首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Chihuahua spruce (Picea chihuahuana Martínez) is a montane subtropical conifer endemic to the Sierra Madre Occidental in northwestern México. Range-wide variation was investigated using maternally inherited mitochondrial (mtDNA) and paternally inherited chloroplast (cpDNA) DNA markers. Among the 16 mtDNA regions analysed, only two mitotypes were detected, while the study of six cpDNA microsatellite markers revealed eight different chlorotypes. The average cpDNA diversity (H = 0.415) was low but much higher than that for mtDNA (H = 0). The distribution of mitotypes revealed two clear nonoverlapping areas (G(ST) = N(ST) = 1), one including northern populations and the second one including the southern and central stands, suggesting that these two regions may represent different ancestral populations. The cpDNA markers showed lower population differentiation (G(ST) = 0.362; R(ST) = 0.230), implying that the two ancestral populations continued to exchange pollen after their initial geographic separation. A lack of a phylogeographic structure was revealed by different spatial analyses of cpDNA (G(ST) > R(ST); and samova), and reduced cpDNA gene flow was noted among populations (Nm = 0.873). Some stands deviated significantly from the mutation-drift equilibrium, suggesting recent bottlenecks. Altogether, these various trends are consistent with the hypothesis of a population collapse during the Holocene warming and suggest that most of the modern P. chihuahuana populations are now effectively isolated with their genetic diversity essentially modelled by genetic drift. The conservation efforts should focus on most southern populations and on the northern and central stands exhibiting high levels of genetic diversity. Additional mtDNA sequence analysis confirmed that P. martinezii (Patterson) is not conspecific with P. chihuahuana, and thus deserves separate conservation efforts.  相似文献   

2.
Jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta var. latifolia) are two North American boreal hard pines that hybridize in their zone of contact in western Canada. The main objective of this study was to characterize their patterns of introgression resulting from past and recent gene flow, using cytoplasmic markers having maternal or paternal inheritance. Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) diversity was assessed in allopatric populations of each species and in stands from the current zone of contact containing morphological hybrids. Cluster analyses were used to identify genetic discontinuities among groups of populations. A canonical analysis was also conducted to detect putative associations among cytoplasmic DNA variation, tree morphology, and site ecological features. MtDNA introgression was extensive and asymmetric: it was detected in P. banksiana populations from the hybrid zone and from allopatric areas, but not in P. contorta populations. Very weak cpDNA introgression was observed, and only in P. banksiana populations. The mtDNA introgression pattern indicated that central Canada was first colonized by migrants from a P. contorta glacial population located west of the Rocky Mountains, before being replaced by P. banksiana migrating westward during the Holocene. In contrast, extensive pollen gene flow would have erased the cpDNA traces of this ancient presence of P. contorta. Additional evidence for this process was provided by the results of canonical analysis, which indicated that the current cpDNA background of trees reflected recent pollen gene flow from the surrounding dominant species rather than historical events that took place during the postglacial colonization.  相似文献   

3.
Recent work has suggested that rates of introgression should be inversely related to levels of gene flow because introgressed populations cannot be 'rescued' by intraspecific gene flow if it is too low. Mitochondrial and chloroplast DNA (mtDNA and cpDNA) experience very different levels of gene flow in conifers due to their contrasted maternal and paternal modes of transmission, hence the prediction that mtDNA should introgress more readily than cpDNA in this group. Here, we use sequence data from both mtDNA and cpDNA to test this hypothesis in a group of closely related spruces species, the Picea asperata complex from China. Nine mitochondrial and nine chloroplast haplotypes were recovered from 459 individuals in 46 natural populations belonging to five species of the Picea asperata complex. Low variation was found in the two mtDNA introns along with a high level of differentiation among populations ( G ST = 0.90). In contrast, we detected higher variation and lower differentiation among populations at cpDNA markers ( G ST = 0.56), a trend shared by most conifer species studied so far. We found that cpDNA variation, although far from being fully diagnostic, is more species-specific than mtDNA variation: four groups of populations were identified using cpDNA markers, all of them related to species or groups of species, whereas for mtDNA, geographical variation prevails over species differentiation. The literature suggests that mtDNA haplotypes are often shared among related conifer species, whereas cpDNA haplotypes are more species-specific. Hence, increased intraspecific gene flow appears to decrease differentiation within species but not among species.  相似文献   

