首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoproteins of the antenna complexes of Prochlorococcus marinus clone SS120 (= CCMP 1375) and Prochlorococcus sp. clone MED4 (= CCMP 1378) cross-reacted with an antibody against the 30 kDa CP 5 complex of Prochlorothrix hollandica antenna. For the MED4 strain, which has a high divinyl-chlorophyll a to divinyl-chlorophyll b (DV-Chl a/b) ratio ranging from 11.4 to 15.0 (w/w), the major antenna proteins had an apparent molecular mass of 32.5 kDa. In contrast for the SS120 strain, which has a low DV-Chl a/b ratio ranging from 1.1 to 2.2, antenna apoproteins were observed in the range 34–38 kDa. For both strains, these apoproteins decreased at high growth irradiance but more markedly in the latter. Partially purified antenna fractions had a DV-Chl a/b ratio ca. 7-fold lower for SS120 than for MED4 at 30 mol photons m-2 s-1. For both strains, the 77 K fluorescence emission spectra of whole thylakoids displayed a major peak at 685 nm and a broad but very low shoulder above 700 nm. Energetic coupling of the antenna to both PS II and PSI reaction centers was demonstrated for SS120 by the strong contribution of DV-Chl b in both the 77 K excitation fluorescence spectra and the oxidized minus reduced absorption difference spectra of P700. The PS I to PS II ratio of Prochlorococcus SS120 was determined as being 0.7 ± 0.1 at low light.  相似文献   

2.
Webb MR  Melis A 《Plant physiology》1995,107(3):885-893
The chloroplast response in the green alga Dunaliella salina to irradiance stress was investigated. Cells were grown under low light (LL) at 100 [mu]mol photons m-2 s-1 or high light (HL) at 2000 [mu]mol photons m-2 s-1 incident intensity. LL-grown cells had a low chlorophyll (Chl) a/b ratio, an abundance of light-harvesting complex II proteins (LHC-II), and a large Chl antenna size. HL-grown cells had a higher Chl a/b ratio, relatively fewer LHC-II, and a small Chl antenna size. The more abundant higher molecular mass subunits of the LHC-II (approximately 31 kD) were selectively depleted from the thylakoid membrane of HL-grown cells. Light-shift experiments defined the kinetics of change in the subunit composition of the LHC-II and suggested distinct mechanisms in the acclimation of thylakoids to HL or LL conditions. The results showed that irradiance exerts a differential regulation on the expression of various Lhcb genes. The specific polyclonal antibodies used in this work, raised against the purified LHC-II, cross-reacted with a polypeptide of approximately 20 kD in HL-grown samples. In this work we examined the dynamics of induction of this novel protein and discuss its function in terms of a chloroplast response to the level of irradiance.  相似文献   

3.
Khoo  G.H.  He  J.  Hew  C.S. 《Photosynthetica》1998,34(3):367-376
14CO2 fixation was observed in orchid Dendrobium flowers; its rate decreased with the flower development. Chlorophyll (Chl) fluorescence in different developmental stages of flowers was compared to other green plant parts (leaf, inflorescence stalk, and fruit capsule). The photochemical efficiency of photosystem 2 (PS2) (Fv/Fm) of a leaf was 14-21 % higher than that of a mature flower perianth (sepal, petal, and labellum) which had a much lower total Chl content and Chl a/b ratio. A higher quantum yield of PS2 (ΦPS2) than in the mature flowers was observed in all green parts. Flower sepals had higher Chl content, Chl a/b ratio, and Fv/Fm values than the petal and labellum. During flower development the Chl content, Chl a/b ratio, Fv/Fm, and qN decreased while ΦPS2 and qP remained constant. An exposure of developing flowers to irradiances above 50 µmol m-2 s-1 resulted in a very drastic drop of ΦPS2 and qP, and a coherent increase of qN as compared to other green plant organs. A low saturation irradiance (PFD of 100 µmol m-2 s-1) and the increase in qN in the flower indicate that irradiation stress may occur since there is no further protection when the flower is exposed to irradiances above 100 µmol m-2 s-1. A low Chl/carotenoid ratio in mature flower perianth as a consequence of Chl content reduction in the course of flower development suggests a relief of irradiation stress via this mean.  相似文献   

