首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The activation of the phenylpropanoid pathway in plants by environmental stimuli is one of the most universal biochemical stress responses known. Induction of enzymes such as phenylalanine ammonia-lyase and peroxidase and the accumulation of such phenolics as lignin can occur in response to insect and pathogen attack, exposure to oxidizing pollutants, and mechanical stimulation, and are thought to function in the resistance of plants to damage by these stresses. I investigated whether induction of components of this generalized stress response by wind-induced mechanical stimulation could influence the resistance to pests of common bean. In greenhouse studies, exposure of 7- to 10-day-old bean seedlings to daily periods of fan-produced wind led to increased activities of peroxidase and cinnamyl alcohol-dehydrogenase and enhanced the accumulation of lignin in primary leaves of these plants. Egg production and population growth of two-spotted spider mites were reduced when offered leaves of mechanically-stimulated plants in leaf-disk and whole-plant bioassays. Infection by anthracnose after inoculation in a detached-leaf bioassay was also reduced in leaves of mechanically-stimulated plants. The consistent positive association between the enhanced activity of the lignin branch of the phenylpropanoid pathway and enhanced resistance to pests found in leaves of mechanically-stimulated plants illustrates one way in which exposure of plants to environmental stimuli that activate a generalized stress response (e.g., wind) can influence the interactions of those plants with other environmental stimuli (e.g., pests). Received: 1 October 1996 / Accepted: 23 January 1997  相似文献   

2.
Wind-induced mechanical stress (MS) significantly increased the soluble peroxidase activity in leaves of cucumber over control levels after 9 days of treatment. In comparison, inoculation with the fungal pathogen Cladosporium cucumerinum induced significant increases in peroxidase after 4 days. Cucurbit anthracnose symptom development caused by Colletotrichum orbiculare was greater on leaves of seedlings exposed to 6 but not to 9 or 12 days of wind-induced MS than on leaves of control plants. In contrast, reproduction of melon aphids was significantly reduced on leaves exposed to 12 days of MS relative to controls. These results indicate that wind-induced MS can induce soluble peroxidase activity in cucumber and have divergent effects on the resistance to insects and pathogens.  相似文献   

3.
德保苏铁回归后几个生理指标的比较研究   总被引:1,自引:0,他引:1  
以广西黄连山自然保护区内的德保苏铁幼苗为材料,研究了不同叶数苏铁幼苗叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性以及丙二醛(MDA)、脯氨酸、可溶性糖和可溶性蛋白质含量的变化。结果表明:在7月至11月间,随着时间的推移,德保苏铁幼苗叶片的SOD、POD活性均呈递增趋势,CAT活性则先缓慢下降后又呈递增的趋势;MDA含量呈下降趋势;脯氨酸含量呈缓慢上升趋势;可溶性糖和可溶性蛋白质均呈持续积累趋势。综合分析结果表明:可将不同叶数苏铁幼苗分为两类:5叶植株单独为一类,环境适应能力强;3叶植株和4叶植株可聚为一类,环境适应能力相对较强。  相似文献   

4.
外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响   总被引:5,自引:0,他引:5  
采用营养液栽培法,研究外源谷胱甘肽(GSH)对NaCl胁迫下番茄幼苗生长、根系活力、电解质渗透率和丙二醛(MDA)、脯氨酸(Pro)、可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性的影响,为利用外源物质减轻盐胁迫伤害提供理论依据。结果显示:(1)NaCl胁迫显著抑制了番茄幼苗的生长、根系活力和SOD、POD、CAT活性,提高了电解质渗透率及MDA、Pro、可溶性糖含量;(2)外源喷施GSH能够诱导NaCl胁迫下番茄幼苗叶片抗氧化酶SOD、POD、CAT活性上调,电解质渗透率及MDA含量下降,Pro和可溶性糖含量恢复至对照水平;(3)外源喷施还原型谷胱甘肽抑制剂(BSO)使NaCl胁迫下番茄幼苗的根系活力以及抗氧化酶SOD、POD、CAT活性下降,脯氨酸含量提高;(4)喷施GSH可诱导BSO和NaCl共处理番茄植株的根系活力、SOD、POD、CAT活性提高,MDA和Pro含量降低。研究表明,外源GSH可通过提高促进盐胁迫下番茄幼苗植株渗透调节能力及清除活性氧的酶促系统的防御能力、降低细胞膜脂过氧化程度、保护膜结构的完整性,从而有效缓解NaCl胁迫对番茄幼苗生长的抑制,提高其耐盐性。  相似文献   

