首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of ACE3 in Drosophila chorion gene amplification.   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

2.
3.
Late in oogenesis two clusters of Drosophila chorion genes and flanking DNA sequences undergo specific amplification in ovarian follicle cells. Lines were constructed using P-element-mediated transformation in which DNA segments derived from the chorion gene cluster at 66D on chromosome III had been inserted at new chromosomal locations. Only transposons that contained a specific 3.8 kb genomic segment derived from the cluster underwent amplification during oogenesis, which occurred with apparently normal tissue and temporal specificity. Adjacent nonchorion sequences also underwent amplification. However, the ability of a transposon to replicate differentially was subject to position effect. These studies provide evidence for the existence of a specific, cis-acting element controlling chorion gene amplification, which includes an origin for disproportionate DNA replication. Attempts to induce amplification with subfragments of the 3.8 kb segment were unsuccessful, suggesting that much of this fragment may be required for amplification.  相似文献   

4.
DNA from Drosophila egg chambers undergoing chorion gene amplification was analyzed using the two-dimensional gel technique of Brewer and Fangman. At stage 10, 34% of DNA molecules from the maximally amplified region of the third chromosome chorion gene cluster contained replication forks or bubbles. These nonlinear forms were intermediates in the process of amplification; they were confined to follicle cells, and were found only within the replicating region during the time of amplification. Multiple origins gave rise to these intermediates, since three separate regions of the third chromosome chorion locus contained replication bubbles. However, initiation was nonrandom; the majority of initiations appeared to occur near the Bgl II site located between the s18 and s15 chorion genes. The P[S6.9] chorion transposon also contained abundant replication intermediates in follicle cells from a transformed line. Initiation within P[S6.9] occurred near two previously defined cis-regulatory elements, one near the same Bgl II site (in the AER-d region) and one near the ACE3 element.  相似文献   

5.
6.
The developmentally regulated amplification of the Drosophila third chromosome chorion gene locus requires multiple chromosomal elements. Amplification control element third chromosome (ACE3) appears to function as a replicator, in that it is required in cis for the activity of nearby DNA replication origin(s). Ori-beta is the major origin in the locus, and is a sequence-specific element that is sufficient for high-level amplification in combination with ACE3. Sequence requirements for amplification were examined using a transgenic construct that was buffered from chromosomal position effects by flanking insulator elements. The parent construct supported 18- to 20-fold amplification, and contained the 320 bp ACE3, the approximately 1.2 kb S18 chorion gene and the 840 bp ori-beta. Deletion mapping of ACE3 revealed that an evolutionarily conserved 142 bp core sequence functions in amplification in this context. Several deletions had quantitative effects, suggesting that multiple, partially redundant elements comprise ACE3. S. cerevisiae ARS1 origin sequences could not substitute for ori-beta, thereby confirming the sequence specificity of ori-beta. Deletion mapping of ori-beta identified two required components: a 140 bp 5' element and a 226 bp A/T-rich 3' element called the beta-region that has significant homology to ACE3. Antibody to the origin recognition complex subunit 2 (ORC2) recognizes large foci that localize to the endogenous chorion gene loci and to active transgenic constructs at the beginning of amplification. Mutations in Orc2 itself, or the amplification trans regulator satin eliminated the ORC2 foci. By contrast, with a null mutation of chiffon (dbf4-like) that eliminates amplification, diffuse ORC2 staining was still present, but failed to localize into foci. The data suggest a novel function for the Dbf4-like chiffon protein in ORC localization. Chromosomal position effects that eliminated amplification of transgenic constructs also eliminated foci formation. However, use of the buffered vector allowed amplification of transgenic constructs to occur in the absence of detectable foci formation. Taken together, the data suggest a model in which ACE3 and ori-beta nucleate the formation of a ORC2-containing chromatin structure that spreads along the chromosome in a mechanism dependent upon chiffon.  相似文献   

7.
K575 is a temperature-sensitive female sterile mutant which shows abnormal chorion structure and subnormal amounts of the major chorion proteins at the restrictive temperature. These phenotypes apparently result from a temperature-sensitive defect in amplification. Both clusters of chorion genes are affected, indicating that the gene operates in trans.  相似文献   

8.
9.
During Drosophila oogenesis, two clusters of chorion genes and their flanking DNA sequences undergo amplification in the ovarian follicle cells. Amplification results from repeated rounds of initiation and bidirectional replication within the chorion gene regions, possibly from a single origin, producing nested replication forks. Previously we have shown that following reintroduction into the Drosophila genome, a specific 3.8 kilobase pair DNA segment from the amplified third chromosome domain could induce developmentally regulated amplification at its site of insertion. Here we present the complete nucleotide sequence of this amplification control element and of genes encoding the chorion structural proteins s18-1 and s15-1, which are contained within it. Sequences that may be involved in the regulation of chorion gene amplification and expression are identified.  相似文献   

