首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylobacterium extorquens AM1 possesses a formaldehyde-oxidation pathway that involves enzymes with high sequence identity with enzymes from methanogenic and sulfate-reducing archaea. Here we describe the purification and characterization of formylmethanofuran-tetrahydromethanopterin formyltransferase (Ftr), which catalyzes the reversible formation of formylmethanofuran (formylMFR) and tetrahydromethanopterin (H4MPT) from N5-formylH4MPT and methanofuran (MFR). Formyltransferase from M. extorquens AM1 showed activity with MFR and H4MPT isolated from the methanogenic archaeon Methanothermobacter marburgensis (apparent Km for formylMFR = 50 microM; apparent Km for H4MPT = 30 microM). The enzyme is encoded by the ffsA gene and exhibits a sequence identity of approximately 40% with Ftr from methanogenic and sulfate-reducing archaea. The 32-kDa Ftr protein from M. extorquens AM1 copurified in a complex with three other polypeptides of 60 kDa, 37 kDa and 29 kDa. Interestingly, these are encoded by the genes orf1, orf2 and orf3 which show sequence identity with the formylMFR dehydrogenase subunits FmdA, FmdB and FmdC, respectively. The clustering of the genes orf2, orf1, ffsA, and orf3 in the chromosome of M. extorquens AM1 indicates that, in the bacterium, the respective polypeptides form a functional unit. Expression studies in Escherichia coli indicate that Ftr requires the other subunits of the complex for stability. Despite the fact that three of the polypeptides of the complex showed sequence similarity to subunits of Fmd from methanogens, the complex was not found to catalyze the oxidation of formylMFR. Detailed comparison of the primary structure revealed that Orf2, the homolog of the active site harboring subunit FmdB, lacks the binding motifs for the active-site cofactors molybdenum, molybdopterin and a [4Fe-4S] cluster. Cytochrome c was found to be spontaneously reduced by H4MPT. On the basis of this property, a novel assay for Ftr activity and MFR is described.  相似文献   

2.
High affinity iron uptake in fungi is supported by a plasma membrane protein complex that includes a multicopper ferroxidase enzyme and a ferric iron permease. In Saccharomyces cerevisiae, this complex is composed of the ferroxidase Fet3p and the permease Ftr1p. Fe(II) serves as substrate for Fe-uptake by being substrate for Fet3p; the resulting Fet3p-produced Fe(III) is then transported across the membrane via Ftr1p. A model of metabolite channeling of this Fe(III) is tested here by first constructing and kinetically characterizing in Fe-uptake two Fet3p-Ftr1p chimeras in which the multicopper oxidase/ferroxidase domain of Fet3p has been fused to the Ftr1p iron permease. Although the bifunctional chimeras are as kinetically efficient in Fe-uptake as is the wild type two-component system, they lack the adaptability and fidelity in Fe-uptake of the wild type. Specifically, Fe-uptake through the Fet3p, Ftr1p complex is insensitive to a potential Fe(III) trapping agent - citrate - whereas Fe-uptake via the chimeric proteins is competitively inhibited by this Fe(III) chelator. This inhibition does not appear to be due to scavenging Fet3p-produced Fe(III) that is in equilibrium with bulk solvent but could be due to leakiness to citrate found in the bifunctional but not the two-component system. The data are consistent with a channeling model of Fe-trafficking in the Fet3p, Ftr1p complex and suggest that in this system, Fet3p serves as a redox sieve that presents Fe(III) specifically for permeation through Ftr1p.  相似文献   