4.
Photosynthetic utilization of radiant energy by CAM Dendrobium flowers   总被引:3,自引:0,他引:3  
G.H. Khoo  J. He  C.S. Hew 《Photosynthetica》1997,34(3):367-376
14CO2 fixation was observed in orchid Dendrobium flowers; its rate decreased with the flower development. Chlorophyll (Chl) fluorescence in different developmental stages of flowers was compared to other green plant parts (leaf, inflorescence stalk, and fruit capsule). The photochemical efficiency of photosystem 2 (PS2) (Fv/Fm) of a leaf was 14-21 % higher than that of a mature flower perianth (sepal, petal, and labellum) which had a much lower total Chl content and Chl a/b ratio. A higher quantum yield of PS2 (PS2) than in the mature flowers was observed in all green parts. Flower sepals had higher Chl content, Chl a/b ratio, and Fv/Fm values than the petal and labellum. During flower development the Chl content, Chl a/b ratio, Fv/Fm, and qN decreased while PS2 and qP remained constant. An exposure of developing flowers to irradiances above 50 µmol m-2 s-1 resulted in a very drastic drop of PS2 and qP, and a coherent increase of qN as compared to other green plant organs. A low saturation irradiance (PFD of 100 µmol m-2 s-1) and the increase in qN in the flower indicate that irradiation stress may occur since there is no further protection when the flower is exposed to irradiances above 100 µmol m-2 s-1. A low Chl/carotenoid ratio in mature flower perianth as a consequence of Chl content reduction in the course of flower development suggests a relief of irradiation stress via this mean.  相似文献   

5.
Three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II (LHC II) were isolated from the thylakoid membranes of Dunaliella salina grown under different irradiance conditions. Cells grown under a low intensity light condition (80 micromol quanta m(-2) s(-1)) contained one form of LHC II, LHC-L. Two other forms of LHC II, LHC-H1 and LHC-H2, were separated from the cells grown under a high intensity light condition (1,500 micromol quanta m(-2) s(-1)). LHC-L and LHC-H1 showed an apparent particle size of 310 kDa and contained four polypeptides of 31, 30, 29 and 28 kDa. LHC-H2, with a particle size of 110 kDa, consisted of 30 and 28 kDa polypeptides. LHC-L contained 7.5 molecules of Chl a, 3.2 of Chl b and 2.1 of lutein per polypeptide, analogous to the content in higher plants. LHC-H1, with 5.6 molecules of Chl a, 2.5 of Chl b and 1.8 of lutein per polypeptide was similar to that in the green alga Bryopsis maxima. LHC-L and LHC-H1 maintained high efficiency energy transfer from Chl b and lutein to Chl a molecules. LHC-H2 showed a high Chl a/b ratio of 7.5 and contained 3.4 molecules of Chl a, 0.5 of Chl b and 1.4 of lutein per polypeptide. Chl b and lutein could not completely transfer the excitation energy to Chl a in LHC-H2.  相似文献   

6.
The marine chlorophyte Dunaliella tertiolecta Butcher responds to a one-step transition from a high growth irradiance level (700 micromoles quanta per square meter per second) to a low growth irradiance level (70 micromoles quanta per square meter per second) by increasing the total amount of light-harvesting chlorophyll (Chl) a/b binding protein associated with photosystem II (LHC II), and by modifying the relative abundance of individual LHC II apoproteins. When high light-adapted cells were incubated with gabaculine, which inhibits Chl synthesis, and transferred to low light, the LHC II apoproteins were still synthesized and the 35S-labeled LHC II apoproteins remained stable after a 24 hour chase. These results suggest that Chl synthesis is not required for stability of the LHC II apoproteins in this alga. However, when the control cells are transferred from high light to low light, the amount of the four LHC II apoproteins per cell increases, whereas it does not in the presence of gabaculine. These results suggest that Chl synthesis is required for a photoadaptive increase in the cellular level of LHC II.  相似文献   

