首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic analysis by PBS-1 transduction and transformation of a large group of pleiotropic negative sporulation mutants has shown that mutations of this phenotype may be located in five genetically distinct regions. The first group of mutant sites, spoA mutations, is located in the terminal region of the chromosome and linked to the lys-1 marker by PBS-1 transduction. The second group, spoB mutations, is located between phe-1 and the attachment site for the lysogenic bacteriophage ϕ 105. Fine structure analysis of the mutant sites within the spoB locus has been accomplished. A third location for mutants of this phenotype, spoE mutants, was found between the metC3 and ura-1 markers. Two mutants were found at this site and both were capable of sporulation, in contrast to the rest of the pleiotropic sporulation mutants. A fourth chromosomal site, spoH mutations, was found near the ribosomal and RNA polymerase loci. A large group of mutant sites, spoF mutations, was found to be linked to each other by recombination index analysis in transformation but unlinked to any of the known auxotrophic mutations comprising the chromosomal map. All mutants analyzed showing a pleiotropic negative phenotype were found to map within one of these five regions. Interspecific transformation with Bacillus amyloliquefaciens as donor has shown that all of the pleiotropic negative sporulation mutations are conserved relative to a selected group of auxotrophic markers. The degree of conservation in decreasing order is: spoH > spoF = spoB > spoA.  相似文献   

2.
Methicillin resistance (mec) is not transduced into Staphylococcus aureus 8325-4, but is transduced into this host after it has been lysogenized with phage phi11 and has acquired the penicillinase plasmid pI524 by a separate transduction (Cohen and Sweeney, 1970, 1973). Strain 8325-4 is competent for transformation of typical plasmid or chromosomal markers and for mec only if it is lysogenic for phi11 or a related prophage (Sj?str?m et al., 1974, 1975). A mutant strain of phi11 that was temperature sensitive (Ts) for vegetative multiplication did not mediate competence for transformation of its 8325-4 lysogen if the lysogen had been grown at a nonpermissive temperature (Sj?str?m and Philipson, 1974). We isolated four Ts mutants of phi11 that did not mediate transducibility of their 8325-4(pI524) lysogens for mec after growth at nonpermissive temperatures (40 to 42 degrees C). Transduction of typical plasmid or chromosomal markers was not affected. These phi11-Ts mutants mediated normal competence of their lysogens for transformation of a tetracycline resistance plasmid. Similarly, phi11-Ts mutants that rendered their lysogens temperature sensitive for transformation did not depress the frequency of transduction of mec. These two types of phi11-Ts mutants fell into two different genetic complementation groups that differed in the physiology of deoxyribonucleic acid synthesis and in the time of expression of the mutations during a single-burst growth cycle at a nonpermissive temperature. A virulent mutant of phi11, which plaqued with 100% efficiency on 8325(phi11), also failed to condition strain 8325-4 for transducibility of mec but retained the ability to confer competence for transformation of a tetracycline resistance plasmid. Different genetic loci and physiological functions are involved in phi11 mutations that affect transducibility of mec and those that affect competence for transformation of markers generally in S. aureus 8325-4.  相似文献   

3.
Factors affecting transformation of Bacillus licheniformis   总被引:22,自引:13,他引:9  
Thorne, Curtis B. (Fort Detrick, Frederick, Md.), and Harold B. Stull. Factors affecting transformation of Bacillus licheniformis. J. Bacteriol. 91:1012-1020. 1966.-Transformation systems involving two types of transformable mutants of Bacillus licheniformis 9945A were compared. Each system required its specific growth medium, but a single transformation medium could be used for both. Cells from a culture of optimal age were not competent, at least to any great extent, but they developed competence during incubation in a transformation medium. With each system, 3 to 5% of the recipient cells were transformed upon exposure to wild-type deoxyribonucleic acid (DNA) for 2 to 3 hr. When competent cells were exposed to DNA for 30 min, 1 to 2% of them were transformed. The data are interpreted to mean that cells were heterogeneous with respect to development of competence, and when properly grown cells were incubated in transformation medium some of them gained competence, whereas others lost it. If DNA was present during the entire period, the cells were transformed as they became competent and the transformants accumulated. However, during any short period of exposure to DNA, only those cells that were competent at the time were potential transformants. The high frequencies of transformation obtained in these studies made it feasible to prepare marked strains by transforming markers into recipient cells. These experiments demonstrated that the characteristics of the two transformation systems could not be attributed to specific nutritional markers. Presumably, each of the two series of highly transformable auxotrophic mutants also carried at least one other mutation that resulted in development of competence under the specific conditions.  相似文献   

