首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parsimony analyses of SSU rDNA sequences were conducted to examine phylogenetic relationships of selected genera within the families Cladoniaceae, Stereocaulaceae, Icmadophilaceae and Baeomycetaceae (lichen-forming ascomycetes). The analyses included 93 taxa (84 species) representing various groups of ascomycetous fungi. Analyses of the matrix with pre-aligned sequences were performed using heuristic and parsimony ratchet searches, and support values for the same matrix were calculated using parsimony jackknifing. The results support the recognition of the four families. Cladoniaceae are recircumscribed to accommodate Cladia, Cladonia, Heterodea, Metus, Pilophorus, Pycnothelia, Ramalea, Thysanothecium and the newly erected genus Carassea. Myelorrhiza is excluded from the family, while the status of other potential members, Calathaspis, Gymnoderma s.str. and Squamella, remains unresolved. Baeomycetaceae include Baeomyces and Phyllobaeis. Stereocaulaceae include Stereocaulon only, although the status of Muhria is still unclear. Finally, Icmadophilaceae include Dibaeis, Endocena, Knightiella, Icmadophila, Siphula and Thamnolia, while the status of Pseudobaeomyces and Siphulella requires further elucidation. The genus Cladonia appeared to be a polyphyletic assemblage, and accordingly, a new genus Carassea S. Stenroos, gen. nov., represented by C. connexa (Vain.) S. Stenroos, comb. nov., is described. Carassea is most closely related to Pycnothelia and Metus in the Cladoniaceae. Siphula, represented in the present analysis by six species, is not monophyletic, and is in need of reclassification.  相似文献   

2.
Parmelioid lichens form a species-rich group of predominantly foliose and fruticose lichenized fungi encompassing a broad range of morphological and chemical diversity. Using a multilocus approach, we reconstructed a phylogeny including 323 OTUs of parmelioid lichens and employed ancestral character reconstruction methods to understand the phenotypical evolution within this speciose group of lichen-forming fungi. Specifically, we were interested in the evolution of growth form, epicortex structure, and cortical chemistry. Since previous studies have shown that results may differ depending on the reconstruction method used, here we employed both maximum-parsimony and maximum-likelihood approaches to reconstruct ancestral character states. We have also implemented binary and multistate coding of characters and performed parallel analyses with both coding types to assess for potential coding-based biases. We reconstructed the ancestral states for nine well-supported major clades in the parmelioid group, two higher-level sister groups and the ancestral character state for all parmelioid lichens. We found that different methods for coding phenotypical characters and different ancestral character state reconstruction methods mostly resulted in identical reconstructions but yield conflicting inferences of ancestral states, in some cases. However, we found support for the ancestor of parmelioid lichens having been a foliose lichen with a non-pored epicortex and pseudocyphellae. Our data suggest that some traits exhibit patterns of evolution consistent with adaptive radiation.  相似文献   

3.
Abstract: The phylogeny of the families Lecanoraceae and Bacidiaceae (Lecanorales, Ascomycota) was investigated using 29 nuclear small subunit ribosomal DNA sequences, 9 of which were newly determined. The data set contained 368 variable characters, 234 of which were parsimony-informative. Phylogenetic estimations were performed with maximum parsimony and maximum likelihood optimality criteria. In the most parsimonious and most likely reconstructions, the Bacidiaceae sensu Hafellner 1988 forms a monophyletic group and the Lecanoraceae sensu Hafellner a paraphyletic group. The genera Tephromela and Scoliciosporum appear to belong outside these families. However, the hypothesis that the Lecanoraceae sensu Hafellner is monophyletic cannot be rejected, as indicated by a Kishino-Hasegawa test. Three hypotheses were rejected by Kishino-Hasegawa tests, viz. (1) that the Lecanoraceae and Bacidiaceae together form a monophyletic group; (2) that both the Lecanoraceae (incl. Scoliciosporum ) and Bacidiaceae (incl. Tephromela ) are monophyletic; and (3) that the ascus apex anatomy reflects phylogeny. The suborder Lecanorineae is paraphyletic unless the Stereocaulaceae and Cladoniaceae are included. One or both of the Bacidia and Lecanora types of ascus have probably evolved at least twice.  相似文献   

