首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Three species of Myzocytium parasitic on nematodes are described as new. In M. papillatum the zoospores encyst directly on the host cuticle before penetration. This species produces smooth, spherical oospores. In M. glutinosporum the biflagellate zoospores do not attack the host directly; after encystment they produce a spherical adhesive bud which allows the spores to adhere to the cuticle of passing nematodes. This species produces echinulate, spherical oospores. In M. anomalum the primary spores are aplanospores. After a dormant phase, and when suitably stimulated, these aplanospores change into biflagellate zoospores and the latter encyst on the host cuticle. No sexual state is known in this species. Persistence is by means of thick-walled, spherical chlamydospores.  相似文献   

2.
New species of the obligately marine Thraustochytriaceae Sparrow were discovered in subantarctic and antarctic waters of the southeastern Indian Ocean, the southwestern Pacific Ocean, and the antarctic Ross Sea during two cruises of the research vessel USNS ELTANIN. The life cycles of four species of Thraustochytrium in seawater-pollen and/or seawater-brine shrimp larvae cultures are described. Thraustochytrium antarcticum sp. nov. develops sporangia that may proliferate from a single basal rudiment. Flagellated zoospores are liberated from the sporangium upon complete disintegration of the sporangial wall at maturity. Thraustochytrium rossii sp. nov. and T. kerguelensis sp. nov. are both similar in that they develop sporangia that may proliferate from more than one basal rudiment. The latter species releases flagellated zoospores upon complete disintegration of the sporangial wall, but the former species liberates a mass of individually immobile zoospores from the sporangium. These remain quiescent for several hours before they swim away one after another. The protoplast of Thraustochytrium amoeboidum sp. nov. leaves the sporangium through a pore as an amoeboid body which then gives rise to nonflagellated amoebospores by successive bipartitioning. Laterally biflagellate thraustochytrioid zoospores were also observed, but the way in which they are formed remains to be determined. Zoosporic and aplanosporic phycomycetes were recovered from water samples collected in the Subtropical, Subantarctic, and Antarctic Zones of the Southern Ocean. Highest numbers of phycomycete propagules were found in antarctic waters near the Antarctic Convergence during ELTANIN's Cruise 51. In the Subtropical and Subantarctic (but not in the Antarctic) Zones fungal population densities increased with proximity to continents or islands. At each station where phycomycetes were recovered, highest numbers of propagules were generally found in the surface layers (25–250 m) of the ocean below the photic zone (lower limit 30–60 m). This peculiar distribution may indicate that phycomycetes are engaged in decomposing substances derived from the photic zone.  相似文献   

3.
Atkinsiella entomophaga is a holocarpic parasite in eggs of various midges and caddis flies. Primary zoospores escape through long discharge tubes and assume an abbreviated period of motility before encysting. Laterally biflagellate secondary zoospores subsequently emerge from the cysts. Coincident with discharge tube formation, the thallus undergoes strong vacuolization giving the protoplast a reticulate aspect with nuclei situated between the vacuoles and connected to one another by protoplasmic threads. Stages in zoosporogenesis resemble those of members of the Lagenidiales. It is proposed that Atkinsiella be included in the Eurychasmaceae along with Eurychasma and Eurychasmidium and that the family be transferred to the Lagenidiales. All members of this family have diplanetic zoospores.  相似文献   

4.
The little known epiphytic algaHydrianum viride was studied and pictured. The morphology and the variability of the vegetative cells are described in detail and compared with the observations of other authors. For the first time typical biflagellate zoospores of the chlorophycean-type have been recognized and the course of the asexual reproduction is studied. The residual protoplasm, that is the proximal half of the zoosporangium protoplast, growth up to the original size, typical for the genusHydrianum. The life cycle, especially the settling down of the zoospores, is described.Hydrianum viride belongs to the characteristic inhabitants of peaty waters; it belongs together with the host alga,Microspora loefgrenii, to the dominants of algal association of peat-springs. At last the taxonomic position and the synonyma of this organism are discussed.
  相似文献   