4.
Genetic properties of arsenate sensitive mutants of Bacillus subtilis 168   总被引:8,自引:0,他引:8  
Summary Arsenate sensitive mutants were isolated from Bacillus subtilis strain 168 after treatment with N-methyl-N-nitro-N-nitrosoguanidine or ethyl methane sulfonate. Though all mutants are phenotypically identical, a high proportion (40%) of the induced mutations are of a multisite nature as they do not revert spontaneously and are poorly transformable to arsenate resistance with wild type DNA. On the basis of transformation efficiency, UV inactivation kinetics and cotransduction frequency of outside markers, four independently isolated multisite arsenate sensitive mutations are characterized as resulting from large deletions of homogenous size (24000±6000 base pairs). The arsenate resistance locus was mapped between phe and aroD on the B. subtilis chromosome by PBS1 mediated transduction. Mechanisms for the formation of such chromosomal deletions are discussed.Part of the dissertation of Alice Adams Lindahl, presented to New York University in partial fulfillment of requirements for the Ph. D. degree. A preliminary report of this work was presented at the NATO International Symposium, Mol, Belgium, August 1970.  相似文献   

5.
Cellular Sites for the Competence-provoking Factor of Streptococci   总被引:4,自引:1,他引:3       下载免费PDF全文
Immune globulins against competent cells of group H streptococci, strains Challis and Wicky, inhibited genetic transformation to streptomycin resistance when added to competent cultures. Antibodies against noncompetent cells did not inhibit transformation of competent cells. Strain Challis is spontaneously highly transformable. Strain Wicky is very poorly transformable but can be converted to high transformability with the exocellular competence-provoking factor (CPF) produced by strain Challis. Globulins against noncompetent cells of strain Challis and Wicky also inhibited transformation when added to noncompetent cultures prior to conversion to competence. Antibodies against cells of the related strain Blackburn, however, did not inhibit transformation under any circumstances. It is concluded that, although globulins prepared against competent cells block the deoxyribonucleic acid receptor sites present in these cells, the globulins prepared against noncompetent cells prevent conversion to competence by blocking the access of CPF to specific cellular sites for this factor. Strain Blackburn seems not to contain CPF-receptive sites and is, therefore, nontransformable.  相似文献   

6.
We isolated and characterized four Bacillus subtilis competence-deficient mutants. The mutants were obtained by nitrosoguanidine mutagenesis and by screening for mutants unable to be transformed both on solid and in liquid medium. Most of the mutants obtained in this way were tested for their sensitivity to the DNA-damaging agents methyl methanesulfonate, mitomycin C, and UV light. Among the mutants which did not show an increased sensitivity to these agents, four were chosen for further characterization. Data were obtained which indicate that the mutants are reduced in chromosomal and plasmid transformation and in transfection, whereas they are not altered in transduction and in protoplast transformation. Transformation experiments carried out by mixing a culture of a mutant with a culture of a wild-type strain gave some complementation for competence with one of the strains. The mutants were also characterized for their capacity to bind, take up, and break down transforming DNA; furthermore, the four competence mutations were mapped, and the results indicate that they belong to four different genes.  相似文献   

7.
Electroporation of plasmid and chromosomal DNAs were tested in Haemophilus influenzae because of an interest in introducing DNA into mutants that are deficient in competence for transformation. The initial experiments were designed to investigate and optimize conditions for electroporation of H. influenzae. Plasmid DNA was introduced into the competence proficient strain Rd and its competence-deficient uptake mutants com-52, com-59, and com-88, and the recombination deficient mutant rec1. Plasmid DNA could also be electroporated into the non-transforming strains Ra, Rc, Re and Rf. Plasmid DNA without sequences that are involved in tight binding (uptake) of DNA by competent cells of H. influenzae Rd was electroporated into both competent and non-competent cells. Competent cells were several orders of magnitude less efficient than non-competent cells for electroporation of plasmid DNAs. Electroporation of H. influenzae chromosomal DNA was not successful. Low levels of integration of chromosomal markers were observed following electroporation and these could be ascribed to transformation. The treatment of cells with DNasel following electroporation separated the effects due to electroporation from those due to transformation. The DNasel treatment did not affect the efficiency of plasmid incorporation, but severely restricted effects due to natural DNA transformation.  相似文献   

