首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Djungarian hamsters,Phodopus sungorus, depend mainly on day length to cue seasonal adjustments in reproduction and thermoregulation. These photoperiod-induced changes are mediated by changes in the daily release of pineal melatonin. However, some hamsters fail to respond to chronic short day exposure, and these individuals lack typical short day rhythms for both daily activity and pineal melatonin content. These results indicate that nonresponding hamsters lack the circadian organization responsible for proper coding of day length. Although the nature of the disruption in circadian organization is yet not known, these results clearly demonstrate the central importance of circadian rhythms in regulating photoperiod-induced adjustments in reproduction and thermoregulation.  相似文献   

2.
Several weeks of short day photoperiod (SD) exposure promote a dramatic decrease of white adipose tissue (WAT) mass in Siberian hamsters(Phodopus sungorus sungorus). This slimming effect is accompanied by changes in the adipocyte responsiveness to adrenergic stimulation that are still under debate. We investigated whether possible changes in the antilipolytic responses, and/or lipogenic activities could be involved in such lipid deposition/mobilisation imbalance. Male Siberian hamsters were exposed for 11 weeks to SD or long day photoperiod and basal or stimulated lipolytic and lipogenic activities were measured on white adipocytes. As expected, the body mass of SD-animals was decreased. Besides a slight reduction in the basal lipolysis and in the maximal response to dibutyryl-cAMP, the responses to adrenergic and non-adrenergic lipolytic agents (forskolin, adenosine deaminase) were similar in both groups. Fat mass loss was likely not resulting from changes in the lipolytic responses of adipocytes to biogenic amines (e.g. octopamine), which were unaltered, or to a direct lipolytic stimulation by melatonin or histamine, which were inactive. Antilipolytic responses to insulin or tyramine were slightly decreased in SD-adipocytes. Basal or insulin-stimulated lipid accumulation in WAT, measured by glucose incorporation into lipids, did not change after SD-exposure. However, a significant decrease in the lipoprotein lipase activity was observed in the WAT of SDanimals. Despite the observed changes, the weight loss of SD-exposed Siberian hamsters was likely not resulting only from impaired antilipolytic orde novo lipogenic activities in white adipocytes, but either from other dramatic changes occurring during seasonal photoperiod-sensitive body weight regulation.  相似文献   

3.
4.
5.
Castrated hamsters which were transferred from long (14L:10D) to short (9L:15D) days and received testosterone-filled capsules for 1 week after transfer failed to show a significant suppression in the plasma levels of FSH and LH after capsule removal. In contrast, gonadotrophin concentrations were suppressed in hamsters in which the long-day castration response had been blocked with exogenous testosterone. After castration on long days and exposure to 10 weeks of short days pituitary gland weight and gonadotrophin content, as well as plasma FSH titres, were higher in control animals than in those that had received testosterone implants for 7 weeks of short days. The results suggest that failure of castrated hamsters to respond to the suppressive effects of short days reflects castration-induced changes in hypothalamo-pituitary physiology rather than a neuroendocrine mechanism by which photoperiod modulates gonadotrophin secretion.  相似文献   

6.
7.
We sought to determine whether ambient temperature (T(a)) affects gonadal function by altering the rate at which circadian rhythms entrain to short day lengths. Syrian hamsters were housed in cages where they received 14 h of light per day ("long days," 14L) at 22 degrees C. Hamsters were then transferred to cages to receive 10 h of light per day ("short days," 10L) and kept at 5, 22, or 28 degrees C or were maintained in 14L at 22 degrees C. Body mass and estimated testis volume as well as duration of nocturnal locomotor activity (alpha), previously established as a reliable indicator of the duration of nocturnal melatonin secretion, were determined over the course of 24 wk. Testicular regression in short days was accelerated by 4 wk at 5 degrees C and delayed by 3 wk at 28 degrees C relative to 22 degrees C. The interval between alpha-expansion and initiation of testicular regression was markedly affected by T(a) with delays of 0, 3, and 6 wk at 5, 22, and 28 degrees C, respectively. All hamsters held at 5 and 22 degrees C underwent testicular regression, but 25% of those maintained at 28 degrees C failed to do so. We suggest that T(a) modulates testicular regression primarily by affecting responsiveness of neuroendocrine target tissues to long melatonin signals.  相似文献   