4.
SSU nrDNA studies of two representatives of the lichenicolous genus Phacopsis revealed that they belong to the family Parmeliaceae (Lecanorales) and therefore represent lichenicolous lichens with an endokapylic thallus. Because they are the only lichenicolous taxa within this family, it is suggested that their transition from a foliose and/or fruticose precursor lichen might have been due to a unique (or rare) evolutionary one step event(s). Phylogenetic analyses of the ITS nrDNA of the type species of Phacopsis (P. vulpina) and Nesolechia (N. oxyspora = P. oxyspora) could neither confirm nor reject a monophyletic origin of these two Parmeliacean genera, as previously implied by their synonymization. However, it is considered premature to draw nomenclatorial consequences.  相似文献   

5.
The evolutionary relationships of the different groups of nematodes within the order Strongylida based on morphological data have been speculative and the subject of conjecture. In this paper, we present a multigene phylogenetic analysis, using sequence data of the 18S and 28S ribosomal RNA genes from representatives of all four suborders and seven superfamilies of the Strongylida, to test existing hypotheses proposed for the relationships of the suborders based on morphological data sets. The results obtained demonstrated that the Strongylida is a monophyletic assemblage, with only the Metastrongylina (but not the other suborders) forming a distinct monophyletic clade. We show that, in contrast to all previous hypotheses, one major lineage comprises taxa which occur exclusively in the pulmonary, circulatory or nervous systems of marsupial and eutherian mammals, whereas a second lineage comprises species occurring in the gastrointestinal tracts or perirenal tissues of vertebrates, or in the lungs of birds. The findings suggest that the predilection site of adult nematodes and host type reflect the evolutionary origin of the different taxonomic groups within the Strongylida.  相似文献   

6.
Unattached, nongeniculate, coralline algae or rhodoliths exhibit a range of morphological variability seemingly dependent on environmental factors. Rhodoliths have an extensive fossil record, and environmentally dependent characteristics make them potentially reliable paleoindicators. Species of the rhodolith‐forming genus Lithophyllum Philippi in Baja California Sur, Mexico were recently consolidated into one species. Under the new classification, L. margaritae (Hariot) Heydrich consists of several growth forms presumably reflecting local environmental conditions. We examined the genetic structure of four populations of this species using amplified fragment length polymorphisms (AFLP) to characterize the extent of genetic variation associated with foliose and fruticose growth forms. AFLP band sharing analysis revealed that foliose growth forms exhibited consistently higher intrapopulation similarities (0.75–0.85) than fruticose growth forms (similarity range, 0.55–0.67). This trend was also evident in comparisons of geographically isolated populations. These data indicate that the two morphologies are genetically distinct and that genetic exchange between foliose and fruticose growth forms of L. margaritae may be limited. Consequently, rhodolith growth forms appear to be the result of an interplay between both genetic makeup and environmental conditions.  相似文献   

