首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following reactivation from latency, alphaherpesviruses replicate in sensory neurons and assemble capsids that are transported in the anterograde direction toward axon termini for spread to epithelial tissues. Two models currently describe this transport. The Separate model suggests that capsids are transported in axons independently from viral envelope glycoproteins. The Married model holds that fully assembled enveloped virions are transported in axons. The herpes simplex virus (HSV) membrane glycoprotein heterodimer gE/gI and the US9 protein are important for virus anterograde spread in the nervous systems of animal models. It was not clear whether gE/gI and US9 contribute to the axonal transport of HSV capsids, the transport of membrane proteins, or both. Here, we report that the efficient axonal transport of HSV requires both gE/gI and US9. The transport of both capsids and glycoproteins was dramatically reduced, especially in more distal regions of axons, with gE(-), gI(-), and US9-null mutants. An HSV mutant lacking just the gE cytoplasmic (CT) domain displayed an intermediate reduction in capsid and glycoprotein transport. We concluded that HSV gE/gI and US9 promote the separate transport of both capsids and glycoproteins. gE/gI was transported in association with other HSV glycoproteins, gB and gD, but not with capsids. In contrast, US9 colocalized with capsids and not with membrane glycoproteins. Our observations suggest that gE/gI and US9 function in the neuron cell body to promote the loading of capsids and glycoprotein-containing vesicles onto microtubule motors that ferry HSV structural components toward axon tips.  相似文献   

2.
W Mulder  J Pol  T Kimman  G Kok  J Priem    B Peeters 《Journal of virology》1996,70(4):2191-2200
Envelope glycoprotein D (gD) is essential for entry of pseudorabies virus (PRV) into cells but is not required for the subsequent steps in virus replication. Phenotypically complemented gD mutants can infect cells and can spread, both in vitro and in mice, by direct cell-to-cell transmission. Progeny virions released by infected cells are noninfectious because they lack gD. The aim of this study was to determine the role of gD in the neuropathogenicity of PRV in its natural host, the pig. We investigated whether gD-negative PRV can spread transneuronally via synaptically linked neurons of the olfactory and trigeminal routes. High doses of a phenotypically complemented gD mutant and gD mutants that are unable to express either gI or gI plus gE were inoculated intranasally in 3- to 5-week-old pigs. Compared with the wild-type virus, the virulence of the gD mutant was reduced. However, pigs inoculated with the gD mutant still developed fever and respiratory signs. Additional inactivation of either gI or gI plus gE further decreased virulence for pigs. Immunohistochemical examination of infected pigs showed that a PRV gD mutant could replicate and spread transneuronally into the central nervous system (CNS). Compared with the wild-type virus, the gD mutant had infected fewer neurons of the CNS on day 2. Nevertheless, on day 3, the gD-negative PRV had infected more neurons and viral antigens were present in second- and third-order neurons in the olfactory bulb, brain stem, and medulla oblongata. In contrast, gD mutants which are unable to express either gI or gI plus gE infected a limited number of first-order neurons in the olfactory epithelium and in the trigeminal ganglion and did not spread transneuronally or infect the CNS. Thus, transsynaptic spread of PRV in pigs can occur independently of gD. Possible mechanisms of transsynaptic transport of PRV are discussed.  相似文献   

3.
The herpes simplex virus (HSV) glycoprotein heterodimer gE/gI plays an important role in virus cell-to-cell spread in epithelial and neuronal tissues. In an analogous fashion, gE/gI promotes virus spread between certain cell types in culture, e.g., keratinocytes and epithelial cells, cells that are polarized or that form extensive cell junctions. One mechanism by which gE/gI facilitates cell-to-cell spread involves selective sorting of nascent virions to cell junctions, a process that requires the cytoplasmic domain of gE. However, the large extracellular domains of gE/gI also appear to be involved in cell-to-cell spread. Here, we show that coexpression of a truncated form of gE and gI in a human keratinocyte line, HaCaT cells, decreased the spread of HSV between cells. This truncated gE/gI was found extensively at cell junctions. Expression of wild-type gE/gI that accumulates at intracellular sites, in the trans-Golgi network, did not reduce cell-to-cell spread. There was no obvious reduction in production of infectious HSV in cells expressing gE/gI, and virus particles accumulated at cell junctions, not at intracellular sites. Expression of HSV gD, which is known to bind virus receptors, also blocked cell-to-cell spread. Therefore, like gD, gE/gI appears to be able to interact with cellular components of cell junctions, gE/gI receptors which can promote HSV cell-to-cell spread.  相似文献   