8.
B D Goldman 《Steroids》1991,56(5):218-225
The major function of the mammalian pineal gland appears to be its central role in photoperiodism. The pineal hormone, melatonin, is synthesized and secreted primarily at night, under the control of a circadian oscillator that is entrained to the light-dark cycle. Both the circadian phase and the duration of the nocturnal peak of melatonin secretion are established primarily by interactions between the endogenous circadian oscillator and the daily photic cycle. The duration of the melatonin peak varies inversely with day length, and this relationship between day length and the duration of each circadian melatonin peak appears to be an integral part of the photoperiodic mechanism. When pinealectomized animals are given daily melatonin infusions of long duration, they exhibit physiologic responses that normally are observed during exposure to short day photoperiods; when administered short-duration melatonin infusions, the animals display long photoperiod-type responses. In addition to the importance of the duration of each melatonin peak, certain other parameters appear to be significant. If a long-duration infusion of melatonin is interrupted by a period of 2 hours or more without melatonin (i.e., to produce two short duration infusions), the responses are those typical for long day-exposed animals. Thus, to elicit short day-type responses, each long-duration melatonin peak must be relatively continuous; responses are not determined simply by the total time of exposure to melatonin in each circadian cycle. Also, long-duration melatonin peaks may not be effective to elicit photoperiod-type responses unless they are present at frequencies of nearly once every 24 hours or more.  相似文献   

9.
Female golden hamsters exposed to short photoperiods become anestrous and exhibit daily surges of gonadotropins and progesterone. Since little is known about the transition between the cycling and anovulatory states, the following experiments were done to determine whether there are hormonal changes that precede cessation of estrous cyclicity. Females killed on the morning of estrus, up to the tenth estrous cycle in short days, showed no hormonal or ovarian morphologic evidence of changes in reproductive function. When assessed on the afternoon of estrus, however, serum levels of luteinizing hormone and progesterone increased significantly before vaginal and ovarian cyclicity ceased. Females sampled in both the morning and afternoon at increasing durations since their last vaginal estrus revealed that maximal daily surges of both gonadotropins and progesterone were not consistently manifested until the vaginal cycle had been absent for 2 weeks. By then, estrogen levels and uterine weights were low and ovaries showed hypertrophied interstitia and arrested follicular growth. We have demonstrated that there are hormonal changes in females before the loss of the vaginal cycle and onset of major daily hormonal surges. Our results suggest that alterations in feedback relationships between steroid hormones and gonadotropins may precede photoperiod-induced anestrus.  相似文献   

10.
OBJECTIVEs AND DESIGN: In European hamsters a circannual clock drives the seasonal changes in the reproductive state. Its resetting by photoperiod is clearly phase dependent. In mid subjective winter a 1-month pulse of long photoperiod (LP) advances the onset of the reproductive phase of animals maintained in constant short photoperiod (SP) by up to 1.5 months. The present study investigated whether shorter pulses, i.e. 8, 4 or 2 days LP-pulses are still effective to phase shift the circannual rhythm. MAIN FINDINGS: All pulses induced gonadal development after a similar time relative to the offset of the pulse and earlier than in the control group. Thus, they all shared a similar effectiveness. CONCLUSIONS: In European hamsters a very brief LP-pulse can phase shift the reproductive rhythm but its strength is not determined by its duration at least not in the tested range.  相似文献   

11.
The aim of the study was to investigate the effects of acute leptin treatment of adult Syrian hamsters exposed to a long (LP, eugonadal males) and short photoperiod (SP, hypogonadal males). Animals were exposed to LP (L:D 14:10) or SP (L:D 10:14) for 10 weeks. Afterwards, both LP and SP hamsters were allocated to a control (SP-C, LP-C) or leptin-treated group (SP 3, SP 10, SP 30 or LP3, LP 10, LP 30). One hour before sacrifice, a single dose of leptin (3, 10 or 30 μg/kg) or vehicle was administered (i.p.) to the males. Testis weight, serum and pituitary luteinizing hormone (LH) concentrations, as well as the hypothalamic concentration of gonadotropin-releasing hormone (GnRH) were recorded. Histological analysis of the testis was performed and GnRH concentration in the culture medium of hypothalamic explants was examined. A dramatic regression of testicular weight and histological atrophy of seminiferous tubules, as well as a decrease in serum and pituitary LH concentrations were found in SP males. All doses of leptin significantly reduced serum LH levels and medium GnRH concentrations in both photoperiod groups. Pituitary LH and hypothalamic GnRH concentrations were not affected by leptin. In conclusion, we demonstrated that leptin inhibited the reproductive axis of Syrian male hamsters exposed to LP and SP and fed ad libitum.  相似文献   