5.
Treatment of triadimefon on detached leaves of mung bean (Phaseolus radiatus L. ) seedlings increased the levels of chlorophyll and soluble proteins. Declined activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate-peroxidase (AsA-POD) and contents of ascorbate (ASA) and glutathione (GSH) were observed during the senescence of detached young leaves. Triadimefon at concentration of 20 mg/L promoted the activities of POD, AsA-POD and levels of AsA and GSH, but had no effect on the activities of SOD and CAT. On the other hand, the levels of malondialdehyde (MDA) were increased and the increase of which was markedly negative correlated with the activities of POD, AsA-POD and with the contents of AsA and GSH during the senescence of leaves. MDA contents were decreased by triadimefon treatment. These resuits suggested that triadimefon retarded the senescence of leaves in mung bean seedlings in terms of enhancing the protective ability of plant tissues against membrane lipid peroxidation.  相似文献   

6.
The Role of Endogenous Abscisic Acid in the Response of Plants to Stress   总被引:11,自引:1,他引:10  
When a continuous stream of warm air (38°C) was directedon to the leaves of dwarf bean seedlings they wilted and thengradually regained turgor. This process of adaptation was accompaniedby an increasing abscisic acid (ABA) level in the leaves andan increase in leaf resistance (RL). It is suggested that theleaf-water deficit induced by the warm-air treatment causedthe increase in ABA level and that the latter was responsiblefor stimulating stomatal closure, enabling the plants to regainfull turgor. A similar type of adaptation, brought about byan increased level of ABA in the leaves, is believed to occurin tomato, dwarf bean, and wheat plants when they are flooded.Predictably, in rice, a species adapted to a flooded environment,seedlings showed no increase in ABA level as a result of flooding. It is proposed that adaptation may involve the formation ofan equilibrium between ABA and its conjugate form (i. e. theglucose ester). The ABA-conjugate was observed to disperse slowlyfrom leaves recovering from a water deficit and therefore itmay act as a metabolic ‘back-stop’, enabling the‘free’ ABA level to remain high for a period evenwhen the leaves have regained turgor. Abscisic acid appears to be responsible for alleviating theeffects of water stress in plants, making it possible for plantsto pass through periods of stress with little harm.  相似文献   

7.
周瑞莲  逄金强  宋玉 《生态学报》2022,42(1):196-208
以海岸防风固沙优势树种紫穗槐(Amorpha fruticosa Linn)和黑松(Pinus thunbergii Parl)为研究对象,利用野外便携式沙风洞用间歇风吹模拟自然阵风,通过分析间歇强净风(18m/s)和强风沙流(172.93g cm-1 min-1)吹袭过程中和风后恢复中,两树种叶片膜脂过氧化产物含量、抗氧化酶活力、渗透调节物含量的变化,以探讨其对自然阵风吹袭响应机制及自愈修复生理机制。结果表明,自然状况下,紫穗槐和黑松叶片相对含水量(RWC)相近,但抗氧化酶活力及种类和渗透调节物含量及种类上存在差异。紫穗槐叶片丙二醛含量(MDA)、脯氨酸含量及过氧化氢酶(CAT)和过氧化物酶(POD)活力分别较黑松高93.3%、78.6%、118.8%、6.5倍。而黑松可溶糖含量和超氧化物歧化酶(SOD)活力较紫穗槐高111.5%和28.2%。在间歇净风和风沙流处理中,随着风吹袭次数增多,黑松叶片RWC趋于小幅降低,可溶性糖含量及POD、SOD、CAT活力呈小幅波动式变化;紫穗槐叶片RWC大幅下降,伴随着脯氨酸含量,POD、CAT、SOD活...  相似文献   