7.
Nicotiana tabacum L. plantlets were cultured in vitro photoautotrophically (0% sucrose) and photomixotrophically (3% or 5% sucrose) at two irradiances (80 or 380 mumol m-2 s-1) with the aim of investigating the effect of these culture conditions on photosynthetic parameters and on protective systems against excess excitation energy. In plantlets grown photoautotrophically under higher irradiance photoinhibition was demonstrated. These plantlets had a decreased chlorophyll (Chl) a + b content and Chl a/b ratio, an increased content of xanthrophyll cycle pigments and a higher deepoxidation state, a decreased maximum photochemical efficiency of photosystem II (PS II) and actual photochemical efficiency of PS II, and an increased non-photochemical quenching. In the photoautotrophically grown plantlets and those photomixotrophically grown with 3% sucrose, the increase of growth irradiance from 80 to 380 mumol m-2 s-1 stimulated the activities of ascorbate-glutathione cycle enzymes with the exception of ascorbate peroxidase. Ascorbate peroxidase activity was not affected by the increase in growth irradiance but a significant decrease with increasing sucrose concentration was evident. The higher concentration of sucrose in the medium (5%) in combination with the higher irradiance inhibited photosynthesis (decrease in Chl a + b content and net photosynthetic rate) but no significant changes in activities of ascorbate-glutathione cycle enzymes were found. These results suggest that exogenous sucrose added to the medium improved high irradiance and oxidative stress resistance of the plantlets but the effect of sucrose is concentration dependent.  相似文献   

8.
Maxwell DP  Falk S  Huner N 《Plant physiology》1995,107(3):687-694
The basis of the increased resistance to photoinhibition upon growth at low temperature was investigated. Photosystem II (PSII) excitation pressure was estimated in vivo as 1 - qp (photochemical quenching). We established that Chlorella vulgaris exposed to either 5[deg]C/150 [mu]mol m-2 s-1 or 27[deg]C/2200 [mu]mol m-2 s-1 experienced a high PSII excitation pressure of 0.70 to 0.75. In contrast, Chlorella exposed to either 27[deg]C/150 [mu]mol m-2 s-1 or 5[deg]C/20 [mu]mol m-2 s-1 experienced a low PSII excitation pressure of 0.10 to 0.20. Chlorella grown under either regime at high PSII excitation pressure exhibited: (a) 3-fold higher light-saturated rates of O2 evolution; (b) the complete conversion of PSII[alpha] centers to PSII[beta] centers; (c) a 3-fold lower epoxidation state of the xanthophyll cycle intermediates; (d) a 2.4-fold higher ratio of chlorophyll a/b; and (e) a lower abundance of light-harvesting polypeptides than Chlorella grown at either regime at low PSII excitation pressure. In addition, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 exhibited resistance to photoinhibition comparable to that of cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 and were 3- to 4-fold more resistant to photoinhibition than cells grown at either regime at low excitation pressure. We conclude that increased resistance to photoinhibition upon growth at low temperature reflects photosynthetic adjustment to high excitation pressure, which results in an increased capacity for nonradiative dissipation of excess light through zeaxanthin coupled with a lower probability of light absorption due to reduced chlorophyll per cell and decreased abundance of light-harvesting polypeptides.  相似文献   

