首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The extraembryonic tissues, visceral endoderm (VE) and extraembryonic ectoderm (ExE) are known to be important for the induction of primordial germ cells (PGCs) in mice via activation of the bone morphogenetic protein (BMP) signalling pathway. We investigated whether the VE and ExE have a direct role in the specification of PGCs, or in an earlier event, namely the induction of the PGC precursors in the proximal posterior epiblast cells.

Results

We cultured embryonic day (E) 5.75 to E7.0 mouse embryos in an explant-assay with or without extraembryonic tissues. The reconstituted pieces of embryonic and extraembryonic tissues were assessed for the formation of both PGC precursors and specified PGCs. For this, Blimp1:gfp and Stella:gfp transgenic mouse lines were used to distinguish between PGC precursors and specified PGC, respectively. We observed that the VE regulates formation of an appropriate number of PGC precursors between E6.25–E7.25, but it is not essential for the subsequent specification of PGCs from the precursor cells. Furthermore, we show that the ExE has a different role from that of the VE, which is to restrict localization of PGC precursors to the posterior part of the embryo.

Conclusion

We show that the VE and ExE have distinct roles in the induction of PGC precursors, namely the formation of a normal number of PGC precursors, and their appropriate localization during early development. However, these tissues do not have a direct role during the final stages of specification of the founder population of PGCs.  相似文献   

2.
vasa is essential for germline development. However, the precise processes in which vasa involves vary considerably in diverse animal phyla. Here we show that vasa is required for primordial germ cell (PGC) migration in the medakafish. vasa knockdown by two morpholinos led to the PGC migration defect that was rescued by coinjection of vasa RNA. Interestingly, vasa knockdown did not alter the PGC number, identity, proliferation and motility even at ectopic locations. We established a cell culture system for tracing PGCs at the single cell level in vitro. In this culture system, control and morpholino-injected gastrulae produced the same PGC number and the same time course of PGC survival. Importantly, vasa-depleted PGCs in culture had similar motility and locomotion to normal PGCs. Expression patterns of wt1a, sdf1b and cxcr4b in migratory tissues remained unchanged by vasa knockdown. By chimera formation we show that PGCs from vasa-depleted blastulae failed to migrate properly in the normal environment, whereas control PGCs migrated normally in vasa-disrupted embryos. Furthermore, ectopic PGCs in vasa-depleted embryos also retained all the PGC properties examined. Taken together, medaka vasa is cell-autonomously required for PGC migration, but dispensable to PGC proliferation, motility, identity and survival.  相似文献   

3.
4.
Lo KH  Hui MN  Yu RM  Wu RS  Cheng SH 《PloS one》2011,6(9):e24540

Background

As a global environmental concern, hypoxia is known to be associated with many biological and physiological impairments in aquatic ecosystems. Previous studies have mainly focused on the effect of hypoxia in adult animals. However, the effect of hypoxia and the underlying mechanism of how hypoxia affects embryonic development of aquatic animals remain unclear.

Methodology/Principal Findings

In the current study, the effect of hypoxia on primordial germ cell (PGC) migration in zebrafish embryos was investigated. Hypoxic embryos showed PGC migration defect as indicated by the presence of mis-migrated ectopic PGCs. Insulin-like growth factor (IGF) signaling is required for embryonic germ line development. Using real-time PCR, we found that the mRNA expression levels of insulin-like growth factor binding protein (IGFBP-1), an inhibitor of IGF bioactivity, were significantly increased in hypoxic embryos. Morpholino knockdown of IGFBP-1 rescued the PGC migration defect phenotype in hypoxic embryos, suggesting the role of IGFBP-1 in inducing PGC mis-migration.

Conclusions/Significance

This study provides novel evidence that hypoxia disrupts PGC migration during embryonic development in fish. IGF signaling is shown to be one of the possible mechanisms for the causal link between hypoxia and PGC migration. We propose that hypoxia causes PGC migration defect by inhibiting IGF signaling through the induction of IGFBP-1.  相似文献   

5.

Background

Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds.

Principal Findings

We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring.