4.
段玉友  殷震 《病毒学报》1998,14(2):151-157
用EcoRI、PstI将已分离和克隆的马立克氏病病毒糖蛋白D基因从重组pMgD18质粒中切出,克隆进反转录病毒质粒载体(RCAS)的连接质粒载全PUCCla112N的相同位点。用ClaI再次gD基因切出,构建于RCAS的ClaI位点。通过原位杂交筛选重组RCAS,并结合酶切分析鉴定出gD插入方向正确的重组RCAS。用磷酸钙沉淀法将gD重组RCAS转染鸡胚成纤维细胞(CEF),转染后第9天收集细胞上  相似文献   

5.
Initial contact between herpesviruses and host cells is mediated by virion envelope glycoproteins which bind to cellular receptors. In several alphaherpesviruses, the nonessential glycoprotein gC has been found to interact with cell surface proteoglycans, whereas the essential glycoprotein gD is involved in stable secondary attachment. In addition, gD is necessary for penetration, which involves fusion between virion envelope and cellular cytoplasmic membrane. As opposed to other alphaherpesvirus gD homologs, pseudorabies virus (PrV) gD is not required for direct viral cell-to-cell spread. Therefore, gD- PrV can be passaged in noncomplementing cells by cocultivating infected and noninfected cells. Whereas infectivity was found to be strictly cell associated in early passages, repeated passaging resulted in the appearance of infectivity in the supernatant, finally reaching titers as high as 10(7) PFU/ml (PrV gD- Pass). Filtration experiments indicated that this infectivity was not due to the presence of infected cells, and the absence of gD was verified by Southern and Western blotting and by virus neutralization. Infection of bovine kidney cells constitutively expressing PrV gD interfered with the infectivity of wild-type PrV but did not inhibit that of PrV gD- Pass. Similar results were obtained after passaging of a second PrV mutant, PrV-376, which in addition to gD also lacks gG, gI, and gE. Penetration assays demonstrated that PrV gD- Pass entered cells much more slowly than wild-type PrV. In summary, our data demonstrate the existence of a gD-independent mode of initiation of infection in PrV and indicate that the essential function(s) that gD performs in wild-type PrV infection can be compensated for after passaging. Therefore, regarding the requirement for gD, PrV seems to be intermediate between herpes simplex virus type 1, in which gD is necessary for penetration and cell-to-cell spread, and varicella-zoster virus (VZV), which lacks a gD gene. Our data show that the relevance of an essential protein can change under selective pressure and thus demonstrate a way in which VZV could have evolved from a PrV-like ancestor.  相似文献   

6.
Evidence was recently presented that herpes simplex virus type 1 (HSV-1) immunoglobulin G (IgG) Fc receptors are composed of a complex containing a previously described glycoprotein, gE, and a novel virus-induced polypeptide, provisionally named g70 (D. C. Johnson and V. Feenstra, J. Virol. 61:2208-2216, 1987). Using a monoclonal antibody designated 3104, which recognizes g70, in conjunction with antipeptide sera and virus mutants unable to express g70 or gE, we have mapped the gene encoding g70 to the US7 open reading frame of HSV-1 adjacent to the gE gene. Therefore, g70 appears to be identical to a recently described polypeptide which was named gI (R. Longnecker, S. Chatterjee, R. J. Whitley, and B. Roizman, Proc. Natl. Acad. Sci. USA 84:147-151, 1987). Under mildly denaturing conditions, monoclonal antibody 3104 precipitated both gI and gE from extracts of HSV-1-infected cells. In addition, rabbit IgG precipitated the gE-gI complex from extracts of cells transfected with a fragment of HSV-1 DNA containing the gI, gE, and US9 genes. Cells infected with mutant viruses which were unable to express gE or gI did not bind radiolabeled IgG; however, cells coinfected with two viruses, one unable to express gE and the other unable to express gI, bound levels of IgG approaching those observed with wild-type viruses. These results further support the hypothesis that gE and gI form a complex which binds IgG by the Fc domain and that neither polypeptide alone can bind IgG.  相似文献   