5.
This paper concentrates on the study of vegetative development and sexual reproduction inLagenisma coscinodisci Drebes. Before infecting a diatom cell (Coscinodiscus granii), the freshly released zoospores pass through two different cyst stages. The primary zoospores are kidney-shaped and laterally biflagellated. They form a primary cyst with a spiny cyst wall which is left by isomorphic secondary zoospores. The latter form a secondary cyst (sometimes perhaps repeatedly), which is smooth-walled. The secondary cyst germinates and infects a new diatom cell by means of an infecting tube which enters the cell through the gap between epi- and hypotheca and develops a new thallus. Sexual reproduction is induced by ageing of cultures. Two kinds of isomorphic, kidney-shaped, laterally biflagellated swarmers are produced as in zoosporogenesis. Female-determined swarmers settle down near the host cell and encyst with a more or less smooth wall (oogonia). Male-determined swarmers are obviously attracted by the oogonia and encyst close to them to form a more or less smooth-walled antheridium which drives a thin fertilization tube to the oogonium. During plasmogamy the oogonium develops a thick, short hypha. The cytoplasm with the two nuclei moves completely into this hypha, concentrates near the hyphal tip, and surrounds itself with a thick wall to become a resting spore (oospore) in which karyogamy takes place. The walls of cysts, tubes, hyphae and spores react positively with zinc-chlor-iodide. In the spines and walls of the primary cysts the network of 2 to 3 nm thick fibrils is more distinct than in the other walls.  相似文献   

6.
Cephaleuros parasiticus Karsten, an endophyte of Magnolia grandiflora L. has been examined with light, and scanning and transmission electron microscopy. The discoid thalli are composed of filaments which ramify throughout the leaf tissues beneath the epidermis. Algal filaments do not penetrate host cells, but do produce black leaf spots which have been mistaken for those caused by the fungus Glomerella cingulate (Ston.) Spauld. and Schrenk. Two distinct thallus types occur, often simultaneously on a single leaf. One bears clusters of zoosporangiate branches which seasonally emerge through the ventral (and rarely, dorsal) surface of the leaf. In contrast, the other thallus type bears gametangia which break through the dorsal leaf surface. Zoosporangia and gametangia have never been found on the same thallus. The zoosporangia are smaller than, but almost identical in shape to, those of C. virescens Kunze. Simple plasmodesmata are present in crosswalls and acetolysis indicates that little or no sporopollenin is present in the cell walls. The ultrastructure of biflagellate gametes and quadriflagellate zoospores is virtually indistinguishable from that reported for C. virescens and similar to that reported for Phycopeltis and Trentepohlia. In both gametes and zoospores there are keeled flagella, overlapping and parallel basal bodies, two 3-layered multilayered structures with microtubular splines, and two medial compound microtubular roots. Pyrenoids, eyespots, flagellar and body scales, striated roots (or rhizoplasts), and distal bands are absent. Two presumptive mating structures are present in each biflagellate gamete, and flagellar collars occur in both types of motile cells. The extreme similarity in motile cell ultrastructure revealed in this interspecific comparison parallels that similarity revealed in intergeneric comparisons.  相似文献   

7.
Zoospores of phytopathogenic fungi accumulate at the potential infection sites of host roots by chemotaxis. The aggregated spores then adhere, encyst, germinate, and finally penetrate into the root tissues to initiate infection. Some of the host-specific attractants have already been identified. The host-specific attractants also induce cell differentiation of certain zoospores under laboratory conditions. This indicates that a signal released from the roots of the host plant guides the pest propagules for orientation and prepares them for establishing a host-pathogen relationship by necessary physiological changes. Some non-host plant secondary metabolites were found to markedly regulate behavior and viability of zoospores, suggesting that non-host compounds may also play a role in protecting the non-host plants from the attack of zoosporic fungi. We hypothesized that zoospores perceive the host signal(s) by specific G-protein-coupled receptors and translate it into responses by way of the phosphoinositide-Ca2+ signaling cascade. The details of the signal transduction mechanism in fungal zoospores are yet to be discovered. In this report, we review the signaling and communications between phytopathogenic fungal zoospores and host and non-host plants with special reference to Aphanomyces cochlioides.  相似文献   

