首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism by which extracellular alkalosis inhibits hypoxic pulmonary vasoconstriction is unknown. We investigated whether the inhibition was due to intrapulmonary production of a vasodilator prostaglandin such as prostacyclin (PGI2). Hypoxic vasoconstriction in isolated salt-solution-perfused rat lungs was blunted by both hypocapnic and NaHCO3-induced alkalosis (perfusate pH increased from 7.3 to 7.7). The NaHCO3-induced alkalosis was accompanied by a significant increase in the perfusate level of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), an hydrolysis product of PGI2. Meclofenamate, an inhibitor of cyclooxygenase, counteracted both the blunting of hypoxic vasoconstriction and the increased level of 6-keto-PGF1 alpha. In intact anesthetized dogs, hypocapnic alkalosis (blood pH increased from 7.4 to 7.5) blunted hypoxic pulmonary vasoconstriction before but not after administration of meclofenamate. In separate cultures of bovine pulmonary artery endothelial and smooth muscle cells stimulated by bradykinin, the incubation medium levels of 6-keto-PGF1 alpha were increased by both hypocapnic and NaHCO3-induced alkalosis (medium pH increased from 7.4 to 7.7). These results suggest that inhibition of hypoxic pulmonary vasoconstriction by alkalosis is mediated at least partly by PGI2.  相似文献   

2.
To determine whether hypoxic pulmonary vasoconstriction (HPV) occurs mainly in alveolar or extra-alveolar vessels in ferrets, we used two groups of isolated lungs perfused with autologous blood and a constant left atrial pressure (-5 Torr). In the first group, flow (Q) was held constant at 50, 100, and 150 ml.kg-1 X min-1, and changes in pulmonary arterial pressure (Ppa) were recorded as alveolar pressure (Palv) was lowered from 25 to 0 Torr during control [inspired partial pressure of O2 (PIO2) = 200 Torr] and hypoxic (PIO2 = 25 Torr) conditions. From these data, pressure-flow relationships were constructed at several levels of Palv. In the control state, lung inflation did not affect the slope of the pressure-flow relationships (delta Ppa/delta Q), but caused the extrapolated pressure-axis intercept (Ppa0), representing the mean backpressure to flow, to increase when Palv was greater than or equal to 5 Torr. Hypoxia increased delta Ppa/delta Q and Ppa0 at all levels of Palv. In contrast to its effects under control condition, lung inflation during hypoxia caused a progressive decrease in delta Ppa/delta Q, and did not alter Ppa0 until Palv was greater than or equal to 10 Torr. In the second group of experiments flow was maintained at 100 ml.kg-1 X min-1, and changes in lung blood volume (LBV) were recorded as Palv was varied between 20 and 0 Torr. In the control state, inflation increased LBV over the entire range of Palv. In the hypoxic state inflation decreased LBV until Palv reached 8 Torr; at Palv 8-20 Torr, inflation increased LBV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Energy state and vasomotor tone in hypoxic pig lungs   总被引:3,自引:0,他引:3  
To evaluate the role of energy state in pulmonary vascular responses to hypoxia, we exposed isolated pig lungs to decreases in inspired PO2 or increases in perfusate NaCN concentration. Lung energy state was assessed by 31P nuclear magnetic resonance spectroscopy or measurement of adenine nucleotides by high-pressure liquid chromatography in freeze-clamped biopsies. In ventilated lungs, inspired PO2 of 200 (normoxia), 50 (hypoxia), and 0 Torr (anoxia) did not change adenine nucleotides but resulted in steady-state pulmonary arterial pressure (Ppa) values of 15.5 +/- 1.4, 30.3 +/- 1.8, and 17.2 +/- 1.9 mmHg, respectively, indicating vasoconstriction during hypoxia and reversal of vasoconstriction during anoxia. In degassed lungs, similar changes in Ppa were observed; however, energy state deteriorated during anoxia. An increase in perfusate NaCN concentration from 0 to 0.1 mM progressively increased Ppa and did not alter adenine nucleotides, whereas 1 mM reversed this vasoconstriction and caused deterioration of energy state. These results suggest that 1) pulmonary vasoconstrictor responses to hypoxia or cyanide occurred independently of whole lung energy state, 2) the inability of the pulmonary vasculature to sustain hypoxic vasoconstriction during anoxia might be associated with decreased energy state in some lung compartment, and 3) atelectasis was detrimental to whole lung energy state.  相似文献   