7.
Varicella-zoster virus (VZV) glycoprotein E (gE) is the most abundant glycoprotein in infected cells and, in contrast to those of other alphaherpesviruses, is essential for viral replication. The gE ectodomain contains a unique N-terminal region required for viral replication, cell-cell spread, and secondary envelopment; this region also binds to the insulin-degrading enzyme (IDE), a proposed VZV receptor. To identify new functional domains of the gE ectodomain, the effect of mutagenesis of the first cysteine-rich region of the gE ectodomain (amino acids 208 to 236) was assessed using VZV cosmids. Deletion of this region was compatible with VZV replication in vitro, but cell-cell spread of the rOka-ΔCys mutant was reduced significantly. Deletion of the cysteine-rich region abolished the binding of the mutant gE to gI but not to IDE. Preventing gE binding to gI altered the pattern of gE expression at the plasma membrane of infected cells and the posttranslational maturation of gI and its incorporation into viral particles. In contrast, deletion of the first cysteine-rich region did not affect viral entry into human tonsil T cells in vitro or into melanoma cells infected with cell-free VZV. These experiments demonstrate that gE/gI heterodimer formation is essential for efficient cell-cell spread and incorporation of gI into viral particles but that it is dispensable for infectious varicella-zoster virion formation and entry into target cells. Blocking gE binding to gI resulted in severe impairment of VZV infection of human skin xenografts in SCIDhu mice in vivo, documenting the importance of cell fusion mediated by this complex for VZV virulence in skin.  相似文献   

8.
Earlier studies have described the alpha 4/c113 baby hamster kidney cell line which constitutively expresses the alpha 4 protein, the major regulatory protein of herpes simplex virus 1 (HSV-1). Introduction of the HSV-1 glycoprotein B (gB) gene, regulated as a gamma 1 gene, into these cells yielded a cell line which constitutively expressed both the alpha 4 and gamma 1 gB genes. The expression of the gB gene was dependent on the presence of functional alpha 4 protein. In this article we report that we introduced into the alpha 4/c113 and into the parental BHK cells, the HSV-1 BamHI J fragment, which encodes the domains of four genes, including those of glycoproteins D, G, and I (gD, gG, and gI), and most of the coding sequences of the glycoprotein E (gE) gene. In contrast to the earlier studies, we obtained significant constitutive expression of gD (also a gamma 1 gene) in a cell line (BJ) derived from parental BHK cells, but not in a cell line (alpha 4/BJ) which expresses functional alpha 4 protein. RNA homologous to the gD gene was present in significant amounts in the BJ cell line; smaller amounts of this RNA were detected in the alpha 4/BJ cell line. RNA homologous to gE, presumed to be polyadenylated from signals in the vector sequences, was present in the BJ cells but not in the alpha 4/BJ cells. The expression of the HSV-1 gD and gE genes was readily induced in the alpha 4/BJ cells by superinfection with HSV-2. The BJ cell line was, in contrast, resistant to expression of HSV-1 and HSV-2 genes. The BamHI J DNA fragment copy number was approximately 1 per BJ cell genome equivalent and 30 to 50 per alpha 4/BJ cell genome equivalent. We conclude that (i) the genes specifying gD and gB belong to different viral regulatory gene subsets, (ii) the gD gene is subject to both positive and negative regulation, (iii) both gD and gE mRNAs are subject to translational controls although they may be different, and (iv) the absence of expression of gD in the alpha 4/BJ cells reflects the expression of the alpha 4 protein in these cells.  相似文献   