12.
The aim of this study was to determine if there is a seasonal pattern of sexual activity dependent on food availability in male Creole goats in subtropical Mexico. The study was conducted in the Laguna Region in the State of Coahuila, Mexico (26 degrees N). Male Creole goats (n = 8) were kept in a shed, fed alfalfa ad libitum and given 200 g of concentrate daily throughout the study. Live weight and testicular weight were determined every 2 wk. Sexual behavior and sperm production were determined monthly. Blood samples were obtained weekly to determine testosterone plasma concentrations. All variables were subjected to sinusoidal modeling procedures and showed important seasonal variations (P < 0.0001) with different phase angles for body weight, testicular weight and testosterone plasma concentrations. The nadir of live weight occurred in November and the peak in May. The lowest testicular weight (90 g) and testosterone plasma concentrations (0.1 ng/mL) were observed in January and February, respectively, while the peaks were observed in July and August (145 g and 10 ng/mL, respectively). Ejaculation latency also varied during the study, being low between May and November (96 sec) and reaching a peak in April (183 sec). Minimum number of spermatozoa per ejaculate occurred between February and April (1.4 x 10(9) cells/ejaculate) while the maximum number was observed between May and September (2.8 x 10(9) spermatozoa/ejaculate). Progressive sperm motility was low between January and April (3.04 on average) and high between May and November (about 3.55 on average). The percentage of live spermatozoa diminished between January and April (68% in April) and then increased to values around 80% between May and November. These results lead us to conclude that male Creole goats in Northern Mexico, fed constantly throughout the year, exhibit seasonality in their reproductive activity. Intense sexual activity occurred between May and December.  相似文献   

13.
Light regulates a variety of behavioral and physiological processes, including activity rhythms and hormone secretory patterns. Seasonal changes in the proportion of light in a day (photoperiod) further modulate those functions. Recently, short (SP) versus long days (LP) were found to markedly increase light sensitivity for phase shifting in Syrian hamsters. To our knowledge, photoperiod effects on light sensitivity have not been studied in other rodents, nor is it known if they generalize to other circadian responses. We tested whether photic phase shifting and melatonin suppression vary in Siberian hamsters maintained under LP or SP. Select irradiances of light were administered, and shifts in activity were determined. Photic sensitivity for melatonin suppression was examined in a separate group of animals via pulses of light across a 4 log-unit photon density range, with post-pulse plasma melatonin levels determined via RIA. Phase shifting and melatonin suppression were greater at higher irradiances for both LP and SP. The lower irradiance condition was below threshold for phase shifts in LP but not SP. Melatonin suppression did not vary by photoperiod, and the half saturation constant for fitted sigmoid curves was similar under LP and SP. Thus, the photoperiodic modulation of light sensitivity for phase shifting is conserved across two hamster genera. The dissociation of photoperiod effects on photic phase shifting and melatonin suppression suggests that the modulation of sensitivity occurs downstream of the common retinal input pathway. Understanding the mechanistic basis for this plasticity may yield therapeutic targets for optimizing light therapy practices.  相似文献   