3.
The rate of ATP hydrolysis under multi- and unisite conditions was determined in the native F1-inhibitor protein complex of bovine heart mitochondria (Adolfsen, R., MacClung, J.A., and Moudrianakis, E.N. (1975) Biochemistry 14, 1727-1735). Aurovertin was used to distinguish between hydrolytic activity catalyzed by the F1-ATPase or the F1-inhibitor protein (F1.I) complex. We found that incubation of aurovertin with the F1.I complex, prior to the addition of substrate, results in a stimulation of the hydrolytic activity from 1 to 8-10 mumol min-1 mg-1. The addition of aurovertin to a F1.I complex simultaneously with ATP results in a 30% inhibition with respect to the untreated F1.I. In contrast, if the F1.I complex is activated up to a hydrolytic activity of 80 mumol min-1 mg-1, aurovertin inhibits the enzyme in a manner similar to that described for F1-ATPase devoid of the inhibitor protein. The native F1.I complex catalyzes the hydrolysis of ATP under conditions for single catalytic site, liberating 0.16-0.18 mol of Pi/mol of enzyme. Preincubation with aurovertin before the addition of substrate had no effect under these conditions. On the other hand, if the F1.I ATPase was allowed to hydrolyze ATP at a single catalytic site, catalysis was inhibited by 98% by aurovertin. In F1-ATPase, the hydrolysis of [gamma-32P]ATP bound to the first catalytic site is promoted by the addition of excess ATP, in the presence or absence of aurovertin. Under conditions for single site catalysis, hydrolysis of [gamma-32P]ATP in the F1.I complex was not promoted by excess ATP. We conclude that the endogenous inhibitor protein regulates catalysis by promoting the entrapment of adenine nucleotides at the high affinity catalytic site, thus hindering cooperative ATP hydrolysis.  相似文献   

4.
M B Murataliev 《Biochemistry》1992,31(51):12885-12892
The evidence is presented that the ADP- and Mg(2+)-dependent inactivation of MF1-ATPase during MgATP hydrolysis requires binding of ATP at two binding sites: one is catalytic and the second is noncatalytic. Binding of the noncatalytic ATP increases the rate of the inactive complex formation in the course of ATP hydrolysis. The rate of the enzyme inactivation during ATP hydrolysis depends on the medium Mg2+ concentration. High Mg2+ inhibits the steady-state activity of MF1-ATPase by increasing the rate of formation of inactive enzyme-ADP-Mg2+ complex, thereby shifting the equilibrium between active and inactive enzyme forms. The Mg2+ needed for MF1-ATPase inactivation binds from the medium independent from the MgATP binding at either catalytic or noncatalytic sites. The inhibitory ADP molecule arises at the MF1-ATPase catalytic site as a result of MgATP hydrolysis. Exposure of the native MF1-ATPase with bound ADP at a catalytic site to 1 mM Mg2+ prior to assay inactivates the enzymes with kinact 24 min-1. The maximal inactivation rate during ATP hydrolysis at saturating MgATP and Mg2+ does not exceed 10 min-1. The results show that the rate-limiting step of the MF1-ATPase inactivation during ATP hydrolysis with excess Mg2+ precedes binding of Mg2+ and likely is the rate of formation of enzyme with ADP bound at the catalytic site without bound P(i). This complex binds Mg2+ resulting in inactive MF1-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Incubation of [gamma-32P]ATP with a molar excess of the soluble, homogeneous ATPase from beef heart mitochondria (F1) results in binding of substrate primarily in a single, very high affinity (KA = 10(12) M-1) catalytic site and in a slow rate of hydrolysis characteristic of single site catalysis. Subsequent addition of millimolar concentrations of nonradioactive ATP as a cold chase, sufficient to fill catalytic sites on the enzyme, results in an acceleration of hydrolysis of bound radioactive ATP of as much as 10(6)-fold, that is, to Vmax rates (Cross, R.L., Grubmeyer, C., and Penefsky, H.S. (1982) J. Biol. Chem. 257, 12101-12105). For this reason, it was proposed that the high affinity catalytic site is a normal catalytic site on the molecule. Recently, Bullough et al. (Bullough, D.A., Verburg, J.G., Yoshida, M., and Allison, W.A. (1987) J. Biol. Chem. 262, 11675-11683) reported that when 5 to 20 microM concentrations of nonradioactive ATP were added as a cold chase to an enzyme-substrate complex consisting of F1 and ATP bound to the high affinity catalytic site, hydrolysis of the chase was commensurate with the turnover rate of the enzyme, whereas the hydrolysis of bound ATP was considerably slower. These authors suggested that the high affinity catalytic site on F1 is not a normal catalytic site. This paper shows, in experiments with a rapid mixing-chemical quench apparatus, that hydrolysis of ATP bound in the high affinity catalytic site is accelerated to Vmax rates following addition of 5 microM ATP as a cold chase. Hydrolysis of bound ATP appears to precede that of the chase. The weight of the available evidence continues to support the original suggestion that the high affinity catalytic site of beef heart F1 is a normal catalytic site.  相似文献   