7.
The resolving power and statistical support provided by two protein-coding (RPB1 and RPB2) and three ribosomal RNA-coding (nucSSU, nucLSU, and mitSSU) genes individually and in various combinations were investigated based on maximum likelihood bootstrap analyses on lichen-forming fungi from the class Lecanoromycetes (Ascomycota). Our results indicate that the optimal loci (single and combined) to use for molecular systematics of lichen-forming Ascomycota are protein-coding genes (RPB1 and RPB2). RPB1 and RPB2 genes individually were phylogenetically more efficient than all two- and three-locus combinations of ribosomal loci. The 3rd codon position of each of these two loci provided the most characters in support of phylogenetic relationships within the Lecanoromycetes. Of the three ribosomal loci we used in this study, mitSSU contributed the most to phylogenetic analyses when combined with RPB1 and RPB2. Except for the mitSSU, ribosomal genes were the most difficult to recover because they often contain many introns, resulting in PCR bias toward numerous and intronless co-extracted contaminant fungi (mainly Dothideomycetes, Chaetothyriomycetes, and Sordariomycetes in the Ascomycota, and members of the Basidiomycota), which inhabit lichen thalli. Maximum likelihood analysis on the combined five-locus data set for 82 members of the Lecanoromycetes provided a well resolved and well supported tree compared to existing phylogenies. We confirmed the monophyly of three recognized subclasses in the Lecanoromycetes, the Acarosporomycetidae, Ostropomycetidae, and Lecanoromycetideae; the latter delimited as monophyletic for the first time, with the exclusion of the family Umbilicariaceae and Hypocenomyce scalaris. The genus Candelariella (formerly in the Candelariaceae, currently a member of the Lecanoraceae) represents the first evolutionary split within the Lecanoromycetes, before the divergence of the Acarosporomycetidae. This study provides a foundation necessary to guide the selection of loci for future multilocus phylogenetic studies on lichen-forming and allied ascomycetes.  相似文献   

8.
Abstract:A cladistic analysis of the Physciaceae, based on morphological and chemical data, is presented. In the resulting phylogenetic reconstruction two major clades are formed, one containing the foliose genera (Anaptychia, Dirinaria, Heterodermia, Hyperphyscia, Physcia, Phaeophyscia,Physconia , Pyxine) and the fruticose Tornabea, and the other containing the remaining, mainly crustose genera. Rinodina appears as paraphyletic with representatives both at the base of the tree, at the same level as the two major clades and at the base of the crustose clade. Also Mobergia has a basal position. The characters used and their distribution in the phylogenetic trees are discussed as well as their significance for the identification of monophyletic groups. The history of the family is also briefly hinted at and characters of importance for the recognition of new genera are surveyed. Relevant publications and the variation in secondary chemistry are presented in tables.  相似文献   

9.
Keivany  Y.  Nelson  J. S. 《Journal of Ichthyology》2006,46(1):S84-S96
Phylogenetic relationships of Gasterosteiformes were studied using osteological examination of representatives of 11 families of gasterosteiform fishes, as ingroups, and 5 families of other smegmamorph fishes (Atheriniformes, Elassomatiformes, and Synbranchiformes), as outgroups. Based on phylogenetic analysis of 110 informative osteological characters, nine synapomorphies were found to unite all Gasterosteiformes and support was provided to the hypothesis that the order Gasterosteiformes (including Hypoptychidae and Indostomidae) is a monophyletic group. Furthermore, based on the synapomorphies provided for the subgroups, three suborders in Gasterosteiformes are recognized: Hypoptychoidei, Gasterosteoidei, and Syngnathoidei.  相似文献   

10.
The Lecanoromycetes includes most of the lichen-forming fungal species (> 13500) and is therefore one of the most diverse class of all Fungi in terms of phenotypic complexity. We report phylogenetic relationships within the Lecanoromycetes resulting from Bayesian and maximum likelihood analyses with complementary posterior probabilities and bootstrap support values based on three combined multilocus datasets using a supermatrix approach. Nine of 10 orders and 43 of 64 families currently recognized in Eriksson's classification of the Lecanoromycetes (Outline of Ascomycota--2006 Myconet 12:1-82) were represented in this sampling. Our analyses strongly support the Acarosporomycetidae and Ostropomycetidae as monophyletic, whereas the delimitation of the largest subclass, the Lecanoromycetidae, remains uncertain. Independent of future delimitation of the Lecanoromycetidae, the Rhizocarpaceae and Umbilicariaceae should be elevated to the ordinal level. This study shows that recent classifications include several nonmonophyletic taxa at different ranks that need to be recircumscribed. Our phylogenies confirm that ascus morphology cannot be applied consistently to shape the classification of lichen-forming fungi. The increasing amount of missing data associated with the progressive addition of taxa resulted in some cases in the expected loss of support, but we also observed an improvement in statistical support for many internodes. We conclude that a phylogenetic synthesis for a chosen taxonomic group should include a comprehensive assessment of phylogenetic confidence based on multiple estimates using different methods and on a progressive taxon sampling with an increasing number of taxa, even if it involves an increasing amount of missing data.  相似文献   