8.
Summary Lagenidium giganteum (Oomycetes: Lagenidiales), a facultative parasite of mosquito larvae, infects the larval stage of most species of mosquitoes and a very limited number of alternate hosts. Host infection by this and other members of Oomycetes is initiated by motile, laterally biflagellate zoospores. Chemical bases for the various degrees of host specificity exhibited by these parasites is not known, but presumably involves receptors on the zoospore surface recognizing compounds either secreted by or on the surface of their hosts. Surface topography had no detectable effect onL. giganteum encystment or appressorium formation. Scanning electron microscopy documented the detachment of flagella during zoospore encystment. Bulbous knobs at the basal end of the detached flagellum were interpreted as encysting zoospores dropping the axoneme and/or the basal body and associated structures to which flagella are attached. Multiple signals appear to be involved in the initial steps ofL. giganteum host invasion. Zoospores of this parasite did not encyst on powdered preparations of chitin or chitosan (deacetylated chitin). Upon dissolution of chitosan in dilute acid followed by drying these solutions to form thin, transparent films, zoospores readily encysted. The degree of reacetylation of these films and the spacing of acetylated and deacetylated residues had no significant effect on zoospore encystment. Zoospores of a strain ofLagenidium myophilum isolated from marine shrimp, that also infects mosquito larvae, encysted on chitosan films. No encystment of spores of the plant parasitePhytophthora capsici was observed on chitin or chitosan films. Simulation of cuticle sclerotization by incubating chitosan films with different catecholamines and tyrosinase significantly reduced zoospore encystment. Zoospores that encysted on chitosan films did not germinate in distilled water. Germination could be induced by adding microgram quantities of bovine serum albumin or proteins secreted by motile zoospores into the water, and to a lesser degree by some amino acids, but not by various cations. Zoospores encysted and germinated on the pupal stage of some mosquito species. Appressoria were occasionally formed, but most subsequently sent out another mycelial branch, apparently without attempting to pierce the pupal cuticle. Methylation of pupal exuviae with ethereal diazomethane or methanol/HCl significantly increased zoospore encystment. Modification of chitin by catecholamines, lipids and protein on the epicuticular larval surface all affected host invasion.Abbreviations BSA bovine serum albumin - CID collision-induced dissociation - DOPA 3,4-dihydroxyphenylalanine - ESI-MS electrospray mass spectrometry - ESI-MS/MS tandem electrospray mass spectrometry - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - WGA wheat germ agglutinin - ZAP zoospore aggregation pheromone  相似文献   

9.
Summary This study examined the behavior of populations of zoospores of the obligately parasitic, endobiotic chytridRozella allomycis towards young, vegetative thalli of various saprophytic fungi, in order to identify host-dependent factors which control the development ofRozella. An inverted microscope was employed for continuous observation of parasite-host interaction in petri dishes of broth or agar medium. Two factors appear to control the initial stages of invasion byRozella of both susceptible and resistant species of the host genus,Allomyces: (i) a soluble exudate which attractsRozella zoospores, (ii) a receptor on the cell-wall surface which causesRozella zoospores to adhere, and to encyst and to germinate immediately thereafter. A related, nonsusceptible species,Blastocladiella emersonii, also attractsRozella zoospores, but supports very limited attachment.Rozella zoospores neither accumulate around, nor adhere to young thalli of non-blastocladialean fungi. This host-specific behavior pattern is compared with that of saprophytic and facultatively parasitic Phycomycetes, whose zoospores show nonspecific chemotactic responses and require no receptor for attachment, encystment and germination.  相似文献   