8.
We isolated 28 mutants of Bacillus subtilis deficient in the development of competence by using the transposon Tn917lacZ as a mutagen. The mutant strains were poorly transformable with plasmid and chromosomal DNAs but were normally transducible and exhibited wild-type resistance to DNA-damaging agents. The mutations were genetically mapped, and the mutants were characterized with respect to their abilities to bind and take up radiolabeled DNA. All were defective in uptake, and some failed to bind significant amounts of DNA. The abilities of the mutant strains to resolve into two buoyant density classes on Renografin gradients were studied. Most resolved normally, but several banded in Renografin only at the buoyant density of noncompetent cells. The genetic mapping studies and the other analyses suggested that the mutations define a minimum of seven distinct com genes.  相似文献   

9.
Gallibacterium anatis is a pathogen of poultry. Very little is known about its genetics and pathogenesis. To enable the study of gene function in G. anatis, we have established methods for transformation and targeted mutagenesis. The genus Gallibacterium belongs to the Pasteurellaceae, a group with several naturally transformable members, including Haemophilus influenzae. Bioinformatics analysis identified G. anatis homologs of the H. influenzae competence genes, and natural competence was induced in G. anatis by the procedure established for H. influenzae: transfer from rich medium to the starvation medium M-IV. This procedure gave reproducibly high transformation frequencies with G. anatis chromosomal DNA and with linearized plasmid DNA carrying G. anatis sequences. Both DNA types integrated into the G. anatis chromosome by homologous recombination. Targeted mutagenesis gave transformation frequencies of >2 × 10(-4) transformants CFU(-1). Transformation was also efficient with circular plasmid containing no G. anatis DNA; this resulted in the establishment of a self-replicating plasmid. Nine diverse G. anatis strains were found to be naturally transformable by this procedure, suggesting that natural competence is common and the M-IV transformation procedure widely applicable for this species. The G. anatis genome is only slightly enriched for the uptake signal sequences identified in other pasteurellaceaen genomes, but G. anatis did preferentially take up its own DNA over that of Escherichia coli. Transformation by electroporation was not effective for chromosomal integration but could be used to introduce self-replicating plasmids. The findings described here provide important tools for the genetic manipulation of G. anatis.  相似文献   

10.
The development of competence in Bacillus subtilis is normally dependent on the growth medium. Expression of late competence genes occurs in glucose-minimal salts-based media but not in complex media. Expression is also inhibited when glutamine is added to competence medium and when glycerol is substituted for glucose. Mutations have been identified in two regulatory loci, mecA and mecB, which render competence development independent of these variables. Although in mec mutants the expression of late competence genes, as well as of competence itself, occurred in all media tested, this expression was still growth stage regulated. Thus at least some forms of medium-dependent and growth stage-specific regulation are genetically separable. One of the mecB mutations (mecB31) conferred oligosporogenicity. The mecB mutations were tightly linked by transformation to rif, lpm, and std markers and were located between rif-2103 and cysA14. The mecA42 mutant was linked by transduction to argC4.  相似文献   

11.
Spontaneous mutants of Staphylococcus aureus resistant to rifampin, rifamycin SV, streptovaricin, or streptolydigin were isolated and shown to be resistant due to chromosomal rather than plasmid mutations. Based on data concerning spontaneous mutation rates, genetic cotransduction rates, and in vitro sensitivity studies, four major antibiotic cross-resistance patterns were found. The genetic markers responsible for these cross-resistance patterns were shown to be separable by transduction. Nonpurified RNA polymerase activity in lysates of mutants showed the same sensitivity to these antibiotics as shown by the mutants on solid media. A model is proposed explaining possible structure-function relationships involved in the binding of these antibiotics to the RNA polymerase molecule and the mutations resulting in resistance to these antibiotics. This model includes generally overlapping but different-sized binding sites on the RNA polymerase protein coded for by similarly arranged mutable sites on the DNA.  相似文献   