11.
Arbuscular mycorrhizal (AM) fungi form a widespread and ecologically important symbiosis with plants in the land ecosystem. The phylogeny of the largest presently accepted genus, Glomus, of the monogeneric family Glomaceae (Glomales; AM fungi) was analyzed. Phylogenetic trees were computed from nearly full-length SSU rRNA gene sequences of 30 isolates, and show that "Glomus" is not monophyletic. Even after the very recent separation of Archaeospora and Paraglomus from "Glomus," the genus further separates into two suprageneric clades. One of them diverges further into two subclades, differing by phylogenetic distances equivalent to family level. The other, comprising Glomus versiforme, G. spurcum, and a species morphologically similar to G. etunicatum, is not closely related to the Glomaceae, but clusters together with the Acaulosporaceae and Gigasporaceae in a monophyletic clade. Based on the molecular evidence, a new family, separate from the Glomaceae, is required to accommodate this group of organisms, initially named Diversisporaceae fam. ined. The current taxonomic concept of the recently erected family Archaeosporaceae also requires future emendation, because Geosiphon pyriformis (Geosiphonaceae) renders Archaeospora, the sole genus formally included in this family, paraphyletic. The suborders Gigasporineae and Glominaeae are not congruent with the natural phylogeny of the AM fungi. Our data necessitate a general reexamination of the generic concepts within the Glomales. In addition to the new family structure hypothesized herein, establishment of at least three new genera will be necessary in the future.  相似文献   

12.
Within the last decade, molecular methods have revealed the relationships in many groups of lichenized Ascomycetes. However, the published phylogenies were often contradictory with respect to higher taxonomic levels. To achieve a more convincing overall picture of phylogenetic relationships of and within the Lecanoromycetes, we set up an alignment of all publicly available SSU nrDNA sequences of the Pezizomycotina, discarded those of insufficient quality, and added 21 newly obtained sequences representing groups that were not or under-represented so far. The alignment of 635 taxa and a subset of 166 Lecanoromycetes were analysed with different phylogenetic algorithms. The best phylogenetic trees, with respect to length, resolution, and support, were obtained with the Parsimony Ratchet method and DNAPARS (Phylip). According to these results, the Lecanoromycetes were subdivided into eight monophyletic clades representing the following orders: Acarosporales ad. int., Agyriales, Baeomycetales, Gyalectales, Icmadophilales ad. int., Lecanorales, Ostropales, and Pertusariales. These clades are distributed in two monophyletic groups corresponding to the two different types of ascomatal ontogeny. The taxa of the Lecanorales-clade differ from the other orders by the absence of a primary cyanobiont and of phycobionts of the genera Coccomyxa and Trentepohlia, in combination with the presence of an amyloid reaction of the ascus tips (lacking amyloid flanks). The Lecanorales-clade is subdivided into nine groups which are treated here at the level of suborders: Lecideineae, Teloschistineae, Physciineae, Bacidiineae ad int., Sphaerophorineae ad int., Rhizocarpineae ad int., Psorineae ad int., Cladoniineae, and Lecanorineae. The amyloid reaction pattern of the ascus apex correlates with this grouping at suborder rank. Peltigerales were excluded from the Lecanorales but included in the Lecanoromycetes based on morpho-anatomical features. The Lichinales were excluded from the Lecanoromycetes, while the position of the Umbilicariaceae remains unclear.  相似文献   