4.
Previous studies have shown that the attenuated hypoxic pulmonary vasoconstriction (HPV) of young newborn lamb lungs was enhanced by cyclooxygenase inhibition. We sought to determine whether this reflected greater synthesis of and (or) responsiveness to dilator prostaglandins (PG). Protocol 1 measured responses to graded hypoxia and perfusate concentrations of 6-keto-PGF1alpha (the stable metabolite of PGI2) and PGE2 in isolated lungs from 1-day- and 1-month-old lambs. Protocol 2 compared dose responses and segmental vascular resistances during infusion of PGI2 and PGE2 in hypoxic, cyclooxygenase-inhibited, lungs from 1- to 2-day-old and 1- to 3-month-old lambs. Lungs of 1-day-old lambs with attenuated responses to 4% O2 had significantly higher perfusate concentrations of 6-keto-PGF1alpha and PGE2, but responses to both PGE2 and the more potent vasodilator, PGI2 did not differ with age. These data support the hypothesis that attenuated HPV in young newborn lamb lungs is due to increased synthesis of dilator PG, particularly PGI2.  相似文献   

5.
To evaluate the role of leukotrienes in hypoxic pulmonary vasoconstriction, we measured steady-state pressor responses to graded hypoxia in isolated ferret lungs perfused with autologous blood containing 0.001, 0.03, 1, or 3 mM nordihydroguaiaretic acid (NDGA), 1 mM BW 755C, or 0.02-0.05 mM indomethacin. Untreated lungs served as controls. Perfusate concentrations of thromboxane B2 and 6-ketoprostaglandin F1 alpha, measured by radioimmunoassay, were markedly reduced in all treated lungs, indicating inhibition of cyclooxygenase. The maximum pressor response to hypoxia measured at a blood flow of 50 ml.min-1. kg-1 averaged 26.6 +/- 2.4 Torr in untreated lungs and was not affected by BW 755C or 0.001-0.03 mM NDGA. Because BW 755C and NDGA inhibited cyclooxygenase at concentrations that did not affect hypoxic vasoconstriction and because both agents are thought to inhibit lipoxygenase with a potency greater than or equal to that with which they inhibit cyclooxygenase, these results do not support the possibility that hypoxic pulmonary vasoconstriction was mediated by leukotrienes. At concentrations of 1 and 3 mM, NDGA inhibited the maximum hypoxic pressor response by 57 and 95%, respectively. The mechanism of this attenuation is unknown; however, it was apparently not due to cyclooxygenase inhibition, since indomethacin enhanced the maximum hypoxic pressor response by 45%. Nor was it due to blockade of calcium entry or interference with the contractile process in pulmonary vascular smooth muscle, since 1 mM NDGA did not inhibit vasoconstrictor responses to KCl or prostaglandin F2 alpha.  相似文献   

