首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.  相似文献   

2.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

3.
4.
Regulation of glucose transport in skeletal muscle.   总被引:3,自引:0,他引:3  
The entry of glucose into muscle cells is achieved primarily via a carrier-mediated system consisting of protein transport molecules. GLUT-1 transporter isoform is normally found in the sarcolemmal (SL) membrane and is thought to be involved in glucose transport under basal conditions. With insulin stimulation, glucose transport is accelerated by translocating GLUT-4 transporters from an intracellular pool out to the T-tubule and SL membranes. Activation of transporters to increase the turnover number may also be involved, but the evidence is far from conclusive. When insulin binds to its receptor, it autophosphorylates tyrosine and serine residues on the beta-subunit of the receptor. The tyrosine residues are thought to activate tyrosine kinases, which in turn phosphorylate/activate as yet unknown second messengers. Insulin receptor antibodies, however, have been reported to increase glucose transport without increasing kinase activity. Insulin resistance in skeletal muscle is a major characteristic of obesity and diabetes mellitus, especially NIDDM. A decrease in the number of insulin receptors and the ability of insulin to activate receptor tyrosine kinase has been documented in muscle from NIDDM patients. Most studies report no change in the intracellular pool of GLUT-4 transporters available for translocation to the SL. Both the quality and quantity of food consumed can regulate insulin sensitivity. A high-fat, refined sugar diet, similar to the typical U.S. diet, causes insulin resistance when compared with a low-fat, complex-carbohydrate diet. On the other hand, exercise increases insulin sensitivity. After an acute bout of exercise, glucose transport in muscle increases to the same level as with maximum insulin stimulation. Although the number of GLUT-4 transporters in the sarcolemma increases with exercise, neither insulin or its receptor is involved. After an initial acute phase, which may involve calcium as the activator, a secondary phase of increased insulin sensitivity can last for up to a day after exercise. The mechanism responsible for the increased insulin sensitivity with exercise is unknown. Regular exercise training also increases insulin sensitivity, which can be documented several days after the final bout of exercise, and again the mechanism is unknown. An increase in the muscle content of GLUT-4 transporters with training has recently been reported. Even though significant progress has been made in the past few years in understanding glucose transport in skeletal muscle, the mechanisms involved in regulating transport are far from being understood.  相似文献   

5.
We investigated the effect of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) on 3-O-methylglucose transport in incubated human skeletal muscle strips. Increasing physiological concentrations of IGF-II stimulated glucose transport in a dose-dependent manner. Glucose transport was maximally stimulated in the presence of 100 ng/ml (13.4 nM) of IGF-II, which corresponded to the effect obtained by 100 microU/ml (0.6 nM) of insulin. Exposure of muscle strips to IGFBP-1 (500 ng/ml) inhibited the maximal effect of IGF-II on glucose transport by 40%. Thus, it is conceivable that IGF-II and IGFBP-1 are physiological regulators of the glucose transport process in human skeletal muscle.  相似文献   

6.
The p66(Shc) protein isoform regulates MAP kinase activity and the actin cytoskeleton turnover, which are both required for normal glucose transport responses. To investigate the role of p66(Shc) in glucose transport regulation in skeletal muscle cells, L6 myoblasts with antisense-mediated reduction (L6/p66(Shc)as) or adenovirus-mediated overexpression (L6/p66(Shc)adv) of the p66(Shc) protein were examined. L6/(Shc)as myoblasts showed constitutive activation of ERK-1/2 and disruption of the actin network, associated with an 11-fold increase in basal glucose transport. GLUT1 and GLUT3 transporter proteins were sevenfold and fourfold more abundant, respectively, and were localized throughout the cytoplasm. Conversely, in L6 myoblasts overexpressing p66(Shc), basal glucose uptake rates were reduced by 30% in parallel with a approximately 50% reduction in total GLUT1 and GLUT3 transporter levels. Inhibition of the increased ERK-1/2 activity with PD98059 in L6/(Shc)as cells had a minimal effect on increased GLUT1 and GLUT3 protein levels, but restored the actin cytoskeleton, and reduced the abnormally high basal glucose uptake by 70%. In conclusion, p66(Shc) appears to regulate the glucose transport system in skeletal muscle myoblasts by controlling, via MAP kinase, the integrity of the actin cytoskeleton and by modulating cellular expression of GLUT1 and GLUT3 transporter proteins via ERK-independent pathways.  相似文献   