13.
The phylogenetic relationships within the family Roccellaceae (lichen fungi) were investigated. Seventy‐two nucleotide sequences of the nuclear large subunit ribosomal RNA gene (LSU) and the second largest RNA polymerase subunit (RPB2) were newly obtained from 48 taxa. The family Roccellaceae was highly supported as monophyletic. The fruticose growth habit has evolved or been lost multiple times in the family and several times even within genera. In Roccellina with 31 species it has evolved three times and in Pentagenella with three species it has been lost once. The genera Roccella and Roccellina were found paraphyletic as two Roccella species nested with Roccellina. The non‐fruticose genus Roccellina was emended to include these two fruticose species as well as the monotypic, fruticose genus Roccellaria. As a result of the phylogenetic analyses six new nomenclatural combinations were made: Pentagenella corallina (Follm. and Peine) Tehler, Pentagenella ligulata (Peine and Follm.) Tehler, Roccellina cumingiana (Gay) Tehler, Roccellina hypomecha (Ach.) Tehler, Roccellina mollis (Hampe) Tehler, Roccellina portentosa (Mont. ex Gay) Tehler. Roccella is mainly distributed on the northern hemisphere while Roccellina is mainly distributed on the southern hemisphere. The Roccella species present on the Galapagos Islands are related to those in California and the northern hemisphere not, as was generally believed, to those in Chile and the southern hemisphere. The present data set may indicate that Bayesian analysis can give misleading topologies and overestimated posterior support values when insufficiently sampled taxa are included in an otherwise well sampled data set. © The Willi Hennig Society 2007.  相似文献   

14.
Lateral growth from the apex of vertical structures is widespread in cladoniiform lichens. In the family Cladoniaceae, it is accomplished through a developmental shift in the meristem, in which growth orientation changes from isotropous to anisotropous. In anisotropous development, the more or less constant relationship among the axial, radial, and circumferential planes of growth is altered during ontogeny. The result is pronounced lateral elongation of the apical meristem, a departure from the isotropous body plan of early ontogeny. Development that favors radial and circumferential growth over axial growth is an innovation that provides ontogenetic flexibility but which also entails the loss of control from a single centralized meristem to one or more meristems. A shift from the constraints of symmetry to the risks and potential of asymmetry and a subsequent diversity of heritable thallus forms reflect evolutionary processes in the Cladoniaceae. Similar morphogenetic activities, which are apparently highly conserved, are shared by species that are presumably only distantly related.  相似文献   

15.
Helicosporous fungi form elegant, coiled, and multicellular mitotic spores (conidia). In this paper, we investigate the phylogenetic relationships among helicosporous fungi in the asexual genera Helicoma, Helicomyces, Helicosporium, Helicodendron, Helicoon, and in the sexual genus Tubeufia (Tubeufiaceae, Dothideomycetes, and Ascomycota). We generated ribosomal small subunit and partial large subunit sequences from 39 fungal cultures. These and related sequences from GenBank were analyzed using parsimony, likelihood, and Bayesian analysis. Results showed that helicosporous species arose convergently from six lineages of fungi in the Ascomycota. The Tubeufiaceae s. str. formed a strongly supported monophyletic lineage comprising most species from Helicoma, Helicomyces, and Helicosporium. However, within the Tubeufiaceae, none of the asexual genera were monophyletic. Traditional generic characters, such as whether conidiophores were conspicuous or reduced, the thickness of the conidial filament, and whether or not conidia were hygroscopic, were more useful for species delimitation than for predicting higher level relationships. In spite of their distinctive, barrel-shaped spores, Helicoon species were polyphyletic and had evolved in different ascomycete orders. Helicodendron appeared to be polyphyletic although most representatives occurred within Leotiomycetes. We speculate that some of the convergent spore forms may represent adaptation to dispersal in aquatic environments.  相似文献   

16.

Background and Aims

The integrity and evolution of lichen symbioses depend on a fine-tuned combination of algal and fungal genotypes. Geographically widespread species complexes of lichenized fungi can occur in habitats with slightly varying ecological conditions, and it remains unclear how this variation correlates with symbiont selectivity patterns in lichens. In an attempt to address this question, >300 samples were taken of the globally distributed and ecologically variable lichen-forming species complex Tephromela atra, together with closely allied species, in order to study genetic diversity and the selectivity patterns of their photobionts.