8.
以格木(Erythrophleum fordii Oliv.)幼苗为材料,采用双因素完全随机设计实验方法,测定不同处理幼苗的光合色素和可溶性糖等生理指标,研究格木幼苗对硝普钠(SNP)-氯化铝(AlCl3)互作的生理响应。结果显示,格木幼苗叶片中叶绿素a、叶绿素b和类胡萝卜素含量均在处理4(0.2 mmol/L AlCl3、0.1 mmol/L SNP)时最高,在处理9(0.8 mmol/L AlCl3、0 mmol/L SNP)时含量最低,而叶片中丙二醛(MDA)、游离脯氨酸含量则相反;叶片可溶性糖、可溶性蛋白含量在处理4时最高,在处理9时最低;处理10(0.8 mmol/L AlCl3、0.1 mmol/L SNP)的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性最高。施加SNP后,格木幼苗叶片中的叶绿素a、叶绿素b、类胡萝卜素、可溶性糖、可溶性蛋白含量及SOD、POD、CAT活性均显著高于未施加SNP处理。相关性分析表明,叶绿素a、类胡萝卜素、总叶绿素和可溶性蛋白含量等指标间均呈极显著正相关(P < 0.01)。本研究结果得出,低浓度AlCl3(0.2 mmol/L)胁迫可促进格木幼苗的生长,添加外源SNP对高浓度AlCl3(0.8 mmol/L)胁迫格木幼苗产生的毒害具有一定的缓解作用,可在格木幼苗的培育及抗性研究中推广应用。  相似文献   

9.
Different plants have physiological responses under A1 stress,but there is no systematic study to examine physiological responses of herbaceous plants under Al stress.The aim of this study is to investigate the effect of Al on physiological characteristics of four herbaceous plants,which distributed in red soil area in South China,and to analyze the differences in physiological responses to Al stress between the four herbaceous plants.Four herbaceous plants(Pharbitis nil,Cassia occidentlis,Echinochloa colonum and Aeschynomene indica)were used,and the seed germination percentage,the contents of chlorophyll,proline,and malondialdehyde(MDA),membrane permeability(MP),soluble sugar,and activities of peroxides(POD)and cata lase(CAT)in leaves under five Al3+ treatments(0,80,400,2000,and 10000 mg/L)were assayed with the sand culture method.The results showed remarkable effects of Al3+ on physiological characteristics of these four herbaceous plants.The seeds of all the four species could not germinate at 10000 mg/L.and the growth of all plants were retarded under the 2000 mg/LAr3+ treatment.Compared with the control,2000 mg/L Al3+ significantly(P<0.05)reduced the contents of chlorophyll a and chlorophyll a+b,and increased the contents of MDA and MP.The content of proline in creased very significantly(P<0.01)and activities of POD and CAT were depressed.The contents of MDA and MP in leaves of P.nil and A.indica decreased,and the activities of POD and CAT in leaves of the two plants increased under 80mg/L and 400 mg/L.However,the changes in C.occidentlis leaves were opposite to those of the above two plants.The changes in leaves of E.colonum were similar to those of P.nil and A.indica at 80 mg/L.but were opposite to those at 400mg/LAr3+.It is suggested that plants with higher activities of POD and CAT,more contents of chlorophyll and proline,and lower contents of MDA and MP consequently improve the tolerance to Al stress under low and middle Al treatments.  相似文献   

10.
11.
Jasmonates are signaling molecules that play key roles in wound response and regulate the biosynthesis of many defensive proteins, including proteases. In this study, we investigate the effects of wounding and methyl jasmonate (MJ) application on the protein expression pattern of Ricinus communis L. leaves and on proteolytic activity. Gelatin zymography demonstrated that both MJ and mechanical wounding induce alterations in the proteolytic pattern of castor bean leaves (R. communis L.). Expression of two cysteine proteases (38 and 29 kDa) was induced by the treatments employed; however, MJ induced a higher protease level than mechanical wounding during the stress period (24, 48, and 72 h). The increase in protease activity mirrors the decline in soluble protein content and rubisco degradation that may indicate initiation of senescence in castor plants. The 29 kDa protease has an acidic optimal pH; whereas the 38 kDa protease has a neutral optimum activity. Both proteases were almost completely inhibited by E-64 and cystatin. The significant induction of these proteins by MJ suggests a possible role of cysteine proteases in leaf senescence as well as their involvement in regulating both the wound response and MJ in castor bean plants.  相似文献   

