首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cyclic AMP inhibits growth rate of E. coli Hfr 3000. Doubling times in glucose minimal medium increased from 60 to about 90 minutes with the addition of 5 mM cAMP. This effect is specific since it was not observed when the cyclic nucleotide was replaced by 5′ AMP, ADP, ATP or adenosine. Half maximal inhibition was obtained with 1 to 3 mM cyclic AMP. This inhibition occurs only with those carbon sources which are known to decrease intracellular cyclic AMP levels, i.e. glucose and pyruvate. No inhibition was observed with succinate, malate or glycerol.  相似文献   

3.
Cyclic adenosine 3',5'-monophosphate (cAMP) dependent protein kinase and proteins specifically binding cAMP have been extracted from calf thymus nuclei and analyzed for their abilities to bind to DNA. Approximately 70% of the cAMP-binding activity in the nucleus can be ascribed to a nuclear acidic protein with physical and biochemical characteristics of the regulatory (R) subunit of cAMP-dependent protein kinase. Several peaks of protein kinase activity and of cAMP-binding activity are resolved by affinity chromatography of nuclear acidic proteins on calf thymus DNA covalently linked to aminoethyl Sephrarose 4B. When an extensively purified protein kinase is subjected to chromatography on the DNA column in the presence of 10(-7) M cAMP, the R subunit of the kinase is eluted from the column at 0.05 M NaCl while the catalytic (C) subunit of the enzyme is eluted at 0.1-0.2 M NaCl. When chromatographed in the presence of histones, the R subunit is retained on the column and is eluted at 0.6-0.9 M NaCl. In the presence of cAMP, association of the C subunit with DNA is enhanced, as determined by sucrose density gradient centrifugation of DNA-protein kinase complexes. cAMP increases the capacity of the calf thymus cAMP-dependent protein kinase preparation to bind labeled calf thymus DNA, as determined by a technique employing filter retention of DNA-protein complexes. This protein kinase preparation binds calf thymus DNA in preference to salmon DNA, Escherichia coli DNA, or yeast RNA. Binding of protein kinases to DNA may be part of a mechanism for localizing cyclic nucleotide stimulated protein phosphorylation at specific sites in the chromatin.  相似文献   

4.
Inhibition of E. coli growth by cyclic adenosine monophosphate is observed in wild type strains cultured in glucose as carbon source, but not in a cyclic AMP receptor protein deficient mutant. A deletion mutant of the adenylate cyclase gene requires cyclic adenosine monophosphate for optimal growth. Using glucose as carbon source, 2 mM cyclic AMP promotes maximal rates of cell multiplication in this mutant; however higher concentrations of the nucleotide inhibit growth. Cell multiplication of wild type strains grown in glycerol is not affected by cyclic adenosine monophosphate. Nevertheless, in this carbon source the growth rate of the adenylate cyclase mutant is strongly inhibited by concentrations of this nucleotide beyond 0.1 mM. This suggests that growth inhibition by exogenous cyclic adenosine monophosphate is highly dependent on the intracellular levels of the nucleotide.  相似文献   

5.
Binding sites for [3H]cAMP on purified regulatory dimers of type II A-kinase (II-R2) are independent as assessed by equilibrium binding (KD = 6 +/- 1.3 nM at pH 7.2, 25 degrees; nH = 1.0) and by the lack of effect of unlabeled cAMP on dissociation rate (kd = 1.0 X 10(-3) sec -1 at pH 7.2, 25 degrees). In contrast, binding sites for [3H]cGMP on purified G-kinase displayed positively cooperative interactions in both equilibrium and dissociation assays with convex upward Scatchard plots, an nH of 1.6 and a dissociation rate (kd = 6.2 X 10(-3) sec-1 at pH 6.8, 0 degree) which was slowed by excess unlabeled cGMP (kd = 1.13 X 10(-3) sec-1 at pH 6.8, degree). Calculated transition state free energies of dissociation revealed that dissociation of nucleotide from G-kinase in the presence of cGMP was restrained by an energy barrier (20.8 kcal.mol-1) similar to that of II-R2 (20.9 kcal.mol-1), whereas dissociation from G-kinase without excess nucleotide occurred more easily (18.9 kcal.mol-1).  相似文献   