Conclusions

The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.  相似文献   

6.
Guidance of primordial germ cell migration by the chemokine SDF-1   总被引:19,自引:0,他引:19  
The signals directing primordial germ cell (PGC) migration in vertebrates are largely unknown. We demonstrate that sdf-1 mRNA is expressed in locations where PGCs are found and toward which they migrate in wild-type as well as in mutant embryos in which PGC migration is abnormal. Knocking down SDF-1 or its receptor CXCR4 results in severe defects in PGC migration. Specifically, PGCs that do not receive the SDF-1 signal exhibit lack of directional movement toward their target and arrive at ectopic positions within the embryo. Finally, we show that the PGCs can be attracted toward an ectopic source of the chemokine, strongly suggesting that this molecule provides a key directional cue for the PGCs.  相似文献   

7.
Insulin-like growth factor (IGF) signaling is a critical regulator of somatic growth during fetal and adult development, primarily through its stimulatory effects on cell proliferation and survival. IGF signaling is also required for development of the reproductive system, although its precise role in this regard remains unclear. We have hypothesized that IGF signaling is required for embryonic germline development, which requires the specification and proliferation of primordial germ cells (PGCs) in an extragonadal location, followed by directed migration to the genital ridges. We tested this hypothesis using loss-of-function studies in the zebrafish embryo, which possesses two functional copies of the Type-1 IGF receptor gene (igf1ra, igf1rb). Knockdown of IGF1Rb by morpholino oligonucleotides (MO) results in mismigration and elimination of primordial germ cells (PGCs), resulting in fewer PGCs colonizing the genital ridges. In contrast, knockdown of IGF1Ra has no effect on PGC migration or number despite inducing widespread somatic cell apoptosis. Ablation of both receptors, using combined MO injections or overexpression of a dominant-negative IGF1R, yields embryos with a PGC-deficient phenotype similar to IGF1Rb knockdown. TUNEL analyses revealed that mismigrated PGCs in IGF1Rb-deficient embryos are eliminated by apoptosis; overexpression of an antiapoptotic gene (Bcl2l) rescues ectopic PGCs from apoptosis but fails to rescue migration defects. Lastly, we show that suppression of IGF signaling leads to quantitative changes in the expression of genes encoding CXCL-family chemokine ligands and receptors involved in PGC migration. Collectively, these data suggest a novel role for IGF signaling in early germline development, potentially via cross-talk with chemokine signaling pathways.  相似文献   

8.
In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. Work in Drosophila, C. elegans, Xenopus, and zebrafish has shown that maternally provided localized cytoplasmic determinants specify the germ line in these organisms (Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. Nat. Rev., Genet. 4, 690--700; Santos, A.C., Lehmann, R., 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578-R589). The Drosophila RNA-binding protein, Staufen is required for germ cell formation, and mutations in stau result in a maternal effect grandchild-less phenotype (Schupbach,T., Weischaus, E., 1989. Female sterile mutations on the second chromosome of Drosophila melanogaster:1. Maternal effect mutations. Genetics 121, 101-17). Here we describe the functions of two zebrafish Staufen-related proteins, Stau1 and Stau2. When Stau1 or Stau2 functions are compromised in embryos by injecting antisense morpholino modified oligonucleotides or dominant-negative Stau peptides, germ layer patterning is not affected. However, expression of the PGC marker vasa is not maintained. Furthermore, expression of a green fluorescent protein (GFP):nanos 3'UTR fusion protein in germ cells shows that PGC migration is aberrant, and the mis-migrating PGCs do not survive in Stau-compromised embryos. Stau2 is also required for survival of neurons in the central nervous system (CNS). These phenotypes are rescued by co-injection of Drosophila stau mRNA. Thus, staufen has an evolutionarily conserved function in germ cells. In addition, we have identified a function for Stau proteins in PGC migration.  相似文献   

9.
Connexin 43 knockout (Cx43alpha1KO) mice exhibit germ cell deficiency, but the underlying cause for the germ cell defect was unknown. Using an Oct4-GFP reporter transgene, we tracked the distribution and migration of primordial germ cells (PGCs) in the Cx43alpha1KO mouse embryo. Analysis with dye injections showed PGCs are gap-junction-communication competent, with dye coupling being markedly reduced in Cx43alpha1-deficient PGCs. Time-lapse videomicroscopy and motion analysis showed that the directionality and speed of cell motility were reduced in the Cx43alpha1KO PGCs. This was observed both in E8.5 and E11.5 embryos. By contrast, PGC abundance did not differ between wild-type and heterozygous/homozygous Cx43alpha1KO embryos until E11.5, when a marked reduction in PGC abundance was detected in the homozygous Cx43alpha1KO embryos. This was accompanied by increased PGC apoptosis and increased expression of activated p53. Injection of alpha-pifithrin, a p53 antagonist, inhibited PGC apoptosis and prevented the loss of PGC. Analysis using a cell adhesion assay indicated a reduction in beta1-integrin function in the Cx43alpha1KO PGCs. Together with the abnormal activation of p53, these findings suggest the possibility of anoikis-mediated apoptosis. Overall, these findings show Cx43alpha1 is essential for PGC survival, with abnormal p53 activation playing a crucial role in the apoptotic loss of PGCs in the Cx43alpha1KO mouse embryos.  相似文献   