9.
Alphaherpesviruses express a heterodimeric glycoprotein, gE/gI, that facilitates cell-to-cell spread between epithelial cells and neurons. Herpes simplex virus (HSV) gE/gI accumulates at junctions formed between polarized epithelial cells at late times of infection. However, at earlier times after HSV infection, or when gE/gI is expressed using virus vectors, the glycoprotein localizes to the trans-Golgi network (TGN). The cytoplasmic (CT) domains of gE and gI contain numerous TGN and endosomal sorting motifs and are essential for epithelial cell-to-cell spread. Here, we swapped the CT domains of HSV gE and gI onto another HSV glycoprotein, gD. When the gD-gI(CT) chimeric protein was expressed using a replication-defective adenovirus (Ad) vector, the protein was found on both the apical and basolateral surfaces of epithelial cells, as was gD. By contrast, the gD-gE(CT) chimeric protein, gE/gI, and gE, when expressed by using Ad vectors, localized exclusively to the TGN. However, gD-gE(CT), gE/gI, and TGN46, a cellular TGN protein, became redistributed largely to lateral surfaces and cell junctions during intermediate to late stages of HSV infection. Strikingly, gE and TGN46 remained sequestered in the TGN when cells were infected with a gI(-)HSV mutant. The redistribution of gE/gI to lateral cell surfaces did not involve widespread HSV inhibition of endocytosis because the transferrin receptor and gE were both internalized from the cell surface. Thus, gE/gI accumulates in the TGN in early phases of HSV infection then moves to lateral surfaces, to cell junctions, at late stages of infection, coincident with the redistribution of a TGN marker. These results are related to recent observations that gE/gI participates in the envelopment of nucleocapsids into cytoplasmic vesicles (A. R. Brack, B. G. Klupp, H. Granzow, R. Tirabassi, L. W. Enquist, and T. C. Mettenleiter, J. Virol. 74:4004-4016, 2000) and that gE/gI can sort nascent virions from cytoplasmic vesicles specifically to the lateral surfaces of epithelial cells (D. C. Johnson, M. Webb, T. W. Wisner, and C. Brunetti, J. Virol. 75:821-833, 2000). Therefore, gE/gI localizes to the TGN, through interactions between the CT domain of gE and cellular sorting machinery, and then participates in envelopment of cytosolic nucleocapsids there. Nascent virions are then sorted from the TGN to cell junctions.  相似文献   

10.
Li Q  Krogmann T  Ali MA  Tang WJ  Cohen JI 《Journal of virology》2007,81(16):8525-8532
Varicella-zoster virus (VZV) glycoprotein E (gE) is required for VZV infection. Although gE is well conserved among alphaherpesviruses, the amino terminus of VZV gE is unique. Previously, we showed that gE interacts with insulin-degrading enzyme (IDE) and facilitates VZV infection and cell-to-cell spread of the virus. Here we define the region of VZV gE required to bind IDE. Deletion of amino acids 32 to 71 of gE, located immediately after the predicted signal peptide, resulted in loss of the ability of gE to bind IDE. A synthetic peptide corresponding to amino acids 24 to 50 of gE blocked its interaction with IDE in a concentration-dependent manner. However, a chimeric gE in which amino acids 1 to 71 of VZV gE were fused to amino acids 30 to 545 of herpes simplex virus type 2 gE did not show an increased level of binding to IDE compared with that of full-length HSV gE. Thus, amino acids 24 to 71 of gE are required for IDE binding, and the secondary structure of gE is critical for the interaction. VZV gE also forms a heterodimer with glycoprotein gI. Deletion of amino acids 163 to 208 of gE severely reduced its ability to form a complex with gI. The amino portion of IDE, as well an IDE mutant in the catalytic domain of the protein, bound to gE. Therefore, distinct motifs of VZV gE are important for binding to IDE or to gI.  相似文献   

11.
Herpes simplex virus (HSV) expresses a number of membrane glycoproteins, including gB, gD, and gH/gL, that function in both entry of virus particles and movement of virus from an infected cell to an uninfected cell (cell-to-cell spread). However, a complex of HSV glycoproteins gE and gI (gE/gI) is required for efficient cell-to-cell spread, especially between cells that form extensive cell junctions, yet it is not necessary for entry of extracellular virions. We previously showed that gE/gI has the capacity to localize specifically to cell junctions; the glycoprotein complex was found at lateral surfaces of cells in contact with other cells but not at those lateral surfaces not forming junctions or at apical surfaces. By virtue of these properties, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. Here, we show that the cytoplasmic domain of gE is important for the proper delivery of gE/gI to lateral surfaces of cells. Without this domain, gE/gI is found on the apical surface of epithelial cells, and more uniformly in the cytoplasm, although incorporation into the virion envelope is unaffected. However, even without proper trafficking signals, a substantial fraction of gE/gI retained the capacity to accumulate at cell junctions. Therefore, the extracellular domain of gE can mediate accumulation of gE/gI at cell junctions, if the glycoprotein can be delivered there, probably through interactions with ligands on the opposing cell. The role of phosphorylation of the cytoplasmic domain of gE was also studied. A second mutant HSV type 1 was constructed in which three serine residues that form a casein kinase II phosphorylation site were changed to alanine residues, reducing phosphorylation by 70 to 80%. This mutation did not affect accumulation at cell junctions or cell-to-cell spread.  相似文献   