6.
We determined the effects of extracorporeal perfusion with a constant flow (75 ml . min-1 . kg-1) of autologous blood on hemodynamics and fluid balance in sheep lungs isolated in situ. After 5 min, perfusate leukocyte and platelet counts fell by two-thirds. Pulmonary arterial pressure (Ppa) increased to a maximum of 32.0 +/- 3.4 Torr at 30 min and thereafter fell. Lung lymph flow (QL), measured from the superior thoracic duct, and perfusate thromboxane B2 (TXB2) concentrations followed similar time courses but lagged behind Ppa, reaching maxima of 4.1 +/- 1.2 ml/h and 2.22 +/- 0.02 ng/ml at 60 min. Lung weight gain, measured as the opposite of the weight change of the extracorporeal reservoir, and perfusate 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) concentration increased rapidly during the first 60 min and then more gradually. After 210 min, weight gain was 224 +/- 40 g and 6-keto-PGF1 alpha concentration, 4.99 +/- 0.01 ng/ml. The ratio of lymph to plasma oncotic pressure (pi L/pi P) at 30 min was 0.61 +/- 0.06 and did not change significantly. Imidazole (5 mM) reduced the changes in TXB2, Ppa, QL, and weight and platelet count but did not alter 6-keto-PGF1 alpha, pi L/pi P, or leukocyte count. Indomethacin (0.056 mM) reduced TXB2, 6-keto-PGF1 alpha, and the early increases in weight, Ppa, and QL but did not alter the time courses of leukocyte or platelet counts. Late in perfusion, however, Ppa and QL were greater than in either untreated or imidazole-treated lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The mechanism of hypoxia-induced pulmonary vasoconstriction remains unknown. To explore the possible dependence of the hypoxic response on voltage-activated calcium (Ca2+) channels, the effects of BAY K 8644 (BAY), a voltage-dependent Ca2+ channel potentiator, were observed on the pulmonary vascular response to hypoxia of both the intact anesthetized dog and the perfused isolated rat lung. In six rat lungs given BAY (1 X 10(-6)M), hypoxia increased mean pulmonary arterial pressure (Ppa) to 30.5 +/- 1.7 (SEM) Torr compared with 14.8 +/- 1.2 Torr for six untreated rat lungs (P less than 0.01). After nifedipine, the maximum Ppa during hypoxia fell 14.1 +/- 2.4 Torr from the previous hypoxic challenge in the BAY-stimulated rats (P less than 0.01). BAY (1.2 X 10(-7) mol/kg) given during normoxia in seven dogs increased pulmonary vascular resistance 2.5 +/- 0.3 to 5.0 +/- 1.2 Torr X 1(-1) X min (P less than 0.05), and systemic vascular resistance 55 +/- 4.9 to 126 +/- 20.7 Torr X 1(-1) X min (P less than 0.05). Systemic mean arterial pressure rose 68 Torr, whereas Ppa remained unchanged. Administration of BAY during hypoxia produced an increase in Ppa: 28 +/- 1.5 to 33 +/- 1.9 Torr (P less than 0.05). Thus BAY, a Ca2+ channel potentiator, enhances the hypoxic pulmonary response in vitro and in vivo. This, together with the effect of nifedipine on BAY potentiation, suggests that increased Ca2+ channel activity may be important in the mechanism of hypoxic pulmonary vasoconstriction.  相似文献   

8.
Acetylcholine induces vasodilation and prostacyclin synthesis in rat lungs   总被引:3,自引:0,他引:3  
Acetylcholine causes pulmonary vasodilation, but its mechanism of action is unclear. We hypothesized that acetylcholine-induced pulmonary vasodilation might be associated with prostacyclin formation. Therefore, we used isolated rat lungs perfused with a recirculating cell- and plasma-free physiological salt solution to study the effect of acetylcholine infusion on pulmonary perfusion pressure, vascular responsiveness and lung prostacyclin production. Acetylcholine (20 micrograms infused over 1 minute) caused immediate vasodilation during ongoing hypoxic vasoconstriction and prolonged depression of subsequent hypoxic and angiotensin II-induced vasoconstrictions. Both effects of acetylcholine were abolished by atropine pretreatment. The prolonged acetylcholine effect, but not the immediate response, was blocked by meclofenamate, an inhibitor of cyclooxygenase. The prolonged effect, but not the immediate response, of acetylcholine was associated with an increase in perfusate 6-keto-PGF1 alpha concentration. The acetylcholine stimulated increase in 6-keto-PGF1 alpha production was inhibited by meclofenamate and by atropine. Thus, blockade of prostacyclin production corresponded with blockade of the prolonged acetylcholine effect. In conclusion, acetylcholine caused in isolated rat lungs an immediate vasodilation and a prolonged, time-dependent depression of vascular responsiveness. Whereas both acetylcholine effects were under muscarinic receptor control, only the prolonged effect depended on the cyclooxygenase pathway and, presumably, prostacyclin synthesis.  相似文献   

9.
Arachidonic acid metabolism can lead to synthesis of cyclooxygenase products in the lung as indicated by measurement of such products in the perfusate of isolated lungs perfused with a salt solution. However, a reduction in levels of cyclooxygenase products in the perfusate may not accurately reflect the inhibition of levels of such products as measured in lung parenchyma. We infused sodium arachidonate into the pulmonary circulation of isolated dog lungs perfused with a salt solution and measured parenchymal, as well as perfusate, levels of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), and thromboxane B2 (TxB2). These studies were repeated with indomethacin (a cyclooxygenase enzyme inhibitor) in the perfusate. We found that indomethacin leads to a marked reduction in perfusate levels of PGF2 alpha, PGE2, 6-keto-PGF1 alpha, and TxB2, as well as a marked reduction in parenchymal levels of 6-keto-PGF1 alpha and TxB2 when parenchymal levels of PGF2 alpha and PGE2 are not reduced. We conclude that, with some cyclooxygenase products, a reduction in levels of these products in the perfusate of isolated lungs may not indicate inhibition of levels of these products in the lung parenchyma and that a reduction in one parenchymal product may not predict the reduction of other parenchymal products. It can be speculated that some of the physiological actions of indomethacin in isolated lungs may result from incomplete or selective inhibition of synthesis of pulmonary cyclooxygenase products.  相似文献   