10.
Zoospores of phytopathogenic fungi accumulate at the potential infection sites of host roots by chemotaxis. The aggregated spores then adhere, encyst, germinate, and finally penetrate into the root tissues to initiate infection. Some of the host-specific attractants have already been identified. The host-specific attractants also induce cell differentiation of certain zoospores under laboratory conditions. This indicates that a signal released from the roots of the host plant guides the pest propagules for orientation and prepares them for establishing a host-pathogen relationship by necessary physiological changes. Some non-host plant secondary metabolites were found to markedly regulate behavior and viability of zoospores, suggesting that non-host compounds may also play a role in protecting the non-host plants from the attack of zoosporic fungi. We hypothesized that zoospores perceive the host signal(s) by specific G-protein-coupled receptors and translate it into responses by way of the phosphoinositide-Ca2+ signaling cascade. The details of the signal transduction mechanism in fungal zoospores are yet to be discovered. In this report, we review the signaling and communications between phytopathogenic fungal zoospores and host and non-host plants with special reference to Aphanomyces cochlioides.  相似文献   

11.
Summary The oomycetes are a class of protists that produce biflagellate asexual zoospores. Members of the oomycetes have close phylogenetic affinities with the chromophyte algae and are widely divergent from the higher fungi. This review focuses on two genera,Phytophthora andPythium, which belong to the family Pythiaceae, and the order Peronosporales. These two genera contain many species that cause serious diseases in plants. Molecules on the surface of zoospores and cysts of these organisms are likely to play crucial roles in the infection of host plants. Knowledge of the properties of the surface of these cells should thus help increase our understanding of the infection process. Recent studies ofPhytophthora cinnamomi andPythium aphanidermatum have used lectins to analyse surface carbohydrates and have generated monoclonal antibodies (MAbs) directed towards a variety of zoospore and cysts surface components. Labelling studies with these probes have detected molecular differences between the surface of the cell body and of the flagella of the zoospores. They have been used to follow changes in surface components during encystment, including the secretion of an adhesive that bonds the spores to the host surface. Binding of lectin and antibody probes to the surface of living zoospores can induce encystment, giving evidence of cell receptors involved in this process. Freeze-substitution and immunolabelling studies have greatly augmented our understanding of the synthesis and assembly of the zoospore surface during zoosporogenesis. Synthesis of a variety of zoospore components begins when sporulation is induced. Cleavage of the multinucleate sporangium is achieved through the progressive extension of partitioning membranes, and a number of surface antigens are assembled onto the zoospore surface during cleavage. Comparisons of antibody binding to many isolates and species ofPhytophthora andPythium have revealed that surface components on zoospores and cysts exhibit a range of taxonomic specificities. Surface antigens or epitopes may occur on only a few isolates of a species; they may be species-specific, genus-specific or occur on the spores of both genera. Spore surface antigens thus promise to be of significant value for studies of the taxonomy and phylogeny of these protists, as well as for disease diagnosis.Abbreviations MAbs monoclonal antibodies - ConA Concanavalin A - SBA soybean agglutinin - WGA wheat germ agglutinin - gps glycoproteins  相似文献   

12.
Atractomorpha porcata sp. nov. is described from culture isolates derived in 1981 from zygotes present in a 28 year old, dried soil sample collected from near Lemon-cove, Tulare County, California. Vegetative individuals are coenocytic, spindle-shaped unicells with long, thin-pointed apices. Asexual reproduction is by means of large, biflagellate zoospores or, frequently, by aplanospores. Sexual reproduction is usually monoecious, with a single spindle-shaped gametangial cell producing small, biflagellate male gametes at either end, and larger female gametes in the midportion. Female gametes are often biflagellate, but more commonly they lack flagella and are liberated by squeezing through slit-like openings in the gametangial wall. Sexual reproduction may thus be considered as either oogamous or anisogamous, depending on whether or not a particular female gamete has flagella; most often it is oogamous. Atractomorpha porcata is readily distinguished from A. echinata, the only other known member of the genus, by (1) its greater tendency toward oogamy (versus anisogamy), (2) its bisexual gametangia, (3) its frequent production of aplanospores in asexual reproduction, (4) its unusual primary membranes that frequently bear long, delicate bristles, and (5) its distinctive zygote wall ornamentation.  相似文献   