10.
11.
12.
Primordial germ cells (PGCs) are the progenitors of reproductive cells in metazoans and are an important model for the study of cell migration in vivo. Previous reports have suggested that Hedgehog (Hh) protein acts as a chemoattractant for PGC migration in the Drosophila embryo and that downstream signaling proteins such as Patched (Ptc) and Smoothened (Smo) are required for PGC localization to somatic gonadal precursors. Here we interrogate whether Hh signaling is required for PGC migration in vertebrates, using the zebrafish as a model system. We find that cyclopamine, an inhibitor of Hh signaling, causes strong defects in the migration of PGCs in the zebrafish embryo. However, these defects are not due to inhibition of Smoothened (Smo) by cyclopamine; rather, we find that neither maternal nor zygotic Smo is required for PGC migration in the zebrafish embryo. Cyclopamine instead acts independently of Smo to decrease the motility of zebrafish PGCs, in part by dysregulating cell adhesion and uncoupling cell polarization and translocation. These results demonstrate that Hh signaling is not required for zebrafish PGC migration, and underscore the importance of regulated cell-cell adhesion for cell migration in vivo.  相似文献   

13.
In most species, the cells allocated to the germ line, the primordial germ cells (PGCs) arise very early in embryo-genesis, and migrate to join the somatic cells at the site where the gonad will form. In three widely studied animals; the mouse, the frog and Drosophila, the PGCs associate with the developing gut, from which they migrate during the period of organogenesis to the gonads. During this migration, the germ cell population increases by an amount which is more or less constant for a particular species. Genes important in the control of PGC migration and population are being identified in two ways. In invertebrates, and to a lesser extent in mice, genetic approaches have identified important loci or gene products. Culturing PGCs in a variety of conditions has been an alternative approach in mouse embryos. From these latter studies, it is now known that a number of growth factors, released from surrounding tissues, control many aspects of PGC behaviour, including their proliferation, migration, potency, and survival. Attention is also focusing on changes in PGC adhesiveness during migration.  相似文献   

14.
Cell death in the germ line is controlled by both positive and negative mechanisms that maintain the appropriate number of germ cells and that prevent the possible formation of germ cell tumors. In the mouse embryo, Steel/c-Kit signaling is required to prevent migrating primordial germ cells (PGCs) from undergoing Bax-dependent apoptosis. In our current study, we show that migrating PGCs also undergo apoptosis in Nanos3-null embryos. We assessed whether the Bax-dependent apoptotic pathway is responsible for this cell death by knocking out the Bax gene together with the Nanos3 gene. Differing from Steel-null embryos, however, the Bax elimination did not completely rescue PGC apoptosis in Nanos3-null embryos, and only a portion of the PGCs survived in the double knockout embryo. We further established a mouse line, Nanos3-Cre-pA, to undertake lineage analysis and our results indicate that most of the Nanos3-null PGCs die rather than differentiate into somatic cells, irrespective of the presence or absence of Bax. In addition, a small number of surviving PGCs in Nanos3/Bax-null mice are maintained and differentiate as male and female germ cells in the adult gonads. Our findings thus suggest that heterogeneity exists in the PGC populations and that Nanos3 maintains the germ cell lineage by suppressing both Bax-dependent and Bax-independent apoptotic pathways.  相似文献   

15.
Directional migration of primordial germ cells (PGCs) toward future gonads is a common feature in many animals. In zebrafish, mouse and chicken, SDF-1/CXCR4 chemokine signaling has been shown to have an important role in PGC migration. In Xenopus, SDF-1 is expressed in several regions in embryos including dorsal mesoderm, the target region that PGCs migrate to. CXCR4 is known to be expressed in PGCs. This relationship is consistent with that of more well-known animals. Here, we present experiments that examine whether chemokine signaling is involved in PGC migration of Xenopus. We investigate: (1) Whether injection of antisense morpholino oligos (MOs) for CXCR4 mRNA into vegetal blastomere containing the germ plasm or the precursor of PGCs disturbs the migration of PGCs? (2) Whether injection of exogenous CXCR4 mRNA together with MOs can restore the knockdown phenotype? (3) Whether the migratory behavior of PGCs is disturbed by the specific expression of mutant CXCR4 mRNA or SDF-1 mRNA in PGCs? We find that the knockdown of CXCR4 or the expression of mutant CXCR4 in PGCs leads to a decrease in the PGC number of the genital ridges, and that the ectopic expression of SDF-1 in PGCs leads to a decrease in the PGC number of the genital ridges and an increase in the ectopic PGC number. These results suggest that SDF-1/CXCR4 chemokine signaling is involved in the migration and survival or in the differentiation of PGCs in Xenopus.  相似文献   