12.
Herpes simplex virus (HSV) spreads rapidly and efficiently within epithelial and neuronal tissues. The HSV glycoprotein heterodimer gE/gI plays a critical role in promoting cell-to-cell spread but does not obviously function during entry of extracellular virus into cells. Thus, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. There was previous evidence that the large extracellular (ET) domains of gE/gI might be important in cell-to-cell spread. First, gE/gI extensively accumulates at cell junctions, consistent with being tethered there. Second, expression of gE/gI in trans interfered with HSV spread between epithelial cells. To directly test whether the gE ET domain was necessary for gE/gI to promote virus spread, a panel of gE mutants with small insertions in the ET domain was constructed. Cell-to-cell spread was reduced when insertions were made within either of two regions, residues 256 to 291 or 348 to 380. There was a strong correlation between loss of cell-to-cell spread function and binding of immunoglobulin. gE ET domain mutants 277, 291, and 348 bound gI, produced mature forms of gE that reached the cell surface, and were incorporated into virions yet produced plaques similar to gE null mutants. Moreover, all three mutants were highly restricted in spread within the corneal epithelium, in the case of mutant 277 to only 4 to 6% of the number of cells compared with wild-type HSV. Therefore, the ET domain of gE is indispensable for efficient cell-to-cell spread. These observations are consistent with our working hypothesis that gE/gI can bind extracellular ligands, so-called gE/gI receptors that are concentrated at epithelial cell junctions. This fits with similarities in structure and function of gE/gI and gD, which is a receptor binding protein.  相似文献   

13.
The final assembly of herpes simplex virus (HSV) involves binding of tegument-coated capsids to viral glycoprotein-enriched regions of the trans-Golgi network (TGN) as enveloped virions bud into TGN membranes. We previously demonstrated that HSV glycoproteins gE/gI and gD, acting in a redundant fashion, are essential for this secondary envelopment. To define regions of the cytoplasmic (CT) domain of gE required for secondary envelopment, HSVs lacking gD and expressing truncated gE molecules were constructed. A central region (amino acids 470 to 495) of the gE CT domain was important for secondary envelopment, although more C-terminal residues also contributed. Tandem affinity purification (TAP) proteins including fragments of the gE CT domain were used to identify tegument proteins VP22 and UL11 as binding partners, and gE CT residues 470 to 495 were important in this binding. VP22 and UL11 were precipitated from HSV-infected cells in conjunction with full-length gE and gE molecules with more-C-terminal residues of the CT domain. gD also bound VP22 and UL11. Expression of VP22 and gD or gE/gI in cells by use of adenovirus (Ad) vectors provided evidence that other viral proteins were not necessary for tegument/glycoprotein interactions. Substantial quantities of VP22 and UL11 bound nonspecifically onto or were precipitated with gE and gD molecules lacking all CT sequences, something that is very unlikely in vivo. VP16 was precipitated equally whether gE/gI or gD was present in extracts or not. These observations illustrated important properties of tegument proteins. VP22, UL11, and VP16 are highly prone to binding nonspecifically to other proteins, and this did not represent insolubility during our assays. Rather, it likely reflects an inherent "stickiness" related to the formation of tegument. Nevertheless, assays involving TAP proteins and viral proteins expressed by HSV and Ad vectors supported the conclusion that VP22 and UL11 interact specifically with the CT domains of gD and gE.  相似文献   

