLDs. Our results suggest that their formation and mobilization may participate in the control of enterocyte TRL secretion in a cell‐specific manner.  相似文献   

4.
Naringenin, the principal flavonoid in grapefruit, reduces plasma lipids in vivo and inhibits apoB secretion, cholesterol esterification, and MTP activity in HepG2 human hepatoma cells. Although naringenin inhibits ACAT, we recently demonstrated that CE availability in the microsomal lumen does not regulate apoB secretion in HepG2 cells. We therefore hypothesized that inhibition of TG accumulation in the ER lumen, secondary to MTP inhibition, is the primary mechanism whereby naringenin blocks lipidation and subsequent secretion of apoB. Multicompartmental modeling of pulse-chase studies was used to compare cellular apoB kinetics in the presence of either naringenin or the specific MTP inhibitor, BMS-197636. At concentrations that reduced apoB secretion by 50%, both compounds selectively enhanced degradation via a kinetically defined, rapid, proteasomal pathway to the same extent. Subcellular fractionation experiments revealed that naringenin and BMS-197636 reduced accumulation of newly synthesized TG in the microsomal lumen by 48% and 54%, respectively. Newly synthesized CE accumulation in the lumen was reduced by 80% and 33% with naringenin and BMS-197636, respectively, demonstrating for the first time that MTP is involved in CE accumulation in the microsomal lumen. Reduced TG availability at this initial site of lipoprotein assembly was associated with significant reductions in the secretion of apoB-containing lipoproteins. Both naringenin and BMS-197636 were most effective in reducing secretion of IDL and LDL, but also inhibited secretion of apoB-containing HDL-sized particles. Furthermore, in McA-RH7777-derived cell lines, naringenin reduced secretion of hapoB72 and hapoB100, which require significant assembly with lipid to be secreted, but did not reduce secretion of hapoB17, hapoB23, and hapoB48, which require only minimal lipidation. Taken together, our results indicate that naringenin inhibits the lipidation and subsequent secretion of apoB-containing lipoproteins primarily by limiting the accumulation of TG in the ER lumen, secondary to MTP inhibition.  相似文献   

5.
Hepatic lipoprotein assembly and secretion can be regulated by proteasomal degradation of newly synthesized apoB, especially if lipid synthesis or lipid transfer is low. Our previous studies in HepG2 cells showed that, under these conditions, newly synthesized apoB remains stably associated with the endoplasmic reticulum (ER) membrane (Mitchell, D. M., Zhou, M., Pariyarath, R., Wang, H., Aitchison, J. D., Ginsberg, H. N., and Fisher, E. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 14733-14738). We now show that independent of lipid synthesis, apoB chains that appear full-length are, in fact, incompletely translated polypeptides still engaged by the ribosome and associated with the ER translocon. In the presence of active lipid synthesis and transfer, translation and lipoprotein assembly are completed, and the complexes exit the ER. Upon omitting fatty acids from, or adding a microsomal triglyceride transfer protein inhibitor to, culture media to reduce lipid synthesis or transfer, respectively, apoB was degraded while it remained associated with the ER and complexed with cytosolic hsp70 and proteasomes. Thus, unlike other ER substrates of the proteasome, such as major histocompatibility complex class I molecules, apoB does not fully retrotranslocate to the cytosol before entering the ubiquitin-proteasome pathway. Although, upon immunofluorescence, apoB in proteasome-inhibited cells accumulated in punctate structures similar in appearance to aggresomes (cytosolic structures containing molecules irreversibly lost from the secretory pathway), these apoB molecules could be secreted when lipid synthesis was stimulated. The results suggest a model in which 1) apoB translation does not complete until lipoprotein assembly terminates, and 2) assembly with lipids or entry into the ubiquitin-proteasome pathway occurs while apoB polypeptides remain associated with the translocon and attached to the ribosome.  相似文献   