7.
We have studied the role of the insulin receptor (IR) in metabolic and growth-promoting effects of insulin on primary cultures of skeletal muscle derived from the limb muscle of IR null mice. Cultures of IR null skeletal muscle displayed normal morphology and spontaneous contractile activity. Expression of muscle-differentiating proteins was slightly reduced in myoblasts and myotubes of the IR null skeletal muscle cells, whereas that of the Na+/K+ pump appeared to be unchanged. Insulin-like growth factor receptor (IGFR) expression was higher in myoblasts from IR knockout (IRKO) than from IR wild-type (IRWT) mice but was essentially unchanged in myotubes. Expression of the GLUT-1 and GLUT-4 transporters appeared to be higher in IRKO than in IRWT myoblasts and was significantly greater in myotubes from IRKO than from IRWT cultures. Consistent with GLUT expression, both basal and insulin or insulin-like growth factor I (IGF-I)-stimulated glucose uptakes were higher in IR null skeletal myotubes than in wild-type skeletal myotubes. Interestingly, autophosphorylation of IGFR induced by insulin and IGF-I was markedly increased in IR null skeletal myotubes. These results indicate that, in the absence of IR, there is a compensatory increase in basal as well as in insulin- and IGF-I-induced glucose transport, the former being mediated via increased activation of the IGF-I receptor.  相似文献   

8.
Stimulation of glucose transport in skeletal muscle by hypoxia   总被引:5,自引:0,他引:5  
Hypoxia caused a progressive cytochalasin B-inhibitable increase in the rate of 3-O-methylglucose transport in rat epitrochlearis muscles to a level approximately six-fold above basal. Muscle ATP concentration was well maintained during hypoxia, and increased glucose transport activity was still present after 15 min of reoxygenation despite repletion of phosphocreatine. However, the increase in glucose transport activity completely reversed during a 180-min-long recovery in oxygenated medium. In perfused rat hindlimb muscles, hypoxia caused an increase in glucose transporters in the plasma membrane, suggesting that glucose transporter translocation plays a role in the stimulation of glucose transport by hypoxia. The maximal effects of hypoxia and insulin on glucose transport activity were additive, whereas the effects of exercise and hypoxia were not, providing evidence suggesting that hypoxia and exercise stimulate glucose transport by the same mechanism. Caffeine, at a concentration too low to cause muscle contraction or an increase in glucose transport by itself, markedly potentiated the effect of a submaximal hypoxic stimulus on sugar transport. Dantrolene significantly inhibited the hypoxia-induced increase in 3-O-methylglucose transport. These effects of caffeine and dantrolene suggest that Ca2+ plays a role in the stimulation of glucose transport by hypoxia.  相似文献   

9.
10.
Contraction signaling to glucose transport in skeletal muscle.   总被引:6,自引:0,他引:6  
Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transport in skeletal muscle is dependent on the translocation of GLUT4 glucose transporters to the cell surface. It has long been believed that there are two major signaling mechanisms leading to GLUT4 translocation. One mechanism is insulin-activated signaling through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The other is an insulin-independent signaling mechanism that is activated by contractions, but the mediators of this signal are still unknown. Accumulating evidence suggests that the energy-sensing enzyme AMP-activated protein kinase plays an important role in contraction-stimulated glucose transport. However, more recent studies in transgenic and knockout animals show that AMP-activated protein kinase is not the sole mediator of the signal to GLUT4 translocation and suggest that there may be redundant signaling pathways leading to contraction-stimulated glucose transport. The search for other possible signal intermediates is ongoing, and calcium, nitric oxide, bradykinin, and the Akt substrate AS160 have been suggested as possible candidates. Further research is needed because full elucidation of an insulin-independent signal leading to glucose transport would be a promising pharmacological target for the treatment of Type 2 diabetes.  相似文献   