6.
The aurovertin-F1 complex was used to monitor fluorescence changes of the mitochondrial adenosine triphosphatase during multi- and uni-site ATP hydrolysis. It is known that the fluorescence intensity of the complex is partially quenched by addition of ATP or Mg2+ and enhanced by ADP (Chang, T., and Penefsky, H. S. (1973) J. Biol. Chem. 248, 2746-2754). In the present study low concentrations of ATP (0.03 mM) induced a marked fluorescence quenching which was followed by a fast fluorescence recovery. This recovery could be prevented by EDTA or an ATP regenerating system. The rate of ATP hydrolysis by the aurovertin-F1 complex and the reversal of the ATP-induced fluorescence quenching were determined in these various conditions. ITP hydrolysis also resulted in fluorescence quenching that was followed by a recovery of fluorescence intensity. Under conditions for single site catalysis, fluorescence quenching was observed upon the addition of ATP. This strongly indicates that fluorescence changes in the aurovertin-F1 complex are due to the binding and hydrolysis of ATP at a catalytic site. Therefore the resulting ADP molecule bound at this catalytic site possibly induces the fluorescence recovery observed.  相似文献   

7.
Fet3, the multicopper oxidase of yeast, oxidizes extracellular ferrous iron which is then transported into the cell through the permease Ftr1. A three-dimensional model structure of Fet3 has been derived by homology modeling. Fet3 consists of three cupredoxin domains joined by a trinuclear copper cluster which is connected to the blue copper site located in the third domain. Close to this site, which is the primary electron acceptor from the substrate, residues for a potential iron binding site could be identified. The surface disposition of negatively charged residues suggests that Fet3 can translocate Fe(3+) to the permease Ftr1 through a pathway under electrostatic guidance.  相似文献   

8.
The binding of one ADP molecule at the catalytic site of the nucleotide depleted F1-ATPase results in a decrease in the initial rate of ATP hydrolysis. The addition of an equimolar amount of ATP to the nucleotide depleted F1-ATPase leads to the same effect, but, in this case, inhibition is time dependent. The half-time of this process is about 30 s, and the inhibition is correlated with Pi dissociation from the F1-ATPase catalytic site (uni-site catalysis). The F1-ATPase-ADP complex formed under uni-site catalysis conditions can be reactivated in two ways: (i) slow ATP-dependent ADP release from the catalytic site (tau 1/2 20 s) or (ii) binding of Pi in addition to MgADP and the formation of the triple F1-ATPase-MgADP-Pi complex. GTP and GDP are also capable of binding to the catalytic site, however, without changes in the kinetic properties of the F1-ATPase. It is proposed that ATP-dependent dissociation of the F1-ATPase-GDP complex occurs more rapidly, than that of the F1-ATPase-ADP complex.  相似文献   

9.
Results are presented that confirm and extend earlier findings that efrapeptin is a potent inhibitor of oxidative phosphorylation. Binding of efrapeptin is shown to be reversible, and a dissociation constant for the enzyme-inhibitor complex is estimated to be 10(-8) M under conditions for either ATP synthesis or hydrolysis. Fifty per cent inhibition of the ATP hydrolysis activity of submitochondrial particles is obtained at a ratio of 0.56 mol of inhibitor/mol of enzyme. Studies of efrapeptin binding under pseudo-first order conditions show that the onset of inhibition is first order with respect to efrapeptin. Combined with the inhibition titer, these results indicate that there is one inhibitor binding site per molecule of enzyme. Steady state velocity studies using a substrate regenerating system show that efrapeptin is competitive with both ADP and phosphate during ATP synthesis. However, during ATP hydrolysis, a distinctly different mode of inhibition is indicated with respect to ATP. Data are presented which suggest that ATP promotes the binding of efrapeptin to the enzyme. Indications that efrapeptin is a catalytic site inhibitor make these results difficult to reconcile with a simple mechanistic scheme involving a single independnet catalytic site for ATP synthesis and hydrolysis. Our results are discussed in terms of support for catalytic cooperativity between adjacent subunits as recently proposed by Kayalar et al. (Kayalar, C., Rosing, J., and Boyer, P. D. (1977) J. Biol. Chem. 252, 2486-2491).  相似文献   