14.
Light-microscope immunocytochemistry was used to investigate the LHRH system of adult male Syrian hamsters. Half of the animals were transferred from long to short photoperiods (14L:10D to 6L:18D) for 10 wk, causing plasma gonadotropin levels and the testes to revert to a prepubertal condition. In spite of the marked differences in the reproductive axis between the two groups of hamsters, the number of immunopositive LHRH neurons observed in the preoptic-medial septal area and diagonal band of Broca was approximately 400 in both cases; of these, 87-91% were monopolar and 9-13% were bipolar, regardless of whether the brains were sectioned in a coronal or sagittal plane. These results, therefore, fail to support the hypothesis that photoperiodic changes in the number of LHRH neurons play a major role in controlling the seasonal regression and recrudescence of the reproductive system in the hamster. However, morphometric analysis of the perikarya using an IBAS 2000 automatic image analyzer revealed a photoperiod-related difference. Surprisingly, the perikarya of both monopolar and bipolar LHRH neurons were significantly larger in hamsters that had been maintained on short days, as opposed to long days. These findings, therefore, are in harmony with the view that the inhibitory effect of short days on the reproductive axis is mediated through a suppression of LHRH secretion, which in turn is reflected as an increase in the net content of LHRH within the brain.  相似文献   

15.
We investigated the role of the hypothalamic melanocortin system in the regulation of food intake in the Siberian hamster, which shows a profound seasonal decrease in food intake and body weight in short photoperiod (SP). In male hamsters maintained in long photoperiod (LP), intracerebroventricular injection of melanotan II (MTII) just before lights off significantly decreased food intake relative to vehicle treatment over the 6-h observation period. Similar effects were observed in age-matched hamsters after exposure to a short daylength for 9 wk, when body weight had significantly decreased. There was no clear difference in either the magnitude of response or the dose required for half-maximal inhibition of food intake in hamsters in SP compared with those in LP. MTII significantly increased grooming in both LP and SP. Our results indicate that the melanocortin system is a potent short-term regulator of food intake. However, the lack of differential response or sensitivity to MTII treatment in the obese (LP) vs. lean (SP) states does not support the hypothesis that changes in this melanocortin pathway underlie the long-term decrease in food intake that occurs in this seasonal model.  相似文献   

16.
Sleep is regulated by independent yet interacting circadian and homeostatic processes. The present study used a novel approach to study sleep homeostasis in the absence of circadian influences by exposing Siberian hamsters to a simple phase delay of the photocycle to make them arrhythmic. Because these hamsters lacked any circadian organization, their sleep homeostasis could be studied in the absence of circadian interactions. Control animals retained circadian rhythmicity after the phase shift and re-entrained to the phase-shifted photocycle. These animals displayed robust daily sleep-wake rhythms with consolidated sleep during the light phase beginning about 1 h after light onset. This marked sleep-wake pattern was circadian in that it persisted in constant darkness. The distribution of sleep in the arrhythmic hamsters over 24 h was similar to that in the light phase of rhythmic animals. Therefore, daily sleep amounts were higher in arrhythmic animals compared with rhythmic ones. During 2- and 6-h sleep deprivations (SD), it was more difficult to keep arrhythmic hamsters awake than it was for rhythmic hamsters. Because the arrhythmic animals obtained more non-rapid eye movement sleep (NREMS) during the SD, they showed a diminished compensatory response in NREMS EEG slow-wave activity during recovery sleep. When amounts of sleep during the SD were taken into account, there were no differences in sleep homeostasis between experimental and control hamsters. Thus loss of circadian control did not alter the homeostatic response to SD. This supports the view that circadian and homeostatic influences on sleep regulation are independent processes.  相似文献   

17.
Short day (SD) lengths delay puberty, suppress ovulation, inhibit sexual behavior, and decelerate reproductive aging in female Siberian hamsters (Phodopus sungorus). To date, the modulation of the age-associated decline in reproductive outcomes has only been demonstrated in female hamsters experiencing different day lengths during development. To determine if developmental delay is necessary for photo-inhibition to decelerate reproductive aging, hamsters raised in LD were transferred to SD as young adults and remained there for 6 months. Females that demonstrated the most immediate and sustained photo-inhibition were found to have greater numbers of ovarian primordial follicles at advanced ages (9 and 12 months) than did females held in LD, nonresponders to SD, and females with a marginal SD-response. Similarly, for females raised in SD from conception to 6 months of age, prolonged developmental delay was associated with greater numbers of primordial follicles at later ages as compared to hamsters that became refractory to SD. A robust response to SD in juvenile and adult hamsters is associated with decelerated reproductive aging, which may result in greater reproductive success in older females as compared to age-matched individuals demonstrating a more modest response to SD.  相似文献   