11.
We have recently reported that male rats given liquid fructose ingestion exhibit features of cardiometabolic abnormalities including non-obese insulin resistance with impaired insulin signaling transduction in skeletal muscle (Rattanavichit Y et al. Am J Physiol Regul Integr Comp Physiol 311: R1200-R1212, 2016). While exercise can attenuate obesity-related risks of cardiometabolic syndrome, the effectiveness and potential mechanism by which exercise modulates non-obese insulin resistance have not been fully studied. The present investigation evaluated whether regular exercise by voluntary wheel running (VWR) can reduce cardiometabolic risks induced by fructose ingestion. Moreover, the potential cellular adaptations following VWR on key signaling proteins known to influence insulin-induced glucose transport in skeletal muscle of fructose-ingested rats were investigated. Male Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) without or with access to running wheel for 6 weeks. We demonstrated that VWR restored insulin-stimulated glucose transport in the soleus muscle by improving the functionality of several signaling proteins, including insulin-stimulated IRβ Tyr1158/Tyr1162/Tyr1163 (82%), IRS-1 Tyr989 (112%), Akt Ser473 (56%), AS160 Thr642 (76%), and AS160 Ser588 (82%). These effects were accompanied by lower insulin-stimulated phosphorylation of IRS-1 Ser307 (37%) and JNK Thr183/Tyr185 (49%), without significant changes in expression of proteins in the renin-angiotensin system. Intriguingly, multiple cardiometabolic abnormalities were not observed in fructose-ingested rats with access to VWR. Collectively, this study demonstrates that the development of cardiometabolic abnormalities as well as insulin resistance of skeletal muscle and defective signaling molecules in rats induced by fructose ingestion could be opposed by VWR.  相似文献   

12.
A self-regulatory mechanism of the glucose transport in rat skeletal muscle cells is described. In isolated rat soleus muscles and rat skeletal myocytes and myotubes in culture, pre-exposure to varying glucose concentrations modulated the rate of 2-deoxyglucose uptake. Maximal uptake was observed at glucose concentrations below 3 mM. Between 2.5 and 4.0 mM glucose it was reduced by 25-35%; further elevation of the glucose concentration resulted in a gradual decrease of the transport rate by approximately 2% for each millimolar glucose. The effect of glucose was time-dependent and fully reversible. Insulin rapidly increased the 2-deoxyglucose uptake in the soleus muscle; however, the insulin effect depended on the glucose concentration of the preincubation. Insulin was totally ineffective in muscles pre-exposed to 1.0-3.0 mM glucose, whereas its stimulatory action increased with increasing glucose concentrations above 4 mM. The effect of low glucose and insulin were not additive, and the maximal 2-deoxyglucose uptake rates induced by both conditions were of identical magnitude. It is postulated that glucose may "up- and down-regulate" its transport by affecting the number of active glucose transporters in the plasma membrane, and that insulin exerts its stimulatory effect only when the extracellular glucose reaches a threshold concentration.  相似文献   

13.
14.
Oxidative stress can impact the regulation of glucose transport activity in a variety of cell lines. In the present study, we assessed the direct effects of an oxidant stress on the glucose transport system in intact mammalian skeletal muscle preparations. Type IIb (epitrochlearis) and type I (soleus) muscles from insulin-sensitive lean Zucker rats were incubated in 8 mM glucose for 2 h in the absence or presence of 100 mU/ml glucose oxidase to produce the oxidant hydrogen peroxide (H(2)O(2)) (60-90 microM). Glucose transport, glycogen synthase activity, and metabolic signaling factors were then assessed. H(2)O(2) significantly (p < 0.05) activated basal glucose transport and glycogen synthase activities and increased insulin receptor tyrosine phosphorylation, insulin receptor substrate-1 associated with the p85 subunit of phosphatidylinositol-3' kinase (PI3-kinase), and Ser(473) phosphorylation of Akt in both muscle types. This induction of glucose transport by the oxidant stress was prevented by the PI3-kinase inhibitor wortmannin. The oxidant stress also significantly increased phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and 5'-AMP-dependent protein kinase. Interestingly, selective inhibition of p38 MAPK using A304000 substantially reduced the activation of glucose transport induced by the oxidant stress. These results support a direct role for oxidative stress in the activation of the glucose transport system in mammalian skeletal muscle and indicate that this process involves engagement of and possible interactions between the PI3-kinase-dependent signaling pathway and activation of p38 MAPK.  相似文献   