9.
Kalina  J.  Ceulemans  R. 《Photosynthetica》1997,33(1):51-61
Two hybrid poplar (Populus) clones (i.e., fast growing clone Beauprè and slow growing clone Robusta) were grown for two years from cuttings at close spacings in open top chambers (OTCs) under ambient (AC) and elevated [EC = AC + 350 μmol(CO2) mol-1] CO2 treatments. For clone Beauprè no down-regulation of photosynthesis was observed. Two years of growing under EC resulted in an increase in quantum yield of photosystem 2 (PS2), steady state irradiance saturated rate of net photosynthesis (P Nmax), chlorophyll (Chl) content, and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPC) activity for this clone. We suppose that under non-limiting conditions of nitrogen and phosphorus content the response to EC was by building up light-harvesting complexes of PS2 and increasing photochemical efficiency of PS2. Due to a high rate of the primary reactions of photosynthesis and a high RuBPCO activity the end product of the response to EC was an increase in PNmax and a larger saccharides content. The Robusta clone showed a depression in the primary reactions of photosynthesis under EC. We found a decrease in quantum yield of PS2, Chl and phosphorus contents, and in RuBPCO activity. However, an increase in PNmax, saccharides content and Chl a/b ratio was observed. We speculate (1) that the phosphorus deficiency in combination with an increase in CO2 concentrations may lead to a potential damage of the assimilation apparatus of the primary reactions of photosynthesis and to a decrease in photochemical efficiency of PS2; (2) that the primary target of "down-regulation" takes place at PS2 for irradiances above 150 μmol m-2 s-1. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

10.
An important question concerning the role of carboxyarabinitol 1-phosphate (CA1P) metabolism in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity is the extent to which CA1P is bound to Rubisco in vivo. We report here the development of an extraction procedure using ammonium sulfate that stabilizes CA1P bound to Rubisco. This procedure exploits the ability of sulfate to bind at the catalytic site of Rubisco and to competitively balance the binding and release of CA1P from Rubisco. In darkened bean leaves about 75% of the Rubisco catalytic sites were found to be bound with CA1P. This confirms previous indirect estimates from gas exchange measurements. We have used this extraction procedure to examine CA1P-Rubisco interactions in bean during a natural transition from darkness to light. With increasing light intensity following sunrise, CA1P degradation proceeded in two distinct phases: first, a majority of the unbound CA1P pool was degraded at very low light levels ([less than or equal to]30 [mu]mol quanta m-2 s-1); second, CA1P initially bound to Rubisco was then degraded at increasing light levels (>30 [mu]mol quanta m-2 s-1). These results indicate that there is a low-fluence activation of CA1P phosphatase that can occur prior to CA1P release by Rubisco activase. This activation may be mediated by NADPH. During sunrise in bean, the level of the catalytically competent form of Rubisco was regulated by CA1P metabolism.  相似文献   

11.
Structural and functional alterations to the photosynthetic apparatus after growth at low temperature (5[deg]C) were investigated in the green alga Chlorella vulgaris Beijer. Cells grown at 5[deg]C had a 2-fold higher ratio of chlorophyll a/b, 5-fold lower chlorophyll content, and an increased xanthophyll content compared to cells grown at 27[deg]C even though growth irradiance was kept constant at 150 [mu]mol m-2 s-1. Concomitant with the increase in the chlorophyll a/b ratio was a lower abundance of light-harvesting polypeptides in 5[deg]C-grown cells as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by western blotting.The differences in pigment composition were found to be alleviated within 12 h of transferring 5[deg]C-grown cells to 27[deg]C. Furthermore, exposure of 5[deg]C-grown cells to a 30-fold lower growth irradiance (5 [mu]mol m-2 s-1) resulted in pigment content and composition similar to that in cells grown at 27[deg]C and 150 [mu]mol m-2 s-1. Although both cell types exhibited similar measuring-temperature effects on CO2-saturated O2 evolution, 5[deg]C-grown cells exhibited light-saturated rates of O2 evolution that were 2.8-and 3.9-fold higher than 27[deg]C-grown cells measured at 27[deg]C and 5[deg]C, respectively. Steady-state chlorophyll a fluorescence indicated that the yield of photosystem II electron transport of 5[deg]C-grown cells was less temperature sensitive than that of 27[deg]C-grown cells. This appears to be due to an increased capacity to keep the primary, stable quinone electron acceptor of photosystem II (QA) oxidized at low temperature in 5[deg]C- compared with 27[deg]C-grown cells regardless of irradiance. We conclude that Chlorella acclimated to low temperature adjusts its photosynthetic apparatus in response to the excitation pressure on photosystem II and not to the absolute external irradiance. We suggest that the redox state of QA may act as a signal for this photosynthetic acclimation to low temperature in Chlorella.  相似文献   