6.
Intestinal triglyceride-rich lipoproteins (TRL) are synthesized from dietary lipids. This study was designed to evaluate the effects of lipid micelles, mimicking post-digestive duodenal micelles, on the fate of apolipoprotein B (apoB)48-containing lipoproteins by Caco-2 cells. Such micelles, consisting of oleic acid (OA), taurocholate, 2-monooleoylglycerol (2-MO), cholesterol (Chol), and L-alpha-lysophospatidylcholine, were the most efficient inducers of OA uptake and esterification. The efficiency of TG and apoB48 secretion increased specifically as a function of cell differentiation. PAGE analysis of secreted lipoproteins separated by sequential ultracentrifugation after [35S] labeling revealed differences in the secretion of apoB100- and apoB48-containing lipoproteins. In absence of micelles, apoB48 was secreted mostly in "HDL-like" particles, as observed in enterocytes in vivo. Micelle application increased 2.7-fold the secretion of apoB, resulting in 53 times more apoB48 being recovered as TG-enriched lipoproteins at d < 1.006 g/ml. Electron microscopy revealed the presence of lipid droplets in the secretory pathway and the accumulation of newly synthesized TG in cytoplasmic lipid droplets, as in enterocytes in vivo. We showed that these droplets could be used for secretion. However, apoB48 preferentially bound to newly synthesized TG in the presence of micelles, accounting in part for the functional advantage of apoB editing in the intestine. While Caco-2 cells express both apoB isoforms, our results show that the apical supply of complex lipid micelles favors the physiological route of apoB48-containing TG-enriched lipoproteins.  相似文献   

7.
Two ACAT sharing protein sequence homology near their C termini have been identified. Both proteins may span the endoplasmic reticulum (ER) membrane several times. There is good evidence implicating the role of ACAT1 in macrophage foam cell formation, and ACAT2 in intestinal cholesterol absorption. On the other hand, the functional roles of ACAT1 and ACAT2 in the VLDL or chylomicron assembly process are less clear. It is possible that both enzymes are able to form lipid droplets (which are present in the cytoplasm), and participate in lipoprotein assembly (which occurs in the ER lumen). To link the site of ACAT catalysis with its function, we propose that part of the ACAT catalytic site may reside within the lipid bilayer, allowing catalysis to be completed within the plane of the membrane. Cholesteryl esters (CE) produced in situ may burst into cytoplasmic lipid droplets, carrying phospholipid monolayers as their outer coats. In cells engaged in lipoprotein assembly and secretion, CE in the bilayer may be recognized by the specific protein microsomal triacylglycerol transfer protein (MTP), reaching out from the lumenal side of the membrane. MTP then lipidates the growing apolipoprotein B (apoB) chain with CE and TG during the early stages of apoB lipoprotein assembly.  相似文献   

8.

Background

The intestine is responsible for absorbing dietary lipids and delivering them to the organism as triglyceride-rich lipoproteins (TRL). It is important to determine how this process is regulated in enterocytes, the absorptive cells of the intestine, as prolonged postprandial hypertriglyceridemia is a known risk factor for atherosclerosis. During the postprandial period, dietary lipids, mostly triglycerides (TG) hydrolyzed by pancreatic enzymes, are combined with bile products and reach the apical membrane of enterocytes as postprandial micelles (PPM). Our aim was to determine whether these micelles induce, in enterocytes, specific early cell signaling events that could control the processes leading to TRL secretion.

Methodology/Principal Findings

The effects of supplying PPM to the apex of Caco-2/TC7 enterocytes were analyzed. Micelles devoid of TG hydrolysis products, like those present in the intestinal lumen in the interprandial period, were used as controls. The apical delivery of PPM specifically induced a number of cellular events that are not induced by interprandial micelles. These early events included the trafficking of apolipoprotein B, a structural component of TRL, from apical towards secretory domains, and the rapid, dose-dependent activation of ERK and p38MAPK. PPM supply induced the scavenger receptor SR-BI/CLA-1 to cluster at the apical brush border membrane and to move from non-raft to raft domains. Competition, inhibition or knockdown of SR-BI/CLA-1 impaired the PPM-dependent apoB trafficking and ERK activation.