14.
15.
The role of glycoprotein E (gE) and gI of Marek's disease virus serotype 1 (MDV-1) for growth in cultured cells was investigated. MDV-1 mutants lacking either gE (20DeltagE), gI (20DeltagI), or both gE and gI (20DeltagEI) were constructed by recE/T-mediated mutagenesis of a recently established infectious bacterial artificial chromosome (BAC) clone of MDV-1 (D. Schumacher, B. K. Tischer, W. Fuchs, and N. Osterrieder, J. Virol. 74:11088-11098, 2000). Deletion of either gE or gI, which form a complex in MDV-1-infected cells, resulted in the production of virus progeny that were unable to spread from cell to cell in either chicken embryo fibroblasts or quail muscle cells. This was reflected by the absence of virus plaques and the detection of only single infected cells after transfection, even after coseeding of transfected cells with uninfected cells. In contrast, growth of rescuant viruses, in which the deleted glycoprotein genes were reinserted by homologous recombination, was indistinguishable from that of parental BAC20 virus. In addition, the 20DeltagE mutant virus was able to spread from cell to cell when cotransfected into chicken embryo fibroblasts with an expression plasmid encoding MDV-1 gE, and the 20DeltagI mutant virus exhibited cell-to-cell spread capability after cotransfection with a gI expression plasmid. The 20DeltagEI mutant virus, however, was not able to spread in the presence of either a gE or gI expression plasmid, and only single infected cells were detected by indirect immunofluorescence. The results reported here demonstrate for the first time that both gE and gI are absolutely essential for cell-to-cell spread of a member of the Alphaherpesvirinae.  相似文献   

16.
The late stages of assembly of herpes simplex virus (HSV) and other herpesviruses are not well understood. Acquisition of the final virion envelope apparently involves interactions between viral nucleocapsids coated with tegument proteins and the cytoplasmic domains of membrane glycoproteins. This promotes budding of virus particles into cytoplasmic vesicles derived from the trans-Golgi network or endosomes. The identities of viral membrane glycoproteins and tegument proteins involved in these processes are not well known. Here, we report that HSV mutants lacking two viral glycoproteins, gD and gE, accumulated large numbers of unenveloped nucleocapsids in the cytoplasm. These aggregated capsids were immersed in an electron-dense layer that appeared to be tegument. Few or no enveloped virions were observed. More subtle defects were observed with an HSV unable to express gD and gI. A triple mutant lacking gD, gE, and gI exhibited more severe defects in envelopment. We concluded that HSV gD and the gE/gI heterodimeric complex act in a redundant fashion to anchor the virion envelope onto tegument-coated capsids. In the absence of either one of these HSV glycoproteins, envelopment proceeds; however, without both gD and gE, or gE/gI, there is profound inhibition of cytoplasmic envelopment.  相似文献   

17.
Neurons of the sensory ganglia are the major site of varicella-zoster virus (VZV) latency and may undergo productive infection during reactivation. Although the VZV glycoprotein E/glycoprotein I (gE/gI) complex is known to be critical for neurovirulence, few studies have assessed the roles of these proteins during infection of dorsal root ganglia (DRG) due to the high human specificity of the virus. Here, we show that the VZV glycoprotein I gene is an important neurotropic gene responsible for mediating the spread of virus in neuronal cultures and explanted DRG. Inoculation of differentiated SH-SY5Y neuronal cell cultures with a VZV gI gene deletion strain (VZV rOkaΔgI) showed a large reduction in the percentage of cells infected and significantly smaller plaque sizes in a comparison with cultures infected with the parental strain (VZV rOka). In contrast, VZV rOkaΔgI was not significantly attenuated in fibroblast cultures, demonstrating a cell type-specific role for VZV gI. Analysis of rOkaΔgI protein localization by immunofluorescent staining revealed aberrant localization of viral glycoprotein and capsid proteins, with little or no staining present in the axons of differentiated SH-SY5Y cells infected with rOkaΔgI, yet axonal vesicle trafficking was not impaired. Further studies utilizing explanted human DRG indicated that VZV gI is required for the spread of virus within DRG. These data demonstrate a role for VZV gI in the cell-to-cell spread of virus during productive replication in neuronal cells and a role in facilitating the access of virion components to axons.  相似文献   

18.
The Epstein-Barr virus (EBV) glycoproteins N and M (gN and gM) are encoded by the BLRF1 and BBRF3 genes. To examine the function of the EBV gN-gM complex, recombinant virus was constructed in which the BLRF1 gene was interrupted with a neomycin resistance cassette. Recombinant virus lacked not only gN but also detectable gM. A significant proportion of the recombinant virus capsids remained associated with condensed chromatin in the nucleus of virus-producing cells, and cytoplasmic vesicles containing enveloped virus were scarce. Virus egress was impaired, and sedimentation analysis revealed that the majority of the virus that was released lacked a complete envelope. The small amount of virus that could bind to cells was also impaired in infectivity at a step following fusion. These data are consistent with the hypothesis that the predicted 78-amino-acid cytoplasmic tail of gM, which is highly charged and rich in prolines, interacts with the virion tegument. It is proposed that this interaction is important both for association of capsids with cell membrane to assemble and release enveloped particles and for dissociation of the capsid from the membrane of the newly infected cell on its way to the cell nucleus. The phenotype of EBV lacking the gN-gM complex is more striking than that of most alphaherpesviruses lacking the same complex but resembles in many respects the phenotype of pseudorabies virus lacking glycoproteins gM, gE, and gI. Since EBV does not encode homologs for gE and gI, this suggests that functions that may have some redundancy in alphaherpesviruses have been concentrated in fewer proteins in EBV.  相似文献   