18.
LH surges occur 3 h later in intact anovulatory hamsters exposed to nonstimulatory photoperiods (6L:18D) for 8 wk than the proestrous LH surges from the same hamsters housed in 6L:18D for 3 weeks. In ovariectomized hamsters housed in 6L:18D for 3 wk, the LH surge was observed at the same time of day as in intact anovulatory hamsters at 8 wk. Implanting Silastic capsules containing estradiol benzoate (EB) advanced the timing of the daily surge of LH in ovariectomized hamsters housed in 6L:18D for 8 wk. EB also affected the magnitude of the LH surge in hamsters housed in 6L:18D for 8 wk. Two days after receiving EB implants, daily LH surges in anovulatory hamsters were suppressed by 75% and in ovariectomized "regressed" hamsters by 37%. This difference between groups was probably due to ovarian progesterone in intact animals. Estrogen is not required for LH surges in anovulatory hamsters but suppresses LH release when administered exogenously. The delay in the timing of the LH surge in anovulatory hamsters may result from the decline in estrogen resulting from short photoperiod exposure.  相似文献   

19.
Siberian hamsters (Phodopus sungorous sungorous) decrease their food intake when exposed to short (“winter-like”) photoperiods. The cause of this naturally-occurring hypophagia is unknown, but it may be due to a heightened sensitivity to the factors that normally terminate food intake in long photoperiods, such as the putative satiety peptides. The purpose of the present investigation was to test whether there would be an enhanced sensitivity to the inhibitory effects of some of these peptides on food intake in short relative to long days. Ad lib-fed, adult female Siberian hamsters were housed in a long photoperiod (LD 14:10) and injected with bombesin, glucagon, cholecystokinin octapeptide (CCK-8) and calcitonin (CT). Food intake was monitored 1, 2, 4, 6, and 24 hr post-injection. Bombesin and glucagon had no effect on food intake in long day-housed hamsters. CCK-8 and CT inhibited food intake; however, CCK-8 did so without any apparent behavioral disruption, while CT produced a marked and prolonged depression of behavior. After 10 weeks of exposure to a short photoperiod (LD 8:16) the hamsters were tested again. The previously ineffective dose of bombesin greatly inhibited food intake following short photoperiod exposure. In addition, an increased inhibition of food intake by CCK-8 was also found. In contrast, glucagon did not decrease food intake and CT still produced its non-specific, behaviorally disruptive effects. To our knowledge, this is the first demonstration that the effectiveness of a putative satiety peptide can be dependent upon a change in the photoperiod. This heightened responsiveness of short photoperiod-exposed Siberian hamsters to the inhibitory effects of bombesin and cholecystokinin may account for the reduction in food intake that accompanies short day exposure in this species.  相似文献   

20.
Puberty, which is markedly delayed in male Siberian hamsters (Phodopus sungorus) born into short day lengths, is controlled by an interval timer regulated by the duration of nocturnal melatonin secretion. Properties of the interval timer were assessed by perturbing normal patterns of melatonin secretion in males gestated and maintained thereafter in 1 of 2 short day lengths, 10 h light/day (10 L) or 12L. Melatonin secretion of short-day hamsters was suppressed by constant light treatment or modified by daily injection of propranolol to mimic nocturnal melatonin durations typical of long-day hamsters. Constant light treatment during weeks 3 to 5 induced early incomplete gonadal growth in 12L but not 10 L hamsters but did not affect late onset of gonadal development indicative of puberty in either photoperiod. Propranolol treatment during postnatal weeks 3 to 5 induced transient growth of the testes and ultimately delayed the timing of puberty by 3 weeks. Similar treatments between weeks 5 and 7 or on alternate weeks for 24 weeks did not affect the interval timer. The first 2 weeks after weaning may constitute a critical period during which the interval timer is highly responsive to photoperiod. Alternatively, the hamsters' photoperiodic history rather than age or developmental stage may be the critical variable. The interpolation of long-day melatonin signals at the time of weaning does not appear to reset the interval timer to its zero position but may reduce timer responsiveness to long-day melatonin signals several weeks later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号