10.
We evaluated the effects of an abrupt increase in flow and of a subsequent sympathetic nerve stimulation on the pulmonary production of prostacyclin (PGI2) and thromboxane A2 (TXA2) in canine isolated left lower lobes perfused in situ with pulsatile flow. When flow was abruptly increased from 50 +/- 3 to 288 +/- 2 ml/min, mean pulmonary arterial pressure (Ppa) increased by 15 +/- 2 Torr and then declined by 2.4 Torr over the next 5 min. This secondary decrease in Ppa was associated with a significant 0.26 +/- 0.11 ng/ml increase in the pulmonary venous concentration of the stable PGI2 hydrolysis product 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) as determined by radioimmunoassay. Stimulation of the left stellate ganglion usually resulted in an increase in Ppa which peaked at 1.1 +/- 0.6 Torr above its prestimulus level and then declined over the next 5 min. Associated with this decline was a 0.24 +/- 0.11 ng/ml increase in 6-keto-PGF1 alpha at 1 min. We suggest that the decline in Ppa is due to the synthesis and release of PGI2 by the endothelial cells in response to an increase in perfusion pressure.  相似文献   

11.
The effects of hypercapnia (CO(2)) confined to either the alveolar space or the intravascular perfusate on exhaled nitric oxide (NO), perfusate NO metabolites (NOx), and pulmonary arterial pressure (Ppa) were examined during normoxia and progressive 20-min hypoxia in isolated blood- and buffer-perfused rabbit lungs. In blood-perfused lungs, when alveolar CO(2) concentration was increased from 0 to 12%, exhaled NO decreased, whereas Ppa increased. Increments of intravascular CO(2) levels increased Ppa without changes in exhaled NO. In buffer-perfused lungs, alveolar CO(2) increased Ppa with reductions in both exhaled NO from 93.8 to 61.7 (SE) nl/min (P < 0.01) and perfusate NOx from 4.8 to 1.8 nmol/min (P < 0.01). In contrast, intravascular CO(2) did not affect either exhaled NO or Ppa despite a tendency for perfusate NOx to decline. Progressive hypoxia elevated Ppa by 28% from baseline with a reduction in exhaled NO during normocapnia. Alveolar hypercapnia enhanced hypoxic Ppa response up to 50% with a further decline in exhaled NO. Hypercapnia did not alter the apparent K(m) for O(2), whereas it significantly decreased the V(max) from 66.7 to 55.6 nl/min. These results suggest that alveolar CO(2) inhibits epithelial NO synthase activity noncompetitively and that the suppressed NO production by hypercapnia augments hypoxic pulmonary vasoconstriction, resulting in improved ventilation-perfusion matching.  相似文献   