13.
A. W. Burr  G. W. Beakes 《Protoplasma》1994,181(1-4):142-163
Summary The importance of the surface structure and chemistry in zoospores and cysts of oomycetes is briefly reviewed and the organelle systems associated with encystment described. The surface structure and chemistry of primary and secondary zoospores and cysts ofSaprolegnia diclina (a representative saprophytic species) andS. parasitica (a representative salmonid fish pathogen) were explored using the lectins concanavilin A (Con A) and wheat germ agglutinin (WGA) and monoclonal antibodies (MAbs) raised against a mixed zoospore and cyst suspension ofS. parasitica. The binding of lectins and antibodies to spores was determined using immunofluorescence microscopy with fluorescein isothiocyanate-labelled probes and with electron microscopy with gold-conjugated probes applied to spore suspensions post-fixation. In both species Con A, which is specific for glucose and mannose sugars, bound to both the surface of primary and secondary zoospores (the surface glycocalyx) and their cyst coats and readily induced zoospore encystment. The binding to the cysts appeared to be mainly associated with the matrix material released from the primary and secondary encystment vesicles and which appeared to diminish with time. No binding to germ tube walls was observed with this lectin. The MAb labelling showed a generally similar binding pattern to the primary and secondary cysts to that observed with Con A, although the binding to zoospores was more variable. Primary zoospores bound the antibodies but secondary zoospores appeared less reactive. It is suggested that the MAbs share a common epitope with one or more of the Con A-binding components. In both species WGA, which is specific for amongst other things the sugar N-acetyl glucosamine, bound to localised apical patches on the primary zoospores. This lectin also binds to the ventral groove region of secondary zoospores ofS. diclina, which were induced to encyst by this lectin. In contrast secondary zoospores ofS. parasitica were not induced to encyst by the addition of WGA and showed a patchy dorsal binding with this lectin. WGA also binds to both the inner wall of discharged primary cysts and the young germ tube walls of both species. These observations are discussed both in relation to other oomycete spores and to their possible functional and ecological significance.Abbreviations BSA bovine serum albumin - Con A Concanavalin A - DBA Dolichos biflorus agglutinin - ELISA enzyme-linked immunosorbent assay - EM electron microscope - EV encystment vesicles - FCS foetal calf serum - FITC Fluorescein isothiocyanate - FV peripheral fibrillar vesicles - G+F 0.2% glutaraldehyde and 2.0% formaldehyde primary fixative solution - 2G 2% glutaraldehyde primary fixative - LM light microscopy - MAbs monoclonal antibodies - LPV large peripheral vesicles - PBS phosphate buffered saline - PCV flattened peripheral cisternae - PEV primary encystment vesicle - PIPES piperazine-N,N1-bis(2-ethane sulfonic acid) - PNA Ricinus communis agglutinin - RAM-FITC/Au10–20 Fluorescein isothiocyanate/gold (10 or 20 nm) labelled rabbit anti-mouse immunoglobulin - RCA Ricinus communis agglutinin - SEM scanning electron micrograph - SBA soybean agglutinin - SEV secondary encystment vesicles - TEM transmission electron micrograph - UEA I Ulex europaeus agglutinin - WGA wheat germ agglutinin  相似文献   