19.
We have constructed recombinant baculoviruses individually expressing seven of the herpes simplex virus type 1 (HSV-1) glycoproteins (gB, gC, gD, gE, gG, gH, and gI). Vaccination of mice with gB, gC, gD, gE, or gI resulted in production of high neutralizing antibody titers to HSV-1 and protection against intraperitoneal and ocular challenge with lethal doses of HSV-1. This protection was statistically significant and similar to the protection provided by vaccination with live nonvirulent HSV-1 (90 to 100% survival). In contrast, vaccination with gH produced low neutralizing antibody titers and no protection against lethal HSV-1 challenge. Vaccination with gG produced no significant neutralizing antibody titer and no protection against ocular challenge. However, gG did provide modest, but statistically significant, protection against lethal intraperitoneal challenge (75% protection). Compared with the other glycoproteins, gG and gH were also inefficient in preventing the establishment of latency. Delayed-type hypersensitivity responses to HSV-1 at day 3 were highest in gG-, gH-, and gE-vaccinated mice, while on day 6 mice vaccinated with gC, gE, and gI had the highest delayed-type hypersensitivity responses. All seven glycoproteins produced lymphocyte proliferation responses, with the highest response being seen with gG. The same five glycoproteins (gB, gC, gD, gE, and gI) that induced the highest neutralization titers and protection against lethal challenge also induced some killer cell activity. The results reported here therefore suggest that in the mouse protection against lethal HSV-1 challenge and the establishment of latency correlate best with high preexisting neutralizing antibody titers, although there may also be a correlation with killer cell activity.  相似文献   

20.
The HXLF (HindIII-X left reading frame) gene family is a group of five genes that share one or two regions of homology and are arranged in tandem within the short unique component of the human cytomegalovirus genome (K. Weston and B.G. Barrell, J. Mol. Biol. 192:177-208, 1986). These genes were cloned into an SP6 expression vector in both the sense and antisense orientations. An abundant 1.62-kilobase (kb) bicistronic mRNA, predicted to originate from HXLF1 and HXLF2, was detected in the cytoplasm of infected human fibroblast cells by Northern (RNA) blot analysis. Less abundant RNAs of 1.0 and 0.8 kb, predicted to originate from the HXLF5 and HXLF2 genes, respectively, were also detected. Monocistronic, bicistronic, and polycistronic RNAs synthesized in vitro by using SP6 polymerase were translated in rabbit reticulocyte lysates with or without canine pancreatic microsomal membranes. The HXLF1 or the HXLF1 and HXLF2 translation products were detected when the above mRNAs were used. The HXLF3, HXLF4, and HXLF5 gene products were not detected by in vitro translation of the SP6-derived polycistronic mRNA. Nonglycosylated or glycosylated HXLF1 and HXLF2 gene products were immunoprecipitated by monoclonal antibody 9E10, which is specific for a virion envelope glycoprotein complex designated gcII (gp47-52 complex). In addition, the monoclonal antibody 9E10 immunoprecipitated a diffuse glycoprotein band, designated gp47-52, from HCMV-infected cell lysates. The amino acid composition of gp47-52 purified from viron envelopes has the highest similarity to the predicted amino acid composition of the HXLF1 plus HXLF2 open reading frames, but it is more similar to HXLF2 than to HXLF1. The Northern blot results imply that gp47-52 is synthesized predominantly from the abundant 1.62-kb bicistronic mRNA encoded by the HXLF1 and HXLF2 genes. However, the glycoprotein could also be synthesized by the monocistronic 0.8-kb mRNA encoded by the HXLF2 gene as well as by the mRNAs predicted from the other HXLF genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号