12.
The effect of acute cyclooxygenase (CYO) inhibition on the cardiopulmonary adjustments at birth was examined in chronically instrumented, unanesthetized, term lambs before, during, and after cesarean section (spontaneous respiration). One of three infusions was started 20 min before birth: saline control (C, n = 6), indomethacin (I, n = 6), or meclofenamate (M, n = 3). The stable metabolite of prostacyclin, plasma 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha, aorta), was measured by radioimmunoassay as an index of CYO activity. Indomethacin blocked the rise of 6-keto-PGF1 alpha observed in control lambs after birth and indomethacin-treated lambs exhibited an attenuation of the postnatal decrease in mean pulmonary arterial pressure. Pulmonary arterial pressure (Ppa) was 53 +/- 2 and 47 +/- 2 Torr (mean +/- SE) at 15 min and 40 +/- 3 and 34 +/- 2 Torr at 120 min in I and C groups, respectively. There were no serial or group differences in cardiac output and cardiac right to left shunt (indicator dilution) from 15 to 120 min after birth. Arterial PO2 (PaO2) was not different between groups: 37 +/- 4 Torr at 15 min and 47 +/- 5 min at 120 min after birth (control lambs). The results for I and M were similar for all measurements.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Isolated rat lungs were ventilated and perfused by saline-Ficoll perfusate at a constant flow. The baseline perfusion pressure (PAP) correlated with the concentration of 6-keto-PGF1 alpha the stable metabolite of PGI2 (r = 0.83) and with the 6-keto-PGF1 alpha/TXB2 ratio (r = 0.82). A bolus of 10 micrograms exogenous arachidonic acid (AA) injected into the arterial cannula of the isolated lungs caused significant decrease in pulmonary vascular resistance (PVR) which was followed by a progressive increase of PVR and edema formation. Changes in perfusion pressure induced by AA injection also correlated with concentrations of the stable metabolites (6-keto-PGF1 alpha: r = -0.77, TxB2: -0.76), and their ratio: (6-keto-PGF1 alpha/TXB2: r = -0.73). Injection of 10 and 100 micrograms of PGF2 alpha into the pulmonary artery stimulated the dose-dependent production of TXB2 and 6-keto-PGF1 alpha. No significant correlations were found between the perfusion pressure (PAP) which was increased by the PGF2 alpha and the concentrations of the former stable metabolites. The results show that AA has a biphasic effect on the isolated lung vasculature even in low dose. The most potent vasoactive metabolites of cyclooxygenase, prostacyclin and thromboxane A2 influence substantially not only the basal but also the increased tone of the pulmonary vessels.  相似文献   

14.
Aspirin (ASA) inhibits cycloxygenase-1 and modifies cycloxygenase-2 (COX2) by acetylation at Ser(530), leading to a shift from production of PGH(2), the precursor of prostaglandin, to 15-R-HETE which is converted by 5-lipoxygenase to 15-epi-lipoxin A(4) (15-epi-LXA4), a potent anti-inflammatory mediator. Both atorvastatin (ATV) and pioglitazone (PIO) increase COX2 expression. ATV activates COX2 by S-nitrosylation at Cys(526) to produce 15-epi-LXA4 and 6-keto-PGF(1alpha) (the stable metabolite of PGI(2)). We assessed the effect of ASA on the myocardial production of 15-epi-LXA4 and PGI(2) after induction by lipopolysaccharide (LPS) or PIO+ATV. Sprague-Dawley rats were pretreated with: control; ASA 10 mg/kg; ASA 50 mg/kg; LPS alone; LPS+ASA 10 mg/kg; LPS+ASA 50 mg/kg; LPS+ASA 200 mg/kg; PIO (10 mg/kg/d)+ATV (10 mg/kg/d); PIO+ATV+ASA 10 mg/kg; PIO+ATV+ASA 50 mg/kg; PIO+ATV+ASA 50 mg/kg+1400 W, a specific iNOS inhibitor; or PIO+ATV+1400 W. ASA alone had no effect on myocardial 15-epi-LXA4. LPS increased 15-epi-LXA4 and 6-keto-PGF(1alpha) levels. ASA (50 mg/kg and 200 mg/kg, but not 10 mg/kg) augmented the LPS effect on 15-epi-LXA4 but attenuated the effect on 6-keto-PGF(1alpha). PIO+ATV increased 15-epi-LXA4 and 6-keto-PGF(1alpha) levels. ASA and 1400 W attenuated the effects of PIO+ATV on 15-epi-LXA4 and 6-keto-PGF(1alpha). However, when both ASA and 1400 W were administered with PIO+ATV, there was a marked increase in 15-epi-LXA4, whereas the production of 6-keto-PGF(1alpha) was attenuated. In conclusion, COX2 acetylation by ASA shifts enzyme from producing 6-keto-PGF(1alpha) to 15-epi-LXA4. In contrast, S-nitrosylation by PIO+ASA augments the production of both 15-epi-LXA4 and 6-keto-PGF(1alpha). However, when COX2 is both acetylated and S-nitrosylated, it is inactivated. We suggest potential adverse interactions among statins, thiazolidinediones, and high-dose ASA.  相似文献   