12.
Although many bacteria are known to be naturally competent for DNA uptake, this ability varies dramatically between species and even within a single species, some isolates display high levels of competence while others seem to be completely nontransformable. Surprisingly, many nontransformable bacterial strains appear to encode components necessary for DNA uptake. We believe that many such strains are actually competent but that this ability has been overlooked because standard laboratory conditions are inappropriate for competence induction. For example, most strains of the gram-negative bacterium Legionella pneumophila are not competent under normal laboratory conditions of aerobic growth at 37 degrees C. However, it was previously reported that microaerophilic growth at 37 degrees C allows L. pneumophila serogroup 1 strain AA100 to be naturally transformed. Here we report that another L. pneumophila serogroup 1 strain, Lp02, can also be transformed under these conditions. Moreover, Lp02 can be induced to high levels of competence by a second set of conditions, aerobic growth at 30 degrees C. In contrast to Lp02, AA100 is only minimally transformable at 30 degrees C, indicating that Lp02 is hypercompetent under these conditions. To identify potential causes of hypercompetence, we isolated mutants of AA100 that exhibited enhanced DNA uptake. Characterization of these mutants revealed two genes, proQ and comR, that are involved in regulating competence in L. pneumophila. This approach, involving the isolation of hypercompetent mutants, shows great promise as a method for identifying natural transformation in bacterial species previously thought to be nontransformable.  相似文献   

13.
14.
In vitro mariner transposon mutagenesis of Streptococcus pneumoniae chromosomal DNA was used to isolate regulatory mutants affecting expression of the comCDE operon, encoding the peptide quorum-sensing two-component signal transduction system controlling competence development. A transposon insertion leading to increased comC expression was found to lie directly upstream from the S. pneumoniae clpP gene, encoding the proteolytic subunit of the Clp ATP-dependent protease, whose expression in Bacillus subtilis is controlled by the CtsR repressor. In order to examine clp gene regulation in S. pneumoniae, a detailed analysis of the complete genome sequence was performed, indicating that there are five likely CtsR-binding sites located upstream from the clpE, clpP, and clpL genes and the ctsR-clpC and groESL operons. The S. pneumoniae ctsR gene was cloned under the control of an inducible promoter and used to demonstrate regulation of the S. pneumoniae clpP and clpE genes and the clpC and groESL operons by using B. subtilis as a heterologous host. The CtsR protein of S. pneumoniae was purified and shown to bind specifically to the clpP, clpC, clpE, and groESL regulatory regions. S. pneumoniae Delta ctsR, Delta clpP, Delta clpC, and Delta clpE mutants were constructed by gene deletion/replacement. ClpP was shown to act as a negative regulator, preventing competence gene expression under inappropriate conditions. Phenotypic analyses also indicated that ClpP and ClpE are both required for thermotolerance. Contrary to a previous report, we found that ClpC does not play a major role in competence development, autolysis, pneumolysin production, or growth at high temperature of S. pneumoniae.  相似文献   

15.
Haemophilus parainfluenzae isolates recovered from patients with respiratory diseases were studied for their ability to undergo genetic transformation by isogenic DNA. Two chromosomal markers, streptomycin resistance and nalidixic acid resistance, were tested for transformation efficiencies in H. parainfluenzae recipients from three biotypes. Most efficient in transformation was biotype II, followed by biotype I, while biotype III was nontransformable. Lack of transformation was not owing to poor donor activity of DNA, but to inability of the cells to develop competence. Strains that formed clumps in liquid media were nontransformable. Since the transformable biotype II is one of the prevalent biotypes world wide, one can speculate that DNA transformation probably plays a major role in the spread of drug resistance in H. parainfluenzae. Received: 9 December 1997 / Accepted: 26 February 1998  相似文献   