12.
Glucuronokinase (EC 2.7.1.43) activity was detected in etiolated seedlings of corn, mung bean and soybean. Biosynthesis of glucuronokinase is not limited to seedlings, because expanding green leaves of corn produced almost as much glucuronokinase activity as etiolated seedlings when data were expressed on the basis of soluble protein. The enzyme was also present in extracts of tobacco callus and Lilium longiflorum pollen, with more enzyme activity obtained from pollen than any other source. Detection of glucuronokinase in green leaves of of mung bean was precluded by the presence of an enzyme inhibitor.  相似文献   

13.
Copper is both a nutrient and an environmental toxin that is taken up by plants. In order to determine the subcellular localization of copper and to assess the resulting metabolic changes, we exposed 14-day-old bean seedlings to nutrient solutions containing varying concentrations of Cu2+ ions for 3 days. Biochemical analyses revealed that the cell wall was the major site of Cu2+ accumulation in the leaves of treated plants. Excess copper modified the activity of lignifying peroxidases in both soluble and ionic cell wall-bound fraction. The activity of ionic GPX (guaiacol peroxidase, EC 1.11.1.7) was increased by 50 and 75 μM CuSO4. The activities of both ionic CAPX (coniferyl alcohol peroxidase, EC 1.11.1.4) and NADH oxidase were increased by both copper concentrations tested. While soluble CAPX activity decreased in leaves treated by all copper concentrations tested, the activity of soluble NADH oxidase remained unchanged at 50 μM and was enhanced at 75 μM. Treatment with CuSO4 also increased the abundance of total phenol compounds and induced stimulation in the activity of PAL (phenylalanine ammonia lyase, EC. 4.3.1.5). Using histochemistry in combination with fluorescence microscopy we show that bean leaves from copper-exposed plants displayed biochemical and structural modifications reinforcing the cell walls of their xylem tissues. On the other hand, the perivascular fiber sclerenchyma appeared to be less developed in treated leaves.  相似文献   

14.
15.
Cold shock and wind stimuli initiate Ca(2+) transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca(2+) pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca(2+) transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca(2+) signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca(2+) dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca(2+) signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm.  相似文献   

16.
南方4种草本植物对铝胁迫生理响应的研究   总被引:26,自引:0,他引:26       下载免费PDF全文
 不同的植物对铝胁迫的生理响应不同, 因而对铝毒的耐性也不相同。设置5种铝浓度,进行砂培法处理,研究了4种我国南方红壤广泛分布的草本植物——牵牛(Pharbitis nil)、望江南(Cassia occidentlis)、光头稗(Echinochloa colonum)和合萌(Aeschynomene indica)的种子萌发、光合色素、脯氨酸含量、丙二醛(MDA)含量、可溶性糖(SS)含量、质膜透性(MP)、过氧化氢酶 (CAT) 活性以及过氧化物酶 (POD)活性的变化。结果表明铝对4种植物的生理特性都有明显的影响。4种植物的种子在10 000 mg·L-1 Al3+处理条件下都不能萌发。2 000 mg·L-1 Al3+处理都不利于4种植物的生长,与对照相比,2 000 mg·L-1 Al3+处理时4种草本植物叶绿素和叶绿素总含量显著降低(p<0.05);MDA含量和MP显著增加(p<0.05);脯氨酸含量极显著增加(p<0.01);POD和CAT活性极显著降低(p<0.01)。中低铝(80和400 mg·L-1)处理时,牵牛和合萌与对照相比,MP和MDA含量降低,POD和CAT活性升高;望江南的反应与牵牛和合萌的反应相反;光头稗在80 mg·L-1 Al3+处理时,与牵牛和合萌的变化一致,在400 mg·L-1 Al3+处理时,则相反。植物在中低铝处理条件下,通过维持较高的POD和CAT活性和脯氨酸、叶绿素含量,较低的MP和MDA含量来增加其对铝的耐性。  相似文献   