Conclusions/Significance

These results are the first evidence that enterocytes specifically sense postprandial dietary lipid-containing micelles. SR-BI/CLA-1 is involved in this process and could be a target for further study with a view to modifying intestinal TRL secretion early in the control pathway.  相似文献   

9.
Decrease of plasma lipid levels by polyphenols was linked to impairment of hepatic lipoprotein secretion. However, the intestine is the first epithelium that faces dietary compounds, and it contributes to lipid homeostasis by secreting triglyceride-rich lipoproteins during the postprandial state. The purpose of this study was to examine the effect of apple and wine polyphenol extracts on lipoprotein synthesis and secretion in human Caco-2/TC7 enterocytes apically supplied with complex lipid micelles. Our results clearly demonstrate that apple, but not wine, polyphenol extract dose-dependently decreases the esterification of cholesterol and the enterocyte secretion of lipoproteins. Apple polyphenols decrease apolipoprotein B (apoB) secretion by inhibiting apoB synthesis without increasing the degradation of the newly synthesized protein. Under our conditions, cholesterol uptake, apoB mRNA, and microsomal triglyceride protein activity were not modified by apple polyphenols. The main monomers present in our mixture did not interfere with the intestinal lipid metabolism. By contrast, apple procyanidins reproduced the inhibition of both cholesteryl ester synthesis and lipoprotein secretion. Overall, our results are compatible with a mechanism of action of polyphenols resulting in impaired lipid availability that could induce the inhibition of intestinal lipoprotein secretion and contribute to the hypolipidemic effect of these compounds in vivo.  相似文献   

10.
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1) protein, which mediates intracellular cholesterol trafficking from the brush border membrane to the endoplasmic reticulum, where chylomicron assembly takes place in enterocytes or in the intestinal absorptive epithelial cells. Cholesterol is a minor lipid constituent of chylomicrons; however, whether or not a shortage of cholesterol attenuates chylomicron assembly is unknown. The aim of this study was to examine the effect of ezetimibe, a potent NPC1L1 inhibitor, on trans-epithelial lipid transport, and chylomicron assembly and secretion in enterocytes. Caco-2 cells, an absorptive epithelial model, grown onto culture inserts were given lipid micelles from the apical side, and chylomicron-like triacylglycerol-rich lipoprotein secreted basolaterally were analyzed after a 24-h incubation period in the presence of ezetimibe up to 50 μM. The secretion of lipoprotein and apolipoprotein B48 were reduced by adding ezetimibe (30% and 34%, respectively). Although ezetimibe allowed the cells to take up cholesterol normally, the esterification was abolished. Meanwhile, oleic acid esterification was unaffected. Moreover, ezetimibe activated sterol regulatory element-binding protein 2 by approximately 1.5-fold. These results suggest that ezetimibe limited cellular cholesterol mobilization required for lipoprotein assembly. In such conditions, large lipid droplet formation in Caco-2 cells and the enterocytes of mice were induced, implying that unprocessed triacylglycerol was sheltered in these compartments. Although ezetimibe did not reduce the post-prandial lipid surge appreciably in triolein-infused mice, the results of the present study indicated that pharmacological actions of ezetimibe may participate in a novel regulatory mechanism for the efficient chylomicron assembly and secretion.  相似文献   