10.
Duplication of the eukaryotic genome initiates from multiple origins of DNA replication whose activity is coordinated with the cell cycle. We have been studying the origins of DNA replication that control amplification of eggshell (chorion) genes during Drosophila oogenesis. Mutation of genes required for amplification results in a thin eggshell phenotype, allowing a genetic dissection of origin regulation. Herein, we show that one mutation corresponds to a subunit of the minichromosome maintenance (MCM) complex of proteins, MCM6. The binding of the MCM complex to origins in G1 as part of a prereplicative complex is critical for the cell cycle regulation of origin licensing. We find that MCM6 associates with other MCM subunits during amplification. These results suggest that chorion origins are bound by an amplification complex that contains MCM proteins and therefore resembles the prereplicative complex. Lethal alleles of MCM6 reveal it is essential for mitotic cycles and endocycles, and suggest that its function is mediated by ATP. We discuss the implications of these findings for the role of MCMs in the coordination of DNA replication during the cell cycle.  相似文献   

11.
12.
Calvi BR  Spradling AC 《Chromosoma》2001,110(3):159-172
It remains unclear how certain regions on metazoan chromosomes are selected to initiate DNA replication. In recent years a number of origins of DNA replication have been mapped, but there is still no DNA consensus for predicting where replication will initiate. Evidence suggests that the higher order structure of the nucleus and chromosome influences origin activity. Chromosomal DNA replication is proposed to occur in special compartments in the nucleus called replication foci. Foci in different regions of the nucleus initiate replication at different times of S-phase, suggesting nuclear position may contribute to where and when replication begins. Here we test the contribution of nuclear compartments for well-defined origins, those involved in amplification of the chorion (eggshell) genes during Drosophila oogenesis. The results of three-dimensional confocal microscopy indicate that chorion DNA replication origins are highly active in diverse positions within the nucleus. We also find that chorion replication origins inserted at ectopic chromosomal sites can amplify highly in diverse nuclear locations distinct from the endogenous loci, including when they are buffered against genomic position effects. We used fluorescence in situ hybridization to analyze chromosome structure during amplification. Contrary to the replication factory model, we find no evidence for spooling of DNA toward a replication center. We discuss the implications of these results for understanding the role of higher order structure in amplification and chromosome duplication.  相似文献   

13.
14.
15.
16.
G L Waring  A P Mahowald 《Cell》1979,16(3):599-607
The chorion of Drosophila melanogaster consists of proteins secreted by the follicular epithelium during late oogenesis. Petri, Wyman and Kafatos (1976) have described six major protein components of the Drosophila chorion and reported the synthesis of these proteins in vitro by mass-isolated egg chambers. We have used two-dimensional gel electrophoresis to identify approximately twenty components in highly purified chorion preparations. The synthesis patterns of these proteins in vivo were determined by isolating egg chambers of different developmental stages from flies injected with 14C amino acids. Chorion proteins constitute a large fraction of the protein synthesized by ovarian egg chambers in stages 12--14. The sizes and times of synthesis of the chorion proteins correlate closely with the production of poly(A)-containing RNAs by the follicle cells (Spradling and Mahowald, 1979).  相似文献   

17.
Summary A 190 by insertion is associated with the white-eosin mutation in Drosophila melanogaster. This insertion is a member of a family of transposable elements, pogo elements, which is of the same class as the P and hobo elements of D. melanogaster. Strains typically have many copies of a 190 by element, 10–15 elements 1.1–1.5 kb in size and several copies of a 2.1 kb element. The smaller elements all appear to be derived from the largest by single internal deletions so that all elements share terminal sequences. They either always insert at the dinucleotide TA and have perfect 21 bp terminal inverse repeats, or have 22 by inverse repeats and produce no duplication upon insertion. Analysis by DNA blotting of their distribution and occupancy of insertion sites in different strains suggests that they may be less mobile than P or hobo. The DNA sequence of the largest element has two long open reading frames on one strand which are joined by splicing as indicated by cDNA analysis. RNAs of this strand are made, whose sizes are similar to the major size classes of elements. A protein predicted by the DNA sequence has significant homology with a human centrosomal-associated protein, CENP-B. Homologous sequences were not detected in other Drosophila species, suggesting that this transposable element family may be restricted to D. melanogaster.  相似文献   

18.
19.
Utilizing two cytochemical methods, namely, diaminobenzidine for the assay of peroxidases and cerium(III) chloride for the localization of hydrogen peroxide it was found that the enzyme exists in two out of the five egg-shell layers: the innermost choronic layer and the endochorion. In addition, hydrogen peroxide which acts as a substrate for the enzyme in vitro enabling the formation of covalent bonding between the egg-shell proteins, was found to be produced at the follicle cell plasma membrane during the last stage of oogenesis. It is concluded that hydrogen peroxide is an endogenous, programmed product of the follicle cells, responsible for the action of peroxidase in order to oxidize the tyrosyl residues producing di-tyrosine and tri-tyrosine bonds between the chorion polypeptides.  相似文献   

20.
Germ line transformation has been used to map the cis regulatory DNA elements responsible for the precise and evolutionarily stable developmental expression of the s18 chorion gene. Constructs containing chimeric combinations of Drosophila melanogaster and D. grimshawi DNA regions, as well as D. grimshawi sequences alone, can direct expression in the follicular epithelium, in an s18-specific temporal and spatial pattern. The results indicate that both positive and negative regulatory elements can function when transferred from D. grimshawi to D. melanogaster. The first ca. 100 bp of the 5'-flanking DNA region constitute a minimal, developmentally regulated promoter, expression of which is inhibited by the next 100-bp DNA segment and activated by positive elements located further upstream. Expression of the minimal promoter can also be enhanced by more distant chorion regulatory elements, provided the inhibitory DNA segment is absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号