17.
Green seedlings of soy bean and wheat contain, like the plant seeds, multiple thioredoxin proteins which possess all typical thioredoxin properties but are inactive in the stimulation assay with spinach fructose-bis-phosphatase. However the pure proteins do have thioredoxin f activity when tested with homologous enzymes isolated from soy bean or wheat leaves, respectively, in the presence of Mg++. This new type of species specificity, unknown in all other in vitro assays of reduced thioredoxins, has to be considered in characterizing complete thioredoxin profiles in plants.  相似文献   

18.
周瑞莲  逄金强  宋玉 《生态学报》2021,41(5):2033-2044
利用野外便携式风洞仪对盆栽黑松(Pinus thunbergii Parl)幼株在不同风速(6、9、12、15、18 m/s)、不同风沙流强度(0、1.00、28.30、63.28、111.82、172.93 g cm-1 min-1)、不同时间(10、20、30、40、50 min)进行了净风和风沙流吹袭,通过测定其叶片相对含水量(Relative water content,RWC)、丙二醛(Malondialdehyde,MDA)、可溶性糖、脯氨酸含量,及超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(Catalase,CAT)、过氧化物酶(Peroxidase,POD)活力等变化规律以揭示黑松抗风沙流生长的生理适应机制。结果表明,在净风吹袭下,随着风速提高至15 m/s,黑松叶片RWC相对稳定,MDA含量和细胞膜透性小幅增加且较低,而脯氨酸含量下降17.5%。同时叶片SOD、CAT、POD活力也小幅增加。在风沙流吹袭下,随着风沙流风速提高至15 m/s,黑松在短时低风速吹袭时叶片RWC就开始下降(4.4%),叶片平均MDA含量、细胞膜透性分别较对照增加61.3%、25.6%,脯氨酸含量增加8.9%,叶片SOD、CAT、POD活力分别较对照增加21.5%、30.4%、13.9%。同风速吹袭下,风沙流处理组叶片抗逆生理指标均高于净风处理。如15 m/s风速下,风沙流处理组叶片平均MDA、脯氨酸、可溶性糖含量分别较净风处理组高4.7%、36.6%、22.1%,SOD和CAT活力较净风处理组高21.5%、36.5%。在高风速(18 m/s)净风和风沙流吹袭中,随着风吹时间延长(50 min),叶片MDA、脯氨酸、可溶性糖含量和SOD、CAT、POD活力均下降。研究表明,风吹袭中黑松叶片较高抗脱水力与其抗风性相关。风沙流引发的叶片失水可能是黑松抗逆生理变化的诱因。风吹袭下叶片失水能快速促使脯氨酸的积累和维持可溶性糖含量,以维护细胞中水分平衡。同时,叶片失水又快速激活抗氧化保护酶系统来防御和清除氧自由基、抑制膜脂过氧化维护细胞膜的完整性使黑松在风沙流吹袭中生存。黑松较强的渗透调节能力和抗氧化防御系统在其适应风沙流吹袭中起重要的生理调控作用。  相似文献   

19.
A method is described for assessing the systemic activity of compounds in checking the infection of broad bean ( Vicia faba ) by the fungi Botrytis cinerea or B. fabae. Treatment consisted in allowing the roots of young seedlings to stand in a solution containing 10 p.p.m. of the chemical for 2–3 weeks. The plants, together with controls, were then inoculated and when symptoms had had time to develop, the degree of chocolate spot infection was assessed. Several methods of disease assessment were examined and are critically discussed.
Certain phenoxyalkylcarboxylic acids tested by this method consistently gave a reduction in the mean size of fungus lesions on the bean leaves, clearly indicating systemic fungicidal action. The most promising substances were 2:4:6-trichlorophenoxyacetic, pentachlorophenoxyacetic and pentachlorophenoxy iso butyric acids. Further experiments with these compounds involving soil treatment, stem injection and spray application are described, and in most cases systemic fungicidal activity was clearly demonstrated. Certain compounds caused visible damage to the plants or resulted in a reduction in growth.
The results presented indicate that phenoxy acids can be fairly readily translocated in bean plants and that they tend to accumulate in actively growing tissues. It is considered unlikely, however, that they persist for long periods in plant tissue.
In the soil, the compounds appeared to remain effective for a considerable time, particularly the less soluble pentachloro acids, suggesting that soil application might provide a safe and useful method of treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号