16.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAr) provides attractive cues to Drosophila germ cells, guiding them toward the embryonic gonad. However, it remains unclear how HMGCoAr mediates this attraction. In a genomic analysis of the HMGCoAr pathway, we found that the fly genome lacks several enzymes required for cholesterol biosynthesis, ruling out cholesterol and cholesterol-derived proteins as mediators of PGC migration. Genetic analysis of the pathway revealed that two enzymes, farnesyl-diphosphate synthase and geranylgeranyl-diphosphate synthase, required for the production of isoprenoids, act downstream of HMGCoAr in germ cell migration. Consistent with a role in geranylgeranylation, embryos deficient in geranylgeranyl transferase type I show germ cell migration defects. Our data, together with similar findings in zebrafish, implicate an isoprenylated protein in germ cell attraction. The specificity and evolutionary conservation of the HMGCoAr pathway for germ cells suggest that an attractant common to invertebrates and vertebrates guides germ cells in early embryos.  相似文献   

17.

Background

Primordial germ cells (PGC) are the precursors of the gametes. During pre-natal development, PGC undergo an epigenetic reprogramming when bulk DNA demethylation occurs and is followed by sex-specific de novo methylation. The de novo methylation and the maintenance of the methylation patterns depend on DNA methyltransferases (DNMTs). PGC reprogramming has been widely studied in mice but not in rats. We have previously shown that the rat might be an interesting model to study germ cell development. In face of the difficulties of getting enough PGC for molecular studies, the aim of this study was to propose an alternative method to study rat PGC DNA methylation. Rat embryos were collected at 14, 15 and 19 days post-coitus (dpc) for the analysis of 5mC, 5hmC, DNMT1, DNMT3a and DNMT3b expression or at 16dpc for treatment 5-Aza-CdR, a DNMT inhibitor, in vitro.

Methods

Once collected, the gonads were placed in 24-well plates previously containing 45μm pore membrane and medium with or without 5-Aza-CdR. The culture was kept for five days and medium was changed daily. The gonads were either fixed or submitted to RNA extraction.

Results

5mC and DNMTs labelling suggests that PGC are undergoing epigenetic reprogramming around 14/15dpc. The in vitro treatment of rat embryonic gonads with 1 μM of 5-Aza-CdR lead to a loss of 5mC labelling and to the activation of Pax6 expression in PGC, but not in somatic cells, suggesting that 5-Aza-CdR promoted a PGC-specific global DNA hypomethylation.

Conclusions

This study suggests that the protocol used here can be a potential method to study the wide DNA demethylation that takes place during PGC reprogramming.
  相似文献   

18.
19.
Early in embryonic development, primordial germ cells (PGCs) are specified and migrate from the site of their origin to where the gonad develops, following a specific route. Heparan sulfate glycosaminoglycans (HS-GAGs) are ubiquitous in extracellular matrix and the cell surface and have long been speculated to play a role during the migration of PGCs. In line with this speculation, whole-mount immunohistochemistry revealed the existence of HS-GAGs in the vicinity of migrating PGCs in early zebrafish embryos. To examine the roles of HS-GAGs during PGC migration, zebrafish heparanase 1 (hpse1), which degrades HS-GAGs, was cloned and overexpressed specifically in PGCs. The guidance signal for the migration of PGCs was disrupted with the overexpression of hpse1, as cluster formation and marginal localization at the blastoderm were significantly perturbed at 6 hours postfertilization. Furthermore, the number of PGCs was significantly decreased with the lack of vicinal HS-GAGs, as observed in the whole-mount in situ hybridization and quantitative PCR of the PGC marker gene vasa. Terminal deoxynucleotidyl transferase dUTP nick-end labeling indicated significantly increased apoptosis in PGCs overexpressing hpse1, suggesting that HS-GAGs contribute to the maintenance of PGC survival. In conclusion, HS-GAGs play multifaceted roles in PGCs during migration and are required both for guidance signals and multiplication of PGCs.  相似文献   

20.
Primordial germ cell (PGC) development in Xenopus embryos relies on localised maternal determinants. We report on the identification and functional characterisation of such one novel activity, a germ plasm associated mRNA encoding for the Xenopus version of a kinesin termed KIF13B. Modulations of xKIF13B function result in germ cell mismigration and in reduced numbers of such cells. PGCs explanted from Xenopus embryos form bleb-like protrusions enriched in PIP3. Knockdown of xKIF13B results in inhibition of blebbing and PIP3 accumulation. Interference with PIP3 synthesis leads to PGC mismigration in vivo and in vitro. We propose that xKIF13B function is linked to polarized accumulation of PIP3 and directional migration of the PGCs in Xenopus embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号