11.
Summary Although Caco-2 cells are frequently employed for the study of enterocyte lipid metabolism, variable results have been reported regarding their ability to synthesize and secrete lipids and apolipoproteins. The major goal of this investigation is to examine the capacity of Caco-2 cells to elaborate and secrete lipids, lipoproteins, and apolipoproteins at different degrees of morphological and functional differentiation. Cells were cultured in medium with 5% fetal bovine serum (FBS), on permeable polycarbonate filters from 2 to 30 d in the presence of 14C-oleate or 35S-methionine. Cellular differentiation, as assessed by morphology (light and electron microscopy), transepithelial resistance, free fatty acid flux, and sucrase activity, progressed steadily up to 20 d of culture. Caco-2 cells esterified oleic acid mainly into phospholipids, triglycerides (TG), and smaller amounts of cholesterol esters. Lipid synthesis began as early as 2 d, and TG secretion was enhanced with increased duration of culture. However, very low efficiency of lipid export was observed at all levels of differentiation, reaching a maximum of only 6% of intracellular lipids. VLDL and LDL were the dominant lipoproteins secreted, with HDL comprising <20% of the total. VLDL secretion increased, while LDL decreased, whereas the lipid composition of lipoproteins varied little with increasing duration of culture. Apoprotein B and A-I synthesis and secretion increased markedly from 11 to 20 d of culture. The ratio of apo B-100/B-48 decreased between 11 and 30 d, consistent with enhanced apo B editing of more mature enterocytes. Taken together, our data suggest that from 20 d of culture, Caco-2 cells are morphologically and functionally mature, capable of lipid esterification, and lipoprotein and apolipoprotein synthesis. However, despite their functional and morphological similarities to mature enterocytes, Caco-2 cells have a very limited lipid export capacity.  相似文献   

12.
Enterocytes of the small intestine (SI) play an important role in maintaining systemic lipid levels by regulating dietary lipid absorption and postprandial lipoprotein secretion. An excessive amount of dietary-derived triglycerides (TGs) taken up by the apical side of enterocytes or basolaterally internalized lipoprotein remnants can be transiently stored in cytosolic lipid droplets (cLDs). As mice lacking adipose TG lipase (ATGL) in the SI display massive accumulation of cLDs but also delayed cholesterol absorption, we hypothesized that SI-specific overexpression of ATGL (Atgl iTg) might have beneficial effects on lipid homeostasis in the gut and possibly throughout the body. Here, we demonstrate that Atgl iTg mice had only modestly increased enzymatic activity despite drastically elevated Atgl mRNA levels (up to 120-fold) on chow diet, and was highly induced upon high-fat/high-cholesterol diet (HF/HCD) feeding. Atgl iTg mice showed markedly reduced intestinal TG concentrations after acute and chronic lipid challenge without affecting chylomicron TG secretion. Circulating plasma cholesterol levels were significantly lower in Atgl iTg mice under different feeding conditions, contrasting the accelerated uptake of dietary cholesterol into the circulation after HF/HCD feeding. In the fasted state, gene expression analysis revealed modulation of PPARα and liver X receptor (LXR) target genes by an increased fatty acid release, whereas the decreased plasma cholesterol concentrations in refed mice were more likely due to changes in HDL synthesis and secretion. We conclude that ATGL, in addition to its role in TG catabolism, plays a critical role in whole-body cholesterol homeostasis by modulating PPARα and LXR signaling in intestinal enterocytes.  相似文献   

13.
It is generally believed that vitamin E is absorbed along with chylomicrons. However, we previously reported that human colon carcinoma Caco-2 cells use dual pathways, apolipoprotein B (apoB)-lipoproteins and HDLs, to transport vitamin E. Here, we used primary enterocytes and rodents to identify in vivo vitamin E absorption pathways. Uptake of [(3)H]alpha-tocopherol by primary rat and mouse enterocytes increased with time and reached a maximum at 1 h. In the absence of exogenous lipid supply, these cells secreted vitamin E with HDL. Lipids induced the secretion of vitamin E with intermediate density lipoproteins, and enterocytes supplemented with lipids and oleic acid secreted vitamin E with chylomicrons. The secretion of vitamin E with HDL was not affected by lipid supply but was enhanced when incubated with HDL. Microsomal triglyceride transfer protein inhibition reduced vitamin E secretion with chylomicrons without affecting its secretion with HDL. Enterocytes from Mttp-deficient mice also secreted less vitamin E with chylomicrons. In vivo absorption of [(3)H]alpha-tocopherol by mice after poloxamer 407 injection to inhibit lipoprotein lipase revealed that vitamin E was associated with triglyceride-rich lipoproteins and small HDLs containing apoB-48 and apoA-I. These studies indicate that enterocytes use two pathways for vitamin E absorption. Absorption with chylomicrons is the major pathway of vitamin E absorption. The HDL pathway may be important when chylomicron assembly is defective and can be exploited to deliver vitamin E without increasing fat consumption.  相似文献   