15.
Evidence that nitric oxide increases glucose transport in skeletal muscle   总被引:10,自引:0,他引:10  
Balon, Thomas W., and Jerry L. Nadler. Evidence thatnitric oxide increases glucose transport in skeletal muscle.J. Appl. Physiol. 82(1): 359-363, 1997.Nitric oxide synthase (NOS) is expressed in skeletal muscle.However, the role of nitric oxide (NO) in glucose transport in thistissue remains unclear. To determine the role of NO in modulatingglucose transport, 2-deoxyglucose (2-DG) transport was measured in ratextensor digitorum longus (EDL) muscles that were exposed to either amaximally stimulating concentration of insulin or to an electricalstimulation protocol, in the presence ofNG-monomethyl-L-arginine,a NOS inhibitor. In addition, EDL preparations were exposed to sodiumnitroprusside (SNP), an NO donor, in the presence of submaximal andmaximally stimulating concentrations of insulin. NOS inhibition reducedboth basal and exercise-enhanced 2-DG transport but had no effect oninsulin-stimulated 2-DG transport. Furthermore, SNP increased 2-DGtransport in a dose-responsive manner. The effects of SNP and insulinon 2-DG transport were additive when insulin was present inphysiological but not in pharmacological concentrations. Chronictreadmill training increased protein expression of both type I and typeIII NOS in soleus muscle homogenates. Our results suggest that NO maybe a potential mediator of exercise-induced glucose transport.

  相似文献   

16.
In vivo calorie restriction [CR; consuming 60% of ad libitum (AL) intake] induces elevated insulin-stimulated glucose transport (GT) in skeletal muscle. The mechanisms triggering this adaptation are unknown. The aim of this study was to determine whether physiological reductions in extracellular glucose and/or insulin, similar to those found with in vivo CR, were sufficient to elevate GT in isolated muscles. Epitrochlearis muscles dissected from rats were incubated for 24 h in media with glucose (8 mM) and insulin (80 microU/ml) at levels similar to plasma values of AL-fed rats and compared with muscles incubated with glucose (5.5 mM) and/or insulin (20 microU/ml) at levels similar to plasma values of CR rats. Muscles incubated with CR levels of glucose and insulin for 24 h had a subsequently greater (P < 0.005) GT with 80 microU/ml insulin and 8 mM [(3)H]-3-O-methylglucose but unchanged GT without insulin. Reducing only glucose or insulin for 24 h or both glucose and insulin for 6 h did not induce altered GT. Increased GT after 24-h incubation with CR levels of glucose and insulin was not attributable to increased insulin receptor tyrosine phosphorylation, Akt serine phosphorylation, or Akt substrate of 160 kDa phosphorylation. Nor did 24-h incubation with CR levels of glucose and insulin alter the abundance of insulin receptor, insulin receptor substrate-1, GLUT1, or GLUT4 proteins. These results provide the proof of principle that reductions in extracellular glucose and insulin, similar to in vivo CR, are sufficient to induce an increase in insulin-stimulated glucose transport comparable to the increase found with in vivo CR.  相似文献   

17.
18.
Evidence suggests that increased hydrolysis and/or uptake of triglyceride-rich lipoprotein particles in skeletal muscle can be involved in insulin resistance. We determined the steady state mRNA levels of the low-density lipoprotein-related receptor (LRP) and lipoprotein lipase (LPL) in skeletal muscle of eight healthy lean control subjects, eight type 2 diabetic patients and eight nondiabetic obese individuals. The regulation by insulin of LRP and LPL mRNA expression was also investigated in biopsies taken before and at the end of a 3 h euglycemic hyperinsulinemic clamp (insulinemia of about 1 nM). LRP mRNA was expressed in human skeletal muscle (1.3+/-0.1 amol/microg total RNA in control subjects). Type 2 diabetic patients, but not nondiabetic obese subjects, were characterized by a reduced expression of LRP (0.8+/-0.2 and 1.3+/-0.3 amol/microg total RNA in diabetic and obese patients, respectively; P<0.05 in diabetic vs. control subjects). Insulin infusion decreased LRP mRNA levels in muscle of the control subjects but not in muscle of type 2 diabetic and nondiabetic obese patients. Similar results were found when investigating the regulation of the expression of LPL. Taken together, these results did not support the hypothesis that a higher capacity for clearance or hydrolysis of circulating triglycerides in skeletal muscle is present during obesity- or type 2 diabetes-associated insulin resistance.  相似文献   