4.
Association between chloroplast and mitochondrial lineages in oaks   总被引:3,自引:1,他引:2  
Patterns of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) variation were studied in 378 populations of oak trees sampled throughout the southern half of France. Six cpDNA haplotypes detected in a previous European survey and three new cpDNA haplotypes were found in this region. Two mitochondrial polymorphisms detected earlier by restriction analysis of PCR-amplified fragments alone, or in combination with single-strand conformation polymorphism (SSCP), were compared with the cpDNA data. Sequencing revealed the nature of the two mitochondrial mutations: a single-base substitution and a 4-bp inversion associated with a 22-bp hairpin secondary structure. The single-base substitution was then analyzed by allele-specific amplification. Results for the two cytoplasmic genomes were combined, which allowed the identification of 12 cpDNA-mtDNA haplotypes. The 4-bp mtDNA inversion has appeared independently in different cpDNA lineages. Given the peculiar nature of this mtDNA mutation, we suggest that intramolecular recombination leading to repeated inversions of the 4-bp sequence (rather than paternal leakage of one of the two genomes) is responsible for this pattern. Furthermore, the geographic locations of the unusual cpDNA-mtDNA associations (due to the inversion) usually do not match the zones of contact between divergent haplotypes. In addition, in southern France, the groupings of populations based on the mtDNA substitution were strictly congruent with those based on cpDNA. Because many populations that are polymorphic for both cpDNA and mtDNA have remained in contact since postglacial recolonization in this area without producing any new combination of cytoplasms involving the mitochondrial substitution, we conclude that paternal leakage is not a significant factor at this timescale. Such results confirm and expand our earlier conclusions based on controlled crosses.   相似文献   

5.
A detailed survey of mitochondrial and chloroplast diversity in eight populations of Silene vulgaris from Central Europe was conducted for comparison with previously published data on diversity from S. vulgaris populations in the introduced range. Mitochondrial DNA (mtDNA) variation around the coxI gene was assessed with Southern blotting/restriction fragment length polymorphism methods. Chloroplast variation was assessed by sequencing the intergenic spacer separating the trnH and psbA genes. Thirty mtDNA haplotypes and 24 chloroplast DNA (cpDNA) haplotypes were found within 86 individuals. The overall genetic diversity h (0.941 for mitochondrial, and 0.893 for chloroplast markers) and within-population diversity were higher than reported in previous population studies of S. vulgaris in the USA and Europe. The frequency of private alleles was surprisingly high - more than 90% for both kinds of markers. Most of our populations were large and located in relatively undisturbed meadows, whereas surveys in Virginia consisted of smaller roadside populations. The slow rate of population turnover in European populations is discussed as a factor responsible for the relatively high diversity of S. vulgaris in undisturbed areas of its native range. Association between mtDNA and cpDNA haplotypes was also demonstrated. Finally, gender and mtDNA haplotype were associated in the Alps populations, where females were very rare.  相似文献   

6.
Chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) were studied in 24 populations of Prunus spinosa sampled across Europe. The cpDNA and mtDNA fragments were amplified using universal primers and subsequently digested with restriction enzymes to obtain the polymorphisms. Combinations of all the polymorphisms resulted in 33 cpDNA haplotypes and two mtDNA haplotypes. Strict association between the cpDNA haplotypes and the mtDNA haplotypes was detected in most cases, indicating conjoint inheritance of the two genomes. The most frequent and abundant cpDNA haplotype (C20; frequency, 51 %) is always associated with the more frequent and abundant mtDNA haplotype (M1; frequency, 84 %). All but two of the cpDNA haplotypes associated with the less frequent mtDNA haplotype (M2) are private haplotypes. These private haplotypes are phylogenetically related but geographically unrelated. They form a separate cluster on the minimum-length spanning tree.  相似文献   