14.
Previously, based on distinct requirement of microsomal triglyceride transfer protein (MTP) and kinetics of triglyceride (TG) utilization, we concluded that assembly of very low density lipoproteins (VLDL) containing B48 or B100 was achieved through different paths (Wang, Y. , McLeod, R. S., and Yao, Z. (1997) J. Biol. Chem. 272, 12272-12278). To test if the apparent dual mechanisms were accounted for by apolipoprotein B (apoB) length, we studied VLDL assembly using transfected cells expressing various apoB forms (e.g. B64, B72, B80, and B100). For each apoB, enlargement of lipoprotein to form VLDL via bulk TG incorporation was induced by exogenous oleate, which could be blocked by MTP inhibitor BMS-197636 treatment. While particle enlargement was readily demonstrable by density ultracentrifugation for B64- and B72-VLDL, it was not obvious for B80- and B100-VLDL unless the VLDL was further resolved by cumulative rate flotation into VLDL(1) (S(f) > 100) and VLDL(2) (S(f) 20-100). BMS-197636 diminished B100 secretion in a dose-dependent manner (0.05-0.5 microM) and also blocked the particle enlargement from small to large B100-lipoproteins. These results yield a unified model that can accommodate VLDL assembly with all apoB forms, which invalidates our previous conclusion. To gain a better understanding of the MTP action, we examined the effect of BMS-197636 on lipid and apoB synthesis during VLDL assembly. While BMS-197636 (0.2 microM) entirely abolished B100-VLDL(1) assembly/secretion, it did not affect B100 translation or translocation across the microsomal membrane, nor did it affect TG synthesis and cell TG mass. However, BMS-197636 drastically decreased accumulation of [(3)H]glycerol-labeled TG and TG mass within microsomal lumen. The decreased TG accumulation was not a result of impaired B100-VLDL assembly, because in cells treated with brefeldin A (0.2 microgram/ml), the assembly of B100-VLDL was blocked yet lumenal TG accumulation was normal. Thus, MTP plays a role in facilitating accumulation of TG within microsomes, a prerequisite for the post-translational assembly of TG-enriched VLDL.  相似文献   

15.
Intracellular events in the assembly of chylomicrons in rabbit enterocytes   总被引:1,自引:0,他引:1  
The aim of this study was to determine the intracellular events in chylomicron assembly in adult villus enterocytes. We have used novel methods for separation of the intracellular components of the secretory compartment [rough and smooth endoplasmic reticulum (RER and SER, respectively) and Golgi], and their membrane and luminal components, from villus enterocytes isolated from rabbit small intestine. The steady state composition of the components of the secretory compartment and the intracellular pools of newly synthesized apolipoprotein B-48 (apoB-48) and triacylglycerol (TAG) was determined. The observations indicate that the SER is the main site of TAG synthesis and of chylomicron assembly. Newly synthesized apoB-48 and TAG accumulate in the SER membrane and are transferred into the lumen in a microsomal triglyceride transfer protein-dependent step. In enterocytes isolated from chow-fed rabbits, in which fat absorption is relatively slow, transfer of apoB-48 and TAG from the SER membrane into the lumen appears to be rate limiting. In enterocytes from fat-fed rabbits, TAG accumulates in the lumen of the SER, suggesting that movement out of the SER lumen becomes rate limiting, when chylomicron secretion is markedly stimulated. In these cells, the cytosolic TAG also increased to 450 microgram/g enterocytes, compared with 12 microgram/g enterocytes from chow-fed rabbits, indicating that transfer of TAG from the SER membrane into the secretory pathway can become saturated, so that newly synthesized TAG moves into the cytosol.  相似文献   

16.
The density of circulating hepatitis C virus (HCV) particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB) positive and triglyceride rich lipoproteins (TRL) likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP) containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1–E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.  相似文献   