12.
Cucumber (Cucumis sativus L. cultivar "Changchun Mici") seedlings were cultured in Hoagland solution under irradiation with different light spectra (8 h per day) for 20 days. The red light (λmax 658 nm, λ1/2 25 nm), blue light (λmax 450 nm, λ1/2 43 nm) and white fluorescent light possessed the same fluent rate (20 μmol· m-2·s-1 ). The experimental results showed that chlorophyll content of the leaves grown under white light was 7 % and 22.4% higher than those in red and blue light, respectively. Compared with white and blue light, red light induced a lower Chl a/b ratio and a higher level of Chl b in the cucumber leaves. Measurements of the low temperature (77 K) fluorescence emission spectra and kinetics of Chl a fluorescence induction of the leaves proved that the leaves grown under red light expressed the highest PSⅡ and the lowest PSⅠactivities while the leaves under blue light had the lowest PSⅡand the highest PSⅠ activities. The O2 evolution rate of red light-grown leaves was 44.9% higher than that of the white light-grown leaves, while blue light effect was similar to that of white in respect of O2 evolution. It is concluded that light quality is an important factor in regulating the development and activities of PSⅡ and PSⅡand the O2 evolution of photosynthesis in cucumber leaves.  相似文献   

13.
Goh CH  Oku T  Shimazaki K 《Plant physiology》1995,109(1):187-194
Guard cell protoplasts (GCPs) were isolated from the adaxial epidermis of Vicia leaves. The properties of isolated adaxial GCPs (ad GCPs) were compared with those of abaxial GCPs (ab GCPs) with respect to H+-pumping activity. A saturating pulse of blue light (200 [mu]mol m-2 s-1, 30 s) induced H+ pumping in both ad GCPs and ab GCPs under red light. The maximum rate of blue-light-dependent H+ pumping was slightly higher in ad GCPs than in ab GCPs, but the magnitude of H+ pumping in ad GCPs was 68% of that in ab GCPs. H+ pumping was responsive to the second pulse, and the rate and magnitude of the pumping increased with the time between two pulses. The periods required to achieve 50% of the maximum rate were 12 and 22 min for ad GCPs and ab GCPs, respectively. The rates of blue-light-dependent H+ pumping were saturable, with half-saturation at 630 [mu]mol m-2 (21 [mu]mol m-2 s-1, 30 s) for ad GCPs and 105 [mu]mol m-2 (3.5 [mu]mol m-2 s-1, 30s) for ab GCPs. In contrast, fusicoccin, an activator of the plasma membrane H+- ATPase, induced H+ pumping with a slightly higher rate in ad GCPs than in ab GCPs. Both types of protoplast swelled similarly in response to fusicoccin. These results suggest that ad GCPs have almost the same activity for H+ pumping as ab GCPs, whereas ad GCPs require a larger number of photons to activate the H+ pump than ab GCPs.  相似文献   

14.
Recent studies have shown that blue light-specific stomatal opening is reversed by green light and that far-red light can be used to probe phytochrome-dependent stomatal movements. Here, blue-green reversibility and far-red light were used to probe the stomatal responses of the npq1 mutant and the phot1 phot2 double mutant of Arabidopsis. In plants grown at 50 micromol m-2 s-1, red light (photosynthetic)-mediated opening in isolated stomata from wild type (WT) and both mutants saturated at 100 micromol m-2 s-1. Higher fluence rates caused stomatal closing, most likely due to photo-inhibition. Blue light-specific opening, probed by adding blue light (10 micromol m-2 s-1) to a 100 micromol m-2 s-1 red background, was found in WT, but not in npq1 or phot1 phot2 double mutant stomata. Under 50 micromol m-2 s-1 red light, 10 micromol m-2 s-1 blue light opened stomata in both WT and npq1 mutant stomata but not in the phot1 phot2 double mutant. In npq1, blue light-stimulated opening was reversed by far-red but not green light, indicating that npq1 has a phytochrome-mediated response and lacks a blue light-specific response. Stomata of the phot1 phot2 double mutant opened in response to 20 to 50 micromol m-2 s-1 blue light. This opening was green light reversible and far-red light insensitive, indicating that stomata of the phot1 phot2 double mutant have a detectable blue light-specific response.  相似文献   