7.
The phylogeographic structure and postglacial history of balsam fir (Abies balsamea), a transcontinental North American boreal conifer, was inferred using mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) markers. Genetic structure among 107 populations (mtDNA data) and 75 populations (cpDNA data) was analyzed using Bayesian and genetic distance approaches. Population differentiation was high for mtDNA (dispersed by seeds only), but also for cpDNA (dispersed by seeds and pollen), indicating that pollen gene flow is more restricted in balsam fir than in other boreal conifers. Low cpDNA gene flow in balsam fir may relate to low pollen production due to the inherent biology of the species and populations being decimated by recurrent spruce budworm epidemics, and/or to low dispersal of pollen grains due to their peculiar structural properties. Accordingly, a phylogeographic structure was detected using both mtDNA and cpDNA markers and population structure analyses supported the existence of at least five genetically distinct glacial lineages in central and eastern North America. Four of these would originate from glacial refugia located south of the Laurentide ice sheet, while the last one would have persisted in the northern Labrador region. As expected due to reduced pollen-mediated gene flow, congruence between the geographic distribution of mtDNA and cpDNA lineages was higher than in other North American conifers. However, concordance was not complete, reflecting that restricted but nonetheless detectable cpDNA gene flow among glacial lineages occurred during the Holocene. As a result, new cpDNA and mtDNA genome combinations indicative of cytoplasmic genome capture were observed.  相似文献   

8.
Two hypotheses have been proposed to explain the occurrence of hybrid zones between red-flowered Ipomopsis aggregata and white-flowered I. tenuituba . Either local adaptation to hummingbird and hawkmoth pollinators has given rise to sympatric (or parapatric) divergence of flower colour and morphology (primary intergradation at hybrid zones), or alternatively two previously allopatric species are coming into contact at several geographical areas of secondary intergradation. We examined restriction site patterns in nuclear DNA (nrDNA), chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) from populations of I. aggregata and I. tenuituba representing seven zones of sympatry. No variation was detected in a 350-bp fragment of mtDNA and uninformative levels of variation were observed for nrDNA. We detected 22 potentially informative restriction site polymorphisms in cpDNA, all of which united geographical areas containing populations of both species. We detected no informative species-specific markers. Studies of other species (e.g. oaks) have detected similar species-independent geographical structure of cpDNA. However, in these cases secondary interegradation could be inferred from species-specific nuclear alleles. The pattern in Ipomopsis is consistent with both primary intergradation (independent speciation in each area of sympatry) or secondary intergradation involving complete cytoplasmic replacement. Thus, additional data are needed to explain the origin of hybrid zones in Ipomopsis .  相似文献   

9.
The chloroplast (cp) DNA type and mitochondrial (mt) DNA composition of 17 somatic hybrids between a cytoplasmic albino tomato and monoploid potato (A7-hybrids) and 18 somatic hybrids between a nitrate reductase-deficient tomato and monoploid potato (C7-hybrids) were analyzed. Thirteen A7-hybrids and 9 C7-hybrids were triploids (with one potato genome); the other hybrids were tetraploid. As expected, all A7-hybrids contained potato cpDNA. Of the C7-hybrids 7 had tomato cpDNA, 10 had potato cpDNA and 1 hybrid contained both tomato and potato cpDNA. The mtDNA composition of the hybrids was analyzed by hybridization of Southern blots with four mtDNA-specific probes. The mtDNAs in the hybrids had segregated independently from the cpDNAs. Nuclear DNA composition (i.e. one or two potato genomes) did not influence the chloroplast type in the C7-hybrids, nor the mtDNA composition of A7- or C7-hybrids. From the cosegregation of specific mtDNA fragments we inferred that both tomato and potato mtDNAs probably have a coxII gene closely linked to 18S+5S rRNA genes. In tomato, atpA, and in potato, atp6 seems to be linked to these mtDNA genes.  相似文献   