15.
This study of newborn (3-10 day old) and juvenile (6-8 mo old) in situ isolated lamb lungs was undertaken to determine whether 1) histamine receptor blockade accentuates hypoxic pulmonary vasoconstriction more in newborns than in juveniles, 2) histamine infusion causes a decrease in both normoxic pulmonary vascular resistance and hypoxic pulmonary vasoconstriction in newborns, and 3) the H1-mediated dilator response to infused histamine in newborns is due to enhanced dilator prostaglandin release. Pulmonary arterial pressure (Ppa) was determined at baseline and in response to histamine (infusion rates of 0.1-10.0 micrograms.kg-1 min-1) in control, H1-blocked, H2-blocked, combined H1- and H2-blocked, and cyclooxygenase-inhibited H2-blocked lungs under "normoxic" (inspired O2 fraction 0.28) and hypoxic (inspired O2 fraction 0.04) conditions. In newborns, H1-receptor blockade markedly accentuated baseline hypoxic Ppa, and H2-receptor blockade caused an increase in baseline normoxic Ppa. In juveniles, neither H1 nor H2 blockade altered baseline normoxic or hypoxic Ppa. Histamine infusion caused both H1- and H2-mediated decreases in Ppa in normoxic and hypoxic newborn lungs. In juvenile lungs, histamine infusion also caused H2-mediated decreases in Ppa during both normoxia and hypoxia. During normoxia, histamine infusion caused an H1-mediated increase in normoxic Ppa in juveniles as previously seen in mature animals; however, during hypoxia there was an H1-mediated decrease in Ppa at low doses of histamine followed by an increase in Ppa. Combined histamine-receptor blockade markedly reduced both dilator and pressor responses to histamine infusion. Indomethacin failed to alter the H1-mediated dilator response to histamine in newborns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To evaluate leukotriene (LT) C4 as a mediator of hypoxic pulmonary vasoconstriction, we examined the effects of FPL55712, a putative LT antagonist, and indomethacin, a cyclooxygenase inhibitor, on vasopressor responses to LTC4 and hypoxia (inspired O2 tension = 25 Torr) in isolated ferret lungs perfused with a constant flow (50 ml.kg-1.min-1). Pulmonary arterial injections of LTC4 caused dose-related increases in pulmonary arterial pressure during perfusion with physiological salt solution containing Ficoll (4 g/dl). FPL55712 caused concentration-related inhibition of the pressor response to LTC4 (0.6 micrograms). Although 10 micrograms/ml FPL55712 inhibited the LTC4 pressor response by 61%, it did not alter the response to hypoxia. At 100 microgram/ml, FPL55712 inhibited the responses to LTC4 and hypoxia by 73 and 71%, respectively, but also attenuated the vasoconstrictor responses to prostaglandin F2 alpha (78% at 8 micrograms), phenylephrine (68% at 100 micrograms), and KCl (51% at 40 mM). At 0.5 microgram/ml, indomethacin significantly attenuated the pressor response to arachidonic acid but did not alter responses to LTC4 or hypoxia. These results suggest that in isolated ferret lungs 1) the vasoconstrictor response to LTC4 did not depend on release of cyclooxygenase products and 2) LTC4 did not mediate hypoxic vasoconstriction.  相似文献   

17.
Leukotriene E4 (LTE4) appears to be a rather stable product of the lipoxygenase pathway. Its action in the pulmonary circulation is unknown. Therefore we investigated its effect on the circulation of isolated rat lungs perfused with a cell- and plasma-free solution. Synthetic LTE4 in doses from .15 micrograms to 5 micrograms/.25 ml .9% NaCl injected as a bolus in the pulmonary artery during normoxia caused a fast, transient perfusion pressure increase within seconds. This was followed by a slow rise in baseline perfusion pressure (normoxia) over 25 min. In addition, 5 micrograms LTE4 caused edematogenic lung damage. Injection of 1.5 micrograms LTE4 during hypoxic vasoconstriction caused fast, transient pressure rises, similar to normoxic conditions. 6-keto-PGF1 alpha and TXB2 were measured in the lung effluent before and after LTE4 injection. Neither 6-keto-PGF1 alpha nor TXB2 production changed after LTE4 injection. Meclofenamate (.5 micrograms/ml) increased the fast, transient and the slow, sustained pressure rise. We conclude that LTE4 caused direct pulmonary vasoconstriction unrelated to cyclooxygenase products.  相似文献   