14.
15.
Cytokinesis in the coenocytic green alga Protosiphon botryoides (Kütz.) Klebs was studied with transmission electron microscopy. In vegetative cells, nuclei with associated basal bodies and dictyosomes are scattered throughout the cytoplasm. Mature cells may develop either multinucleate resting spores (coenocysts) or uninucleate zoospores. Cytokinesis may be preceded by contraction of the protoplast due to the disintegration of vacuoles that are present in larger, siphonous cells. The formation of coenocysts in ageing, siphonous cells, is signalled by cleavage of the chloroplast and the development of arrays of phycoplast microtubules in one or more transversely oriented planes through the cell. Nuclei with associated basal apparatuses stay dispersed throughout the cytoplasm; the basal bodies apparently are not involved in organization of the phycoplast. The plasma membrane invaginates, resulting in a centripetal cleavage of the protoplast into two or more multinucleate daughter protoplasts. Simultaneously, wall material is deposited along the outside of the daughter protoplasts by dictyosome-derived vesicles, and finally two or more thick-walled coenocysts are formed. The formation of zoospores, on the other hand, is signalled by clustering of the nuclei in one or more groups depending on the shape of the mother cell. The nuclei become arranged with the associated basal apparatuses facing toward the center of the cluster. Bundles of phycoplast microtubules develop between the nuclei, radiating from the center of a cluster toward the plasma membrane; basal apparatuses or associated structures apparently are involved in organization of the phycoplast. Cleavage furrows grow out centrifugally along these bundles of micro-tubules, fed by dictyosome-derived vesicles. No wall material is deposited. An additional mitotic division occurs during cleavage, and finally numerous uninucleate, wall-less, biflagellate zoospores are formed. The ultrastructural features of the two different types of cytoplasmic cleavage associated with two different types of daughter cells have not previously been reported for chlorophycean algae.  相似文献   

16.
Summary Zoospores of the obligately parasitic chytrid Rozella allomycis encyst and germinate after settling on a hypha of the host, the watermold Allomyces arbuscula. Zoospores deprived of a host also encyst after aging, but do not germinate. Hence, means were sought to induce encystment of young zoospores, in order to test whether they would subsequently germinate in the absence of a host.Zoospore suspensions were harvested and exposed to treatments known to degrade cytoplasmic microtubules and to depolymerize fibrillar structures in other organisms: ice temperature, hydrostatic pressure of 2000–10000 psi, cupric ions, and colchicine. These treatments induced rapid encystement—but no germination.The results suggest that the motility, the flagellated state, and the irregular, elongate shape of fungal zoospores depend on the intactness of their fibrillar skeletal structures. The results also support the hypothesis that contact of Rozella with the host surface has two sequential functions: (i) nonspecific (replaceable by other treatments) triggering of encystment, (ii) specific stimulation of germination.  相似文献   

17.
A unicellular, heterotrophic, eukaryotic parasite was isolated from nearshore Arctic marine sediment in association with the diatom Pleurosigma sp. The parasite possessed ectoplasmic threads that could penetrate diatom frustules. Healthy and reproducing Pleurosigma cultures would begin to collapse within a week following the introduction of this parasite. The parasite (2–10 μm diameter) could reproduce epibiotically with biflagellate zoospores, as well as binary division inside and outside the diatom host. While the parasite grew, diatom intracellular content disappeared. Evaluation of electron micrographs from co‐cultures revealed the presence of hollow tubular processes and amorphic cells that could transcend the diatom frustule, generally at the girdle band, as well as typical thraustochytrid ultrastructure, such as the presence of bothrosomes. After nucleotide extraction, amplification, and cloning, database queries of DNA revealed closest molecular affinity to environmental thraustochytrid clone sequences. Testing of phylogenetic hypotheses consistently grouped this unknown parasite within the Thraustochytriidae on a distinct branch within the environmental sequence clade Lab19. Reclassification of Arctic high‐throughput sequencing data, with appended reference datasets that included this diatom parasite, indicated that the majority of thraustochytrid sequences, previously binned as unclassifiable stramenopiles, are allied to this new isolate. Based on the combined information acquired from electron microscopy, life history, and phylogenetic testing, this unknown isolate is described as a novel species and genus.  相似文献   