10.
Sulfate is a partial inhibitor at low and a non-essential activator at high [ATP] of the ATPase activity of F(1). Therefore, a catalytically-competent ternary F(1) x ATP x sulfate complex can be formed. In addition, the ANS fluorescence enhancement driven by ATP hydrolysis in submitochondrial particles is also stimulated by sulfate, clearly showing that the ATP hydrolysis in its presence is coupled to H(+) translocation. However, sulfate is a strong linear inhibitor of the mitochondrial ATP synthesis. The inhibition was competitive (K (i) = 0.46 mM) with respect to Pi and mixed (K (i) = 0.60 and K'(i) = 5.6 mM) towards ADP. Since it is likely that sulfate exerts its effects by binding at the Pi binding subdomain of the catalytic site, we suggest that the catalytic site involved in the H(+) translocation driven by ATP hydrolysis has a more open conformation than the half-closed one (beta(HC)), which is an intermediate in ATP synthesis. Accordingly, ATP hydrolysis is not necessarily the exact reversal of ATP synthesis.  相似文献   

11.
The unadenylylated, manganese form of glutamine synthetase (L-glutamate: ammonia ligase (ADP forming), EC 6.3.1.2 from Escherichia coli catalyzes a novel, AMP-dependent (reversible) synthesis of pyrophosphate and L-glutamate from orthophosphate and L-glutamine: Formula (See Text). The hydrolysis of the L-glutamine amide bond is coupled to the stoichiometric synthesis of pyrophosphate, although as PPi accumulates, additional hydrolysis of L-glutamine occurs in a secondary reaction catalyzed by the [manganese x enzyme x AMP x PPi] complex. The synthesis of PPi probably occurs at the subunit catalytic site in the positions normally occupied by the beta, gamma-phosphates of ATP. To promote PPi synthesis, AMP apparently binds to the subunit catalytic site rather than to the allosteric inhibitor site; equilibrium binding results suggest that Pi directs the binding of AMP to the active site. In this reaction, Mg2+ will not substitute for Mn2+, and adenylylated glutamine synthetase is inactive. Pyrophosphate is synthesized by the unadenylylated, manganese enzyme at approximately 2% of the rate of that of ATP in the reverse biosynthetic reaction. If P1 is replaced by arsenate, the enzymatic rate of the AMP-supported hydrolysis of L-glutamine is 100-fold faster than is PPi synthesis and is one-half the rate of the ADP-supported, irreversible arsenolysis of L-glutamine. This latter activity also is supported by GMP and IMP, suggesting that the catalytic site of glutamine synthetase has a rather broad specificity for the nucleotide base. The reactions supported by AMP directly relate to the mechanism of glutamine synthetase catalysis.  相似文献   

12.
13.
High affinity iron uptake in yeast is carried out by a multicomponent system formed by the ferroxidase Fet3p and the iron permease Ftr1p. The currently accepted model predicts that Fet3p and Ftr1p are functionally associated, however, a structural interaction between these two proteins has not been proven yet. The methylotrophic yeast Pichia pastoris has been used to perform cross-linking studies aimed to demonstrate the existence of a Fet3p-Ftr1p complex. Cross-linking of membrane suspensions with the membrane-impermeable reagents DTSSP and BS(3) has evidenced the presence of a high molecular weight band with Fet3p oxidase activity. This band has been purified and subjected to N-terminal sequence analysis. Two sequences were found in the cross-linked species, one of which could be assigned to Fet3p and the other to Ftr1p. This is the first experimental demonstration that Fet3p and Ftr1p are physically associated.  相似文献   