16.
17.
A large pool of antibiotic resistant and auxotrophic mutants was isolated from the Staphylococcus aureus phage group 2 strains UT0002-19 and UT0017 by (1) antibiotic gradient plates, (2) trimethoprim selection, and (3) nitrosoguanidine mutagenesis, which sometimes was coupled by enrichment with either penicillin or methicillin. Strain UT0002-19 has a chromosomal determinant for exfoliative toxin (ET), which causes "scalded skin syndrome" in man. A few mutants were isolated from the phage group 1 strain UT0080, which also produces ET. Two transformation regimens, called the broth and plate methods, were devised for the phage group 2 strains. They employed 80 alpha as helper phage, and recipient cells were incubated with transforming DNA in the presence of Ca2+. Strain UT0080 was transformed using phage 55 as helper. Maximum competence of the phage group 2 strains occurred during early logarithmic growth in trypticase soy broth, but cells grown overnight on heart infusion agar were also competent. Transformation frequencies of all markers ranged from 10(-6) to 10(-8). For phage 80 alpha, a multiplicity of infection of 4 was optimal in transforming a mutant of strain UT0002-19. Transformation of gly, lin, met, ole, rif, and ser markers in S. aureus is reported for the first time. Ery and ole markers in all three strains exhibited cross-resistance. Mapping studies, similar to those performed by DNA-mediated transformation in the phage group 3 strain 8325, can now be commenced for phage group 2 strains of S. aureus in order to elucidate the molecular genetics of this medically important bacterium.  相似文献   

18.
R. J. Redfield 《Genetics》1993,133(4):755-761
The hypothesis that the primary function of bacterial transformation is DNA repair was tested in the naturally transformable bacteria Bacillus subtilis and Haemophilus influenzae by determining whether competence for transformation is regulated by DNA damage. Accordingly, DNA damage was induced by mitomycin C and by ultraviolet radiation at doses that efficiently induced a known damage-inducible gene fusion, and the ability of the damaged cultures to transform was monitored. Experiments were carried out both under conditions where cells do not normally become competent and under competence-inducing conditions. No induction or enhancement of competence by damage was seen in either organism. These experiments strongly suggest that the regulation of competence does not involve a response to DNA damage, and thus that explanations other than DNA repair must be sought for the evolutionary functions of natural transformation systems.  相似文献   

19.
Previous studies have shown that Tn551, a 5.2-kilobase-pair transposon that determines constitutive resistance to erythromycin, can occupy a variety of chromosomal sites between thy-101 and trp-103 in Staphylococcus aureus 8325. Although many of these insertions were "silent," many others, including lys, thr, met, tyr, and trp, resulted in auxotrophic mutations. The close proximity and erythromycin-resistant phenotypes of the insertions in this region have made their mapping by transformation difficult. Analysis of these sites and similar chemically induced mutations by generalized transduction with phage 80 alpha have defined the order and relationship of these insertion sites and provided a detailed map of this region of the chromosome, including the orientation of the trp operon. The results of this study and a limited phenotypic characterization of the mutants have shown that the divergent pathway from aspartate to lysine, threonine, and methionine, several reactions in tyrosine biosynthesis, and the entire tryptophan operon are determined by this region of the chromosome. The linkage results obtained by transduction have been compared with similar data obtained previously by transformation; this comparison suggests the existence, between thy and lys, of a preferred headful cutting site for transducing phage DNA morphogenesis from the host chromosome.  相似文献   

20.
The effects on transformation and transduction of an ultraviolet sensitivity (uvr(-)) and two ultraviolet sensitivity-recombination deficiency (rec-1(-) and rec-2(-)) mutations in isogenic strains of Bacillus subtilis were investigated. Transformation frequency in the rec-1(-) and rec-2(-) strains was reduced to approximately 5 and 25%, respectively, of the parental strains. Normal kinetics of deoxyribonucleic acid dose response in transformation were found for the rec-1(+) and rec-2(-) strains. Biphasic curves were obtained with the rec-1(-) strains. Transduction frequency with bacteriophage SP-10 decreased parallel to transformation frequency in the rec-1(-) and rec-2(-) strains. This result suggests that transformation and SP-10 transduction share a common mechanism for genetic recombination. It also indicates that the reduction in transformation frequency of these strains was not due to altered competence. Transduction frequency with bacteriophage PBS-1 or 3NT, on the contrary, was not diminished in rec-1(-) strains. This frequency was reduced in rec-2(-) strains but not as severely as that of transformation or SP-10 transduction. Several hypotheses to interpret these differences are presented. Recombination frequency between linked markers was reduced more than 50% in transformation by the presence of the rec-1(-) mutation. Linkage was unaffected in the rec-2(-) strains. Neither the rec-1(-) nor the rec-2(-) mutation had an effect on linkage in PBS-1 or 3NT transduction. The uvr(-) strains were transformed at a frequency equal to or greater than that of the parental strains. These strains were transduced by all bacteriophage systems at frequencies about twofold higher than those of parental strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号