6.
The intracellular distribution of phosphodiesterase [EC 3.1.4.17] induced by cyclic adenosine 3',5'-monophosphate (cAMP) in Dictyostelium discoideum was studied. When cAMP-treated cells were homogenized and fractionated according to the method of de Duve et al. ((1955) Biochem, J. 60, 604), the specific activity of phosphodiesterase was highest in the light mitochondrial fraction. Peaks of specific activities of alkaline phosphatase (marker enzyme of membrane) and catalase (marker enzyme of peroxisomes) also appeared in the same fraction as phosphodiesterase. However, after centrifugation of the light mitochondrial fraction in a sucrose density gradient, the activity of phosphodiesterase was clearly separated with that of catalase (density 1.19 g/ml) and showed three peaks at lower density (1.10, 1.13, 1.17 g/ml) with good reproducibility. Some parts (1.13, 1.17 g/ml) of the activity in the gradient overlapped with alkaline phosphatase activity, but in the density fraction of 1.10 g/ml the activity of alkaline phosphatase was hardly detectable. When the light mitochondrial fraction was treated with Emulgen 108, or sonicated, phosphodiesterase was more easily solubilized than alkaline phosphatase and catalase, and was found in supernate after centrifugation at 20,000 X g for 30 min. In order to distinguish the locations of the three enzymes, the supernatant of the light mitochondrial fraction treated with Emulgen 108 was subjected to charge shift electrophoresis. The electrophoretic mobilities of phosphodiesterase and catalase were unaffected by ionic detergent. However, alkaline phosphatase shifted towards the anode in the presence of anionic detergent (sodium deoxycholate), and shifted towards the cathode in cationic detergent (cetyltrimethylammonium bromide), relative to nonionic detergent (Emulgen 108) alone. Thus, some part of the phosphodiesterase induced by cAMP may be associated with the plasma membrane, but the remainder is localized in some kind of intracellular particle of lower density. Moreover, the association with the membrane or particle is more easily dissociated than that of alkaline phosphatase, and the liberated phosphodiesterase is rather hydrophilic.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Human pancreas tumor growth hormone-releasing factor (hpGRF) induced more cellular cyclic adenosine 3':5'-monophosphate (AMP) accumulation and growth hormone release from male than female rat anterior pituitaries in vitro. This was reflected in a change in maximal levels achieved (efficacy) rather than potency, and was not an exclusive effect of hpGRF peptide; prostaglandin E2 also exhibited these effects. These data suggest that the origin of the larger spontaneous peak growth hormone levels in male rats may be within the anterior pituitary gland.  相似文献   

19.
20.
The cAMP-signaling pathway is composed of multiple components ranging from receptors, G proteins, and adenylyl cyclase to protein kinase A. A common view of the molecular interaction between them is that these molecules are disseminated on the plasma lipid membrane and random collide with each other to transmit signals. A limitation to this idea, however, is that a signaling cascade involving multiple components may not occur rapidly. Caveolae and their principal component, caveolin, have been implicated in transmembrane signaling, particularly in G protein-coupled signaling. We examined whether caveolin interacts with adenylyl cyclase, the membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. When overexpressed in insect cells, types III, IV, and V adenylyl cyclase were localized in caveolin-enriched membrane fractions. Caveolin was coimmunoprecipitated with adenylyl cyclase in tissue homogenates and copurified with a polyhistidine-tagged form of adenylyl cyclase by Ninitrilotriacetic acid resin chromatography in insect cells, suggesting the colocalization of adenylyl cyclase and caveolin in the same microdomain. Further, the regulatory subunit of protein kinase A (RIIalpha, but not RIalpha) was also enriched in the same fraction as caveolin. Gsalpha was found in both caveolin-enriched and non-caveolin-enriched membrane fractions. Our data suggest that the cAMP-signaling cascade occurs within a restricted microdomain of the plasma membrane in a highly organized manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号