15.
Gratani  L.  Pesoli  P.  Crescente  M.F. 《Photosynthetica》1998,35(3):445-451
The relationship between chlorophyll (Chl) content and net photosynthetic rate (PN) in an isolated Quercus ilex tree, growing inside Villa Pamphili Park in Rome, was explored. The highest PN was in March, May, and September (10.1 mol m-2 s-1, maximum rate). PN decreased by 65 % (with respect to the yearly maximum) when leaf temperature reached 34 °C, and by 50 % when leaf temperature was 9 °C. The highest Chl contents were in April, October [1.47 g kg-1 (d.m.), maximum value], and December. The lowest Chl content was found in July (0.78 g kg-1). The decrease of PN in July was in close connection with the decrease of Chl content. On the contrary, the high Chl content during winter did not correspond with PN of this season. Discordances between Chl content and PN over the year influenced the regression analysis, which although positive did not show very high correlation coefficients (r = 0.7). The high Chl (a+b) content during most of the year indicated that the photosynthetic apparatus remained basically intact also during stress periods.  相似文献   

16.
D1 protein turnover and restoration of the photochemical efficiency of photosystem II (PSII) after photoinhibition of pea leaves (Pisum sativum L. cv Greenfeast) acclimated to different light intensities were investigated. All peas acclimated to different light intensities were able to recover from photoinhibition, at least partially, at light intensities far above their growth light irradiance. However, the capacity of pea leaves to recover from photoinhibition under increasing high irradiances was strictly dependent on the light acclimation of the leaves; i.e. the higher the irradiance during growth, the better the capacity of pea leaves to recover from photoinhibition at moderate and high light. In our experimental conditions, mainly D1 protein turnover-dependent recovery was monitored, since in the presence of an inhibitor of chloroplast-encoded protein synthesis, lincomycin, only negligible recovery took place. In darkness, neither the restoration of PSII photochemical efficiency nor any notable degradation of damaged D1 protein took place. In low light, however, good recovery of PSII occurred in all peas acclimated to different light intensities and was accompanied by fast degradation of the D1 protein. The rate of degradation of the D1 protein was estimated to be 3 to 4 times faster in photoinhibited leaves than in nonphotoinhibited leaves under the recovery conditions of 50 [mu]mol of photons m-2 s-1. In moderate light of 400 [mu]mol of photons m-2 s-1, the photoinhibited low-light peas were not able to increase further the rate of D1 protein degradation above that observed in nonphotoinhibited leaves, nor was the restoration of PSII function possible. On the other hand, photoinhibited high-light leaves were able to increase the rate of D1 protein degradation above that of nonphotoinhibited leaves even in moderate and high light, ensuring at least partial restoration of PSII function. We conclude that the capacity of photoinhibited leaves to restore PSII function at different irradiances was directly related to the capacity of the leaves to degrade damaged D1 protein under the recovery conditions.  相似文献   