18.
The ultrastructural features of the biflagellate motile cells of six different species of the Chlorophyceae, namely Dunaliella lateralis (Polyblepharidaceae, Chlamydomonadales), Chlorococcum hypnosporum, Spongiochloris spongiosa, Protosiphon botryoides (Chlorococcaceae, Chlorococcales), Tetracystis aeria and Pseudotetracystis terrestris (Tetracystidaceae, Chlorococcales), were examined with an emphasis on the flagellar apparatus (FA). They have different vegetative characteristics, such as, being motile or nonmotile, variations in chloroplast morphology, possession of one or more nuclei, and reproductive features such as formation of tetrahedral tetrads, and naked or walled zoospores. Ultrastructural differences amongst reproductive cells of the six species include variations in cell surface structure, basal body to basal body angle, beamlike extensions of the distal fiber, extensive connections of the proximal sheath between basal bodies, two-membered rootlets, striated microtubule-associated components, two-membered rootlet-nucleus and/or mitochondria connections, X-membered rootlets, connections of rootlets and basal bodies, rhizoplasts and accessory basal bodies. All six species possess pyrenoids penetrated by thylakoid membranes, and the FA typical of the Chlorophyceae (sensu Mattox and Stewart, 1984). These six species should be divided into two groups. The first includes D. lateralis, C. hypnosporum, and T. aeria, in which accessory basal bodies are present, the basal body to basal body angle is relatively fixed, and a cell wall or surface coat is present. The second group includes Ps. terrestris, S. spongiosa, and Pr. botryoides, in which accessory basal bodies are absent, the basal body to basal body angle is variable and the zoospores are naked.  相似文献   

19.
Haptoglossa spp. (Lagenidiales, Oomycetes) have been known to parasitize microscopic animals by means of a "gun" cell that shoots an infection cell, named the sporidium, into the body of the animal. A thallus grown from the sporidium changes into a zoosporangium at maturation to produce a number of zoospores that encyst after a swarming period, and the resulting cysts germinate to produce gun cells. In Haptoglossa zoospora, endoparasitic in nematodes, the cysts of primary zoospores that swam for about 5 min did not develop gun cells but produced secondary zoospores that swam for about 3 h. After encystment of the secondary zoospores, each secondary cyst germinated to produce a gun cell. In the present study, the secondary zoospores of the genus Haptoglossa could be recorded with a videocassette recorder for the first time. The videocassette recording also revealed the infection of a nematodes by H. zoospora and H. heterospora to be composed of two steps of injection of a sporidium by the gun cell, in which the gun cell came in contact with the cuticle of a nematode and produced a spherical adhesorium on the tip of the cell in 0.07–0.1 s in both species. The adhesorium was ∼2 μm in H. zoospora and ∼4 μm in H. heterospora. When the adhesorium infiated to full size, it shot the sporidium into the nematode's body in 0.5–0.65 s and in 0.2–0.5 (or rarely 1.0) s in H. zoospora and H. heterospora, respectively. After shooting, the empty gun cell with an empty cyst case was separated from the cuticle immediately in both species. Received: October 3, 2001 / Accepted: December 13, 2001  相似文献   

20.
The genus Phytophthora includes many highly destructive plant pathogens. In many Phytophthora species, pathogen dispersal and initiation of plant infection are achieved by motile, biflagellate zoospores that are chemotactically attracted to suitable infection sites. In order to study gene expression in zoospores, we have constructed a cDNA library using mRNA from zoospores of Phytophthora nicotianae. The library was arrayed and screened using probes derived from mycelium or zoospore mRNA. More than 400 clones representing genes preferentially expressed in zoospores were identified and sequenced from the 5 end of the insert. The expressed sequence tags (ESTs) generated were found to represent 240 genes. The ESTs were compared to sequences in GenBank and in the Phytophthora Genome Consortium database, and classified according to putative function based on homology to known proteins. To further characterize the identified genes, a colony array was created on replicate nylon filters and screened with probes derived from four Phytophthora developmental stages including zoospores, germinating cysts, vegetative mycelium and sporulating hyphae, and from inoculated and uninoculated tobacco seedlings. Data from sequence analysis and colony array screening were compiled into a local database, and searched to identify genes that are preferentially expressed in zoospores for future functional analysis.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by C. A. M. J. J. van den Hondel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号