18.
The aim of this study was to determine whether leukotriene C4 (LTC4) is a mediator of hypoxic pulmonary vasoconstriction. We hypothesized that similar increases in LTC4, detected in the lung parenchyma and pulmonary vascular compartment during cyclooxygenase blockade with indomethacin (INDO), would be observed during an equal increase in pulmonary arterial pressure caused by acute alveolar hypoxia (HYP, 100% N2) or platelet-activating factor (PAF, 10 micrograms into the pulmonary artery). Rat lungs were perfused at constant flow in vitro with an albumin-Krebs-Henseleit solution. Mean pulmonary arterial pressure (n = 6 per group) increased from a base line of 10.9 +/- 1.2 to 15.8 +/- 2.1 (HYP + INDO) and 15.5 +/- 1.9 (SE) Torr (PAF + INDO). LTC4 levels increased only in response to PAF + INDO; perfusate levels increased from 0.4 +/- 0.07 to 5.3 +/- 1.1 ng/40 ml, and lung parenchymal levels increased from 1.9 +/- 0.07 to 22.8 +/- 5.3 ng/lung. Diethylcarbamazine (lipoxygenase inhibitor) reduced PAF-induced lung parenchymal levels of LTC4 by 68% and pulmonary hypertension by 63%. We conclude that 1) LTC4 is not a mediator of hypoxic pulmonary vasoconstriction and 2) intravascular PAF is a potent stimulus for LTC4 production in the lung parenchyma.  相似文献   

19.
Systemic O2 transport during maximal exercise at different inspired PO2 (PIO2) values was studied in sodium cyanate-treated (CY) and nontreated (NT) rats. CY rats exhibited increased O2 affinity of Hb (exercise O2 half-saturation pressure of Hb = 27.5 vs. 42.5 Torr), elevated blood Hb concentration, pulmonary hypertension, blunted hypoxic pulmonary vasoconstriction, and normal ventilatory response to exercise. Maximal rate of convective O2 transport was higher and tissue O2 extraction was lower in CY than in NT rats. The relative magnitude of these opposing changes, which determined the net effect of cyanate on maximal O2 uptake (VO2 max), varied at different PIO2: VO2 max (ml. min-1. kg-1) was lower in normoxia (72.8 +/- 1.9 vs. 81. 1 +/- 1.2), the same at 70 Torr PIO2 (55.4 +/- 1.4 vs. 54.1 +/- 1.4), and higher at 55 Torr PIO2 (48 +/- 0.7 vs. 40.4 +/- 1.9) in CY than in NT rats. The beneficial effect of cyanate on VO2 max at 55 Torr PIO2 disappeared when Hb concentration was lowered to normal. It is concluded that the effect of cyanate on VO2 max depends on the relative changes in blood O2 convection and tissue O2 extraction, which vary at different PIO2. Although uptake of O2 by the blood in the lungs is enhanced by cyanate, its release at the tissues is limited, probably because of a reduction in the capillary-to-tissue PO2 diffusion gradient secondary to the increased O2 affinity of Hb.  相似文献   

20.
The mechanism by which extracellular alkalosis inhibits hypoxic pulmonary vasoconstriction is unknown. We investigated whether the inhibition was due to intrapulmonary production of a vasodilator prostaglandin such as prostacyclin (PGI2). Hypoxic vasoconstriction in isolated salt-solution-perfused rat lungs was blunted by both hypocapnic and NaHCO3_induced alkalosis (perfusate pH increased from 7.3 to 7.7). The NaHCO3-induced alkalosis was accompanied by a significant increase in the perfusate level of 6-keto-prostaglandin F (6-keto-PGF), an hydrolysis product of PGI1. Meclofenamate, an inhibitor of cyclooxygenase, counteracted both the blunting of hypoxic vasoconstriction and the increased level of 6-keto-PGF. In intact anesthetized dogs, hypocapnic alkalosis (blood pH increased from 7.4 to 7.5) blunted hypoxic pulmonary vasoconstriction before but not after administration of meclofenamate. In separate cultures of bovine pulmonary artery endothelial and smooth muscle cells stimulated by bradykinin, the incubation medium levels of 6-keto-PGF were increased by both hypocapnia and NaHCO3-induced alkalosis (medium pH increased from 7.4 to 7.7). These results suggest that inhibition of hypoxic pulmonary vasoconstriction by alkalosis is mediated at least partly by PGI2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号