Methods

Lichen thalli of T. atra and of closely related species T. grumosa, T. nashii and T. atrocaesia were collected from six continents, across 24 countries and 62 localities representing a wide range of habitats. Analyses of genetic diversity and phylogenetic relationships were carried out both for photobionts amplified directly from the lichen thalli and from those isolated in axenic cultures. Morphological and anatomical traits were studied with light and transmission electron microscopy in the isolated algal strains.

Key Results

Tephromela fungal species were found to associate with 12 lineages of Trebouxia. Five new clades demonstrate the still-unrecognized genetic diversity of lichen algae. Culturable, undescribed lineages were also characterized by phenotypic traits. Strong selectivity of the mycobionts for the photobionts was observed in six monophyletic Tephromela clades. Seven Trebouxia lineages were detected in the poorly resolved lineage T. atra sensu lato, where co-occurrence of multiple photobiont lineages in single thalli was repeatedly observed.

Conclusions

Low selectivity apparently allows widespread lichen-forming fungi to establish successful symbioses with locally adapted photobionts in a broader range of habitats. This flexibility might correlate with both lower phylogenetic resolution and evolutionary divergence in species complexes of crustose lichen-forming fungi.  相似文献   

17.
Abstract:A phylogenetic hypothesis based on nuclear ITS sequence data is presented for the familyPhysciaceae , based on various representatives of foliose and fruticose groups and a number of species selected from the crustose genera Rinodina and Buellia s.l. The analysis supports the monophyly of the Physcia - and theBuellia -groups. This is in agreement with existing morphological evidence, particularly ascus characters. ThePhyscia group in the analysis includes the genera Anaptychia, Heterodermia, Hyperphyscia,Mobergia , Phaeophyscia, Phaeorrhiza, Physcia, Physconia, Rinodina, andRinodinella , while the Buellia group includes Amandinea, Buellia and Diploicia. The genera Physcia, Phaeophyscia, Phaeorrhiza and Rinodinella were well supported as monophyletic groups. The support for Physconia is low. Rinodina and Buellia are not supported as monophyletic genera. In agreement with ascus and ascospore characters, Buellia lindingeri is placed within the Rinodina group, close to R. lecanorina. The genus Amandinea as currently circumscribed was not supported as a monophyletic group. The analysis confirms results from other lichen families that foliose members have evolved more than once from crustose lichens.Rinodina and Rinodinella species without chemical compounds in their thalli form the sister group toPhaeophyscia , and both groups form a monophyletic assemblage. A more detailed analysis of the Physcia group is presented. Whilst several of the foliose genera were well supported, there is only poor support for traditionally accepted crustose genera. The taxonomic implications of these findings are discussed.  相似文献   

18.
Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single‐copy nuclear protein‐coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum‐likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end‐Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family‐level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species‐rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species‐poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates – especially plants, but also including fungi, wood and leaf litter – but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well‐resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life.  相似文献   

19.
20.
Many black meristematic fungi persist on rock surfaces—hostile and exposed habitats where high doses of radiation and periods of desiccation alternate with rain and temperature extremes. To cope with these extremes, rock-inhabiting black fungi show phenotypic plasticity and produce melanin as cell wall pigments. The rather slow growth rate seems to be an additional prerequisite to oligotrophic conditions. At least some of these fungi can undergo facultative, lichen-like associations with photoautotrophs. Certain genera presenting different lifestyles are phylogenetic related among the superclass Dothideomyceta. In this paper, we focus on the genus Lichenothelia, which includes border-line lichens, that is, associations of melanised fungi with algae without forming proper lichen thalli. We provide a first phylogenetic hypothesis to show that Lichenothelia belongs to the superclass Dothideomyceta. Further, culture experiments revealed the presence of co-occurring fungi in Lichenothelia thalli. These fungi are related to plant pathogenic fungi (Mycosphaerellaceae) and to other rock-inhabiting lineages (Teratosphaeriaceae). The Lichenothelia thallus-forming fungi represent therefore consortia of different black fungal strains. Our results suggest a common link between rock-inhabiting meristematic and lichen-forming lifestyles of ascomycetous fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号