10.
Replication of Arabidopsis nuclear, mitochondrial and chloroplast DNA (ncDNA, mtDNA, cpDNA) was assayed by measuring respective changes in copies per leaf, employing quantitative PCR (QPCR) analysis with genome-specific primer pairs. All three genomes showed parallel increases during growth of cotyledons and 5th leaves in planta, maintaining approximately 13 mtDNA copies and 280 cpDNA copies per haploid nuclear genome. Detached 5th leaves, which showed good growth and DNA replication on agar plates, were irradiated at (DNA-effective) UV-B fluences of 1.3-5.0 kJ m-2 and incubated under blue (photorepair-active) plus gold light or gold light only. Under blue light, replication of all genomes after all UV fluences was approximately as efficient as replication in unirradiated leaves. UV-irradiated leaves showed little growth under gold light only; 5 kJ m-2 stopped replication of all three genomes, 2.5 kJ m-2 stopped only cpDNA replication, and 1.3 kJ m-2 only delayed cpDNA replication. Immunoassays showed that 5 kJ m-2 induced about 1.2 cyclobutane pyrimidine dimers and 0.1 [6-4]photoproducts per kbp of bulk DNA, and that both photoproducts were completely removed during 2-3 days under blue light, suggesting efficient photorepair of at least ncDNA and cpDNA. The evidence for efficient photorepair of organellar DNA contrasts with previous studies of irradiated 5-day-old seedlings, and with the apparent absence of Arabidopsis photolyases bearing transit peptides.  相似文献   

11.
The structure and evolution of the plant mitochondrial genome may allow recurrent appearance of the same mitochondrial variants in different populations. Whether the same mitochondrial variant is distributed by migration or appears recurrently by mutation (creating homoplasy) in different populations is an important question with regard to the use of these markers for population genetic analyses. The genetic association observed between chloroplasts and mitochondria (i.e. two maternally inherited cytoplasmic genomes) may indicate whether or not homoplasy occurs in the mitochondrial genome. Four-hundred and fourteen individuals sampled in wild populations of beets from France and Spain were screened for their mitochondrial and chloroplast polymorphisms. Mitochondrial DNA (mtDNA) polymorphism was investigated with restriction fragment length polymorphism (RFLP) and chloroplast DNA (cpDNA) polymorphism was investigated with polymerase chain reaction PCR-RFLP, using universal primers for the amplification. Twenty and 13 variants for mtDNA and cpDNA were observed, respectively. Most exhibited a widespread geographical distribution. As a very strong linkage disequilibrium was estimated between mtDNA and cpDNA haplotypes, a high rate of recurrent mutation was excluded for the mitochondrial genome of beets. Identical mitochondrial variants found in populations of different regions probably occurred as a result of migration. We concluded from this study that mtDNA is a tool as valuable as cpDNA when a maternal marker is needed for population genetics analyses in beet on a large regional scale.  相似文献   

12.
? Premise of the study: The genetic structure of jack pine (Pinus banksiana Lamb.), a North American boreal conifer with large longitudinal distribution, was investigated to test for the possible existence of a genetically distinct lineage in the Maritimes region in northeastern North America, which could be indicative of a mid-latitude coastal refuge during the last glaciation. ? Methods: One maternally inherited mitochondrial DNA (mtDNA) minisatellite marker and four paternally inherited chloroplast DNA (cpDNA) microsatellite markers were used to assess the range-wide geographical structure of jack pine populations with particular focus on northeastern North America. ? Key results: The populations from the Maritimes region presented a unique mtDNA background characterized by very low diversity and the preponderance of a distinctive mitotype. The distribution of cpDNA diversity was not spatially structured, though three chlorotypes were restricted to the east. ? Conclusions: MtDNA data suggest that populations from the Maritimes region derive from a genetically depauperated north-coastal refugium. Contrastingly, the much higher geographical uniformity observed for cpDNA variation indicates that gene flow by pollen had been much more effective than seed gene flow at homogenizing population structure.  相似文献   