14.
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p–Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p–Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p–Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.  相似文献   

15.
The gamma complex couples ATP hydrolysis to the loading of beta sliding clamps onto DNA for processive replication. The gamma complex structure shows that the clamp loader subunits are arranged as a circular heteropentamer. The three gamma motor subunits bind ATP, the delta wrench opens the beta ring, and the delta' stator modulates the delta-beta interaction. Neither delta nor delta' bind ATP. This report demonstrates that the delta' stator contributes a catalytic arginine for hydrolysis of ATP bound to the adjacent gamma(1) subunit. Thus, the delta' stator contributes to the motor function of the gamma trimer. Mutation of arginine 169 of gamma, which removes the catalytic arginines from only the gamma(2) and gamma(3) ATP sites, abolishes ATPase activity even though ATP site 1 is intact and all three sites are filled. This result implies that hydrolysis of the three ATP molecules occurs in a particular order, the reverse of ATP binding, where ATP in site 1 is not hydrolyzed until ATP in sites 2 and/or 3 is hydrolyzed. Implications of these results to clamp loaders of other systems are discussed.  相似文献   

16.
Nadanaciva S  Weber J  Senior AE 《Biochemistry》2000,39(31):9583-9590
MgADP in combination with fluoroscandium (ScFx) is shown to form a potently inhibitory, tightly bound, noncovalent complex at the catalytic sites of F(1)-ATPase. The F(1).MgADP.ScFx complex mimics a catalytic transition state. Notably, ScFx caused large enhancement of MgADP binding affinity at both catalytic sites 1 and 2, with little effect at site 3. These results indicate that sites 1 and 2 may form a transition state conformation. A new direct optical probe of F(1)-ATPase catalytic transition state conformation is also reported, namely, substantial enhancement of fluorescence emission of residue beta-Trp-148 observed upon binding of MgADP.ScFx or MgIDP. ScFx. Using this fluorescence signal, titrations were performed with MgIDP.ScFx which demonstrated that catalytic sites 1 and 2 can both form a transition state conformation but site 3 cannot. Supporting data were obtained using MgIDP-fluoroaluminate. Current models of the MgATP hydrolysis mechanism uniformly make the assumption that only one catalytic site hydrolyzes MgATP at any one time. The fluorometal analogues demonstrate that two sites have the capability to form the transition state simultaneously.  相似文献   

17.
J M Jallon  A Spyridakis  J Cosson 《Biochimie》1977,59(11-12):869-875
The binding properties of Mg2+, Mn2+ and Co2+ to yeast mitochondrial oligomycin sensitive ATPase complex are studied, as reflected by their catalytic effect (hydrolysis of ATP or pNPP, a pseudo substrate) or by a physical parameter (atomic absorption, electron paramagnetic reasonance of Mn2+, enhanced fluorescence of chelating chlorotetracyclin). At least two classes of sites with very different affinities respectively around 10(-5) M and 10(-4) M are demonstrated: high affinity sites for cations which participate in pNPP hydrolysis and can bind ADP or ATP, although they have a poor efficiency for ATP hydrolysis, and low affinity sites for cations which participate efficiently in both pNPP and ATP hydrolysis. The possibility that the tight site class has itself two sub-classes is also discussed.  相似文献   