17.
The recent high-resolution crystal structure of LHC II [Liu et al. (2004) Nature 428: 287–292] makes possible an unprecedented insight into the stereochemical features of how chlorophylls (Chl)s are bound. The diastereotopic ligation generates four structurally different pigment types, two Chl a and two Chl b, which are distinguished not only by the groups in the 7-position (methyl in Chl a and formyl in Chl b) but also by the face of the tetrapyrrole to which the fifth magnesium ligand is bound. Within a LHC II monomer, out of the eight Chl a six have a ‚normal’ α-coordination and two are β-coordinated while out of the six Chl b only one has the ‚special’ β-coordination. In Photosystem I where a more meaningful statistical analysis could be made, out of 96 Chl a only 14 are β-coordinated, again indicating a preference for the ‚normal’ α-coordination [Balaban et al. (2002) Biochim Biophys Acta Bioenerget 1556: 197–207; Oba and Tamiaki (2002a) Photosynth Res 74: 1–10]. Astonishingly, all the special β-Chls are part of the stromal ring of Chls within the LHC II trimers and occupy key positions for the excitation energy transfer. Sequential energy traps are engineered with one hetero- and three homo-dimers. A careful pairing of carotenoids with the special β-Chls, which could quench their triplet states efficiently, implies a functional relevance of this diastereotopic ligation.  相似文献   

18.
Chlorella vulgaris grown at 5[deg]C/150 [mu]mol m-2 s-1 mimics cells grown under high irradiance (27[deg]C/2200 [mu]mol m-2 s-1). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feed-back mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6-phosphate and sucrose/starch indicated that cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6- bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feed-back on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed.  相似文献   

19.
We investigated the composition and organization of chlorophylls in monomers, trimers and oligomers (small aggregates) of the main light-harvesting complex (LHC II) isolated from marine alga, Bryopsis corticulans, using a combination of measurements with reversed-phase high performance liquid chromatography (RP-HPLC) and steady-state spectroscopy of absorption, circular dichroism (CD) and low temperature fluorescence. The composition and organization of the chlorophylls in monomeric and trimeric LHC II were essentially identical to those of LHC II from higher plants. For LHC II oligomers, a large decrease of chlorophyll (Chl) b absorption and of CD signals corresponding to Chl b was consistent with the quantitative analysis of Chl b by RP-HPLC, indicating that oligomerization of the LHC II proteins significantly influenced spectroscopic properties and led to the dissociation of Chl b molecules from LHC II. Our data strongly suggested that protein oligomerization constitutes a structural basis for the decrease of Chl b molecules in LHC II of B. corticulans. The LHC II of B. corticulans might play a photoprotective role with the reduction of the ability of light absorption via alteration of its own structural conformation.  相似文献   

20.
We have investigated the ecological importance of N2-fixation in cyanobacterial mats, dominated by oscillatorean species, in ponds of the Bratina Island area of the McMurdo Ice Shelf, Antarctica (78°S, 166°E). Nitrogenase activity, estimated as acetylene reducing activity (ARA), was found in all the mats investigated (n = 16). The average ARA was 75.9 mmol ethylene m-2 h-1, ranging from 6 to 201 mmol ethylene m-2 h-1. Nitrogenase activity was positively correlated with dissolved reactive phosphorus concentration in pondwater and the C/N ratio of the mat, and was negatively correlated with pondwater NH4+-N concentrations and natural abundance of 15N in the mats. ARA was restricted to the upper, oxic layer of the mats. Experiments conducted to ascribe ARA to different groups of prokaryotes suggested that ARA was mainly conducted by heterocystous cyanobacteria, since no activity was found in the dark and the activity was inhibited by the photosystem II inhibitor DCMU (3-[3,4-dichlorophenyl]-1,1-dimethyl urea). In spite of 24 h of daylight, nitrogenase activity showed a diel cycle with maximum activity at midday (10-18 h) and minimal activity at early morning (6-10 h) when pond temperatures were at their minima. Light dependency of nitrogenase activity for three cyanobacterial communities showed that the irradiance required for saturating ARA was low, in every case lower than 100 mmol photon m-2s-1. Irradiance rarely fell below 100 mmol photon m-2s-1 during Antarctic summer days and ARA was likely to be light saturated for much of the time. We estimate that N2 fixation represented on average a N input into the ponds of over 1 g m-2y-1. This value appears to be the highest N input to this Antarctic ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号