19.
Differentiated rat L6 skeletal muscle cell cultures maintained in glucose-deficient medium containing 25 mM xylose displayed a rapid, reversible, time- and concentration-dependent 3-5-fold increase in glucose transport activity. Glucose deprivation in the continuous presence of insulin (24 h) resulted in an overall 9-10-fold stimulation of glucose transport activity. In contrast, acute (30 min) and chronic (24 h) insulin treatment of L6 cells maintained in high glucose (25 mM)-containing medium resulted in a 1.5- and 4-fold induction of glucose transport activity, respectively. Acute glucose deprivation and/or insulin treatment had no significant effect on the total amount of glucose transporter protein, whereas the long-term insulin- and glucose-dependent regulation of glucose transport activity directly correlated with an increase in the cellular expression of the glucose transporter protein. In situ hybridization of the L6 cells demonstrated a 3-, 4-, and 6-fold increase in glucose transporter mRNA induced by glucose deprivation, insulin, and glucose deprivation plus insulin treatments, respectively. Similarly, Northern blot analysis of total RNA isolated from glucose-deprived, insulin, and glucose-deprived plus insulin-treated cells resulted in a 4-, 3-, and 9-fold induction of glucose transporter mRNA, respectively. The continuous presence of insulin in the medium, either in the presence or absence of glucose, resulted in a transient alteration of the glucose transporter mRNA. The relative amount of the glucose transporter mRNA was maximally increased at 6-12 h which subsequently returned to the basal steady-state level within 48 h. These data demonstrate a role for insulin and glucose in the overall regulation of glucose transporter gene expression which may account for the alteration of glucose transporter activity of muscle tissue observed in pathophysiological states such as type II diabetes mellitus.  相似文献   

20.
Glucose transport into muscle cells occurs through facilitated diffusion mediated primarily by the GLUT1 and GLUT4 glucose transporters. These transporter proteins are controlled by acute and chronic exposure to insulin, glucose, muscle contraction, and hypoxia. We propose that acute responses occur through recruitment of pre-formed glucose transporters from an intracellular storage site to the plasma membrane. In contrast, chronic control is achieved by changes in transporter biosynthesis and protein stability. Using subcellular fractionation of rat skeletal muscle, recruitment of GLUT4 glucose transporters to the plasma membrane is demonstrated by acute exposure to insulin in vivo. The intracellular pool appears to arise from a unique organelle depleted of transverse tubule, plasma membrane, or sarcoplasmic reticulum markers. In diabetic rats, GLUT4 content in the plasma membranes and in the intracellular pool is reduced, and incomplete insulin-dependent GLUT4 recruitment is observed, possibly through a defective incorporation of transporters to the plasma membrane. The lower content of GLUT4 transporters in the muscle plasma membranes is reversed by restoration of normoglycemia with phlorizin treatment. In some muscle cells in culture, GLUT1 is the only transporter expressed yet they respond to insulin, suggesting that this transporter can also be regulated by acute mechanisms. In the L6 muscle cell line, GLUT1 transporter content diminishes during myogenesis and GLUT4 appears after cell fusion, reaching a molar ratio of about 1:1 in the plasma membrane. Prolonged exposure to high glucose diminishes the amount of GLUT1 protein in the plasma membrane by both endocytosis and reduced biosynthesis, and lowers GLUT4 protein content in the absence of changes in GLUT4 mRNA possibly through increased protein degradation. These studies suggest that the relative contribution of each transporter to transport activity, and the mechanisms by which glucose exerts control of the glucose transporters, will be key subjects of future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号