17.
Cell death-inducing DFF45-like effector b (Cideb), an endoplasmic reticulum (ER)- and lipid droplet (LD)-associated protein, has been shown to play a critical role in maintaining hepatic lipid homeostasis by promoting the lipidation and maturation of VLDL particles. Here, we observed that Cideb is expressed in the jejunum and ileum sections of the small intestine, and its expression was induced by high-fat diet. Intragastric gavage with lipids resulted in the retention of lipids in the intestine in Cideb-deficient mice. In addition, we observed that mice with Cideb deficiency exhibited reduced intestinal chylomicron-TG secretion and increased lipid accumulation in the enterocytes. The sizes of chylomicrons secreted from the small intestine of Cideb-deficient mice were also smaller than those from wild-type mice. Furthermore, the overexpression of Cideb increased TG secretion and reduced lipid accumulation in the enterocyte-like Caco-2 cells. In addition, we proved that Cideb was localized to the ER and LDs and could interact with ApoB48 in Caco-2 cells. Overall, these data revealed that Cideb plays an important role in controlling intestinal chylomicron lipidation.  相似文献   

18.
The majority of hepatic intracellular triacylglycerol (TG) is mobilized by lipolysis followed by reesterification to reassemble TG before incorporation into a very-low-density lipoprotein (VLDL) particle. Triacylglycerol hydrolase (TGH) is a lipase that hydrolyzes TG within hepatocytes. Immunogold electron microscopy in transfected cells revealed a disparate distribution of this enzyme within the endoplasmic reticulum (ER), with particularly intense localization in regions surrounding mitochondria. TGH is localized to the lumen of the ER by the C-terminal tetrapeptide sequence HIEL functioning as an ER retention signal. Deletion of HIEL resulted in secretion of catalytically active TGH. Mutation of HIEL to KDEL, which is the consensus ER retrieval sequence in animal cells, also resulted in ER retention and conservation of lipolytic activity. However, KDEL-TGH was not as efficient at mobilizing lipids for VLDL secretion and exhibited an altered distribution within the ER. TGH is a glycoprotein, but glycosylation is not required for catalytic activity. TGH does not hydrolyze apolipoprotein B-associated lipids. This suggests a mechanism for vectored movement of TGs onto developing VLDL in the ER as TGH may mobilize TG for VLDL assembly, but will not access this lipid once it is associated with VLDL.  相似文献   

19.
The assembly of very low density lipoproteins in hepatocytes requires the microsomal triacylglycerol transfer protein (MTP). This microsomal lumenal protein transfers lipids, particularly triacylglycerols (TG), between membranes in vitro and has been proposed to transfer TG to nascent apolipoprotein (apo) B in vivo. We examined the role of MTP in the assembly of apoB-containing lipoproteins in cultured murine primary hepatocytes using an inhibitor of MTP. The MTP inhibitor reduced TG secretion from hepatocytes by 85% and decreased the amount of apoB100 in the microsomal lumen, as well as that secreted into the medium, by 70 and 90%, respectively, whereas the secretion of apoB48 was only slightly decreased and the amount of lumenal apoB48 was unaffected. However, apoB48-containing particles formed in the presence of inhibitor were lipid-poor compared with those produced in the absence of inhibitor. We also isolated a pool of apoB-free TG from the microsomal lumen and showed that inhibition of MTP decreased the amount of TG in this pool by approximately 45%. The pool of TG associated with apoB was similarly reduced. However, inhibition of MTP did not directly block TG transfer from the apoB-independent TG pool to partially lipidated apoB in the microsomal lumen. We conclude that MTP is required for TG accumulation in the microsomal lumen and as a source of TG for assembly with apoB, but normal levels of MTP are not required for transferring the bulk of TG to apoB during VLDL assembly in murine hepatocytes.  相似文献   

20.
The metabolic syndrome (MetS) greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL) in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD). By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP) and blood clearance (ApoC2). These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG), while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the reported association of CD36 variants with MetS risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号