18.
The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase soaked with a rho-nitrophenyl-alpha-D-maltoside (pNPG2) substrate showed a pattern of electron density corresponding to the binding of a rho-nitrophenol unit at subsite -2 of the active site. Binding of the product to subsite -2 after hydrolysis of the pNPG2 molecules, may explain the low catalytic efficiency of the hydrolysis of pNPG2 by PPA. Except a small movement of the segment from residues 304-305 the typical conformational changes of the "flexible loop" (303-309), that constitutes the surface edge of the substrate binding cleft, were not observed in the present complex structure. This result supports the hypothesis that significant movement of the loop may depend on aglycone site being filled (Payan and Qian, J. Protein Chen. 22: 275, 2003). Structural analyses have shown that pancreatic alpha-amylases undergo an induced conformational change of the catalytic residue Asp300 upon substrate binding; in the present complex the catalytic residue is observed in its unliganded orientation. The results suggest that the induced reorientation is likely due to the presence of a sugar unit at subsite -1 and not linked to the closure of the flexible surface loop. The crystal structure was refined at 2.4 A resolution to an R factor of 17.55% (Rfree factor of 23.32%).  相似文献   

19.
Shobe J  Dickinson CD  Ruf W 《Biochemistry》1999,38(9):2745-2751
Coagulation factor VIIa is an allosterically regulated trypsin-like serine protease that initiates the coagulation pathways upon complex formation with its cellular receptor and cofactor tissue factor (TF). The analysis of a conformation-sensitive monoclonal antibody directed to the macromolecular substrate exosite in the VIIa protease domain demonstrated a conformational link from this exosite to the catalytic cleft that is independent of cofactor-induced allosteric changes. In this study, we identify Glu 154 as a critical surface-exposed exosite residue side chain that undergoes conformational changes upon active site inhibitor binding. The Glu 154 side chain is important for hydrolysis of scissile bond mimicking peptidyl p-nitroanilide substrates, and for inhibition of VIIa's amidolytic function upon antibody binding. This exosite residue is not linked to the catalytic cleft residue Lys 192 which plays an important role in thrombin's allosteric coupling to exosite I. Allosteric linkages between VIIa's active site and the cofactor binding site or between the cofactor binding site and the macromolecular substrate exosite were not influenced by mutation of Glu 154. Glu 154 thus only influences the linkage of the macromolecular substrate binding exosite to the catalytic center. These data provide novel evidence that allosteric regulation of VIIa's catalytic function involves discrete and independent conformational linkages and that allosteric transitions in the VIIa protease domain are not globally coupled.  相似文献   

20.
C Güntner  E Holler 《Biochemistry》1979,18(10):2028-2038
The interaction between Phe-tRNA(Phe) or other acyl-tRNA derivatives thereof and phenylalanyl-tRNA synthetase of Escherichia coli K 10 has been investigated by nonequilibrium dialysis, by fluorescence titration in the presence of 2-p-toluidinylnaphthalene-6-sulfonate, by the kinetics of the aminoacylation of tRNA(Phe), and by the kinetics of the catalytic hydrolysis of Phe-tRNA(Phe). Phe-tRNA(Phe), or derivatives thereof, forms two types of complexes with the synthetase. One type involves the attachment of the phenylalanyl moiety to the phenylalanine-specific site of the enzyme, and the other type, to the tRNA(Phe)-specific binding site. They resemble alternative modes of a destabilized enzyme-product complex and are predicted on the basis of thermodynamic considerations. The two modes of binding of acyl-tRNA compete with each other. The attachment of Phe-tRNA(Phe) to the phenylalanine-specific site dominates. At equilibrium, this complex is present at a fourfold higher concentration than the other type of complex. The HNO2 deaminated Phe-tRNA(Phe) binds exclusively to the site specific for L-phenylalanine. On the contrary, Ile-tRNA(Phe) adds at 94.1% to the tRNA(Phe)-specific site. The association of Phe-tRNA(Phe) with this site leads to enzymatic hydrolysis into L-phenylalanine and tRNA(Phe). The complex involving the phenylalanine-specific site is hydrolytically unproductive. L-Phenylalanine acts as an activator of the hydrolysis by occupying the amino acid specific site and by shifting the equilibrium between the complexes toward the binding ot Phe-tRNA(Phe) at the tRNA(Phe)-specific site. The association of Phe-tRNA(Phe) at the phenylalanine-specific site does not interfere sterically with the binding of free tRNA(Phe). The sequential addition of free and aminoacylated tRNA(Phe) exhibits negative cooperativity. Such a mechanism could help to expel the product from the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号