13.
Range-wide genetic variation of Korean pine (Pinus koraiensis) was assessed using maternally inherited mtDNA and paternally inherited cpDNA for 16 natural populations throughout northeast Asia in order to study its phylogeographical history during the Quaternary. The cpDNA variation indicated that there was no difference between populations on the Asian continent and those in the Japanese archipelago. In contrast, the mtDNA variation indicated that there was significant difference between the populations from the two regions, with each region having a different lineage. The continental populations exhibited no diversity in the mtDNA examined despite the species’ current extensive range and large populations. Conversely, while the Korean pine is rare in Japan, the Japanese populations exhibited greater levels of mtDNA diversity (H T?=?0.502). The higher mtDNA diversity and evidence from numerous Korean pine macrofossil remains dated to the Pleistocene and recovered various sites in Japan suggest that the Japanese archipelago once served as a refugium to a much larger Korean pine population with a more extensive range than is the case today. The presence of the single mtDNA haplotype across the Asian continent suggests that the present widespread populations could have expanded from a single refugium population after the last glacial periods.  相似文献   

14.
Previous papers have dealt with olive chloroplastic DNA (cpDNA) variation revealed using several methods (RFLPs, PCR-RFLPs and microsatellites) and have led to different conclusions. This paper aims to reconsider these divergences. A Southern approach was applied to reveal polymorphism. We used chloroplast DNA of Phillyrea media as a probe. Based on these data, only four chlorotypes were identified in the olive complex. The number of detected lineages was lower than reported in the literature using a direct cpDNA RFLP approach, and was insufficient to distinguish the North African subspecies europaea, maroccana, guanchica and laperrinei. Furthermore, one individual considered belonging to the subspecies laperrinei was questionable. Using other cpDNA and mitochondrial DNA (mtDNA) polymorphisms - based on PCR and RFLP methods, respectively - we showed that this individual displays the cytoplasmic lineage CE1-ME1 characteristic of most Eastern mediterranean cultivars and of Olea europaea subsp. laperrinei from Hoggar. However, based on RAPDs, this individual appeared as mislabelled and probably corresponded to a Mediterranean cultivar or a feral form. In addition, we checked O. e. subsp. laperrinei herbarium samples using two cpDNA microsatellites, which revealed polymorphisms. These also supported that both populations from Niger and Algeria displayed a chlorotype related to CE1. Consequently, based on cpDNA, the relationships of O. e. subsp. laperrinei from Hoggar with a Mediterranean lineage appeared well supported, whereas the South West Moroccan and Macaronesian olives appeared in a different clade using both mtDNA and cpDNA polymorphisms. We conclude that methods based on PCR reveal more polymorphisms in the cpDNA and lead to more-reliable results that the classical RFLP method.  相似文献   

15.
Restriction enzyme analysis of ribosomal DNA (rDNA) and chloroplast DNA (cpDNA) is used to assess the relative contribution of hybridization and mutation as sources of genotypic variation in weedy asexual dandelions, with focus on the dandelion flora of North America. Of 318 North American dandelions surveyed, 145 rDNA-cpDNA clones are detected. The combined rDNA-cpDNA genotypes show that most of the polymorphic rDNA and cpDNA restriction sites or lengths in these plants are also present in weedy asexual dandelions collected from natural populations in Europe and in asexual and diploid taxa (microspecies) chosen to represent diverse Eurasian members of the genus. However, of 222 combined rDNA-cpDNA genotypes found in 427 asexual plants surveyed, only 9 genotypes are found in both North American and Eurasian dandelions. Two rDNA and three cpDNA characters are unique to individual plants in North America and are consistent with mutational origins of genotypic variation in asexual lineages. But the array of genotypic diversity, characterized by different combinations of the rDNA and cpDNA characters, show that multiple hybridization events are a more important source of genotypic variation than mutation in the asexual polyploids. The rDNA and cpDNA data also indicate polyphyletic origin of several asexual Taraxacum taxa.  相似文献   

16.
Geographic patterns of genetic variation in chlorolast (cpDNA) and nuclear ribosomal (nrDNA) DNA were examined to test the hypothesis of hybridization between Juniperus osteosperma and Juniperus occidentalis in the Great Basin of western Nevada. Noncoding DNA from the trnL-trnF intergenic spacer and the trnL intron of the chloroplast genome was sequenced from seven populations of J. osteosperma and four populations of J. occidentalis sampled over a large proportion of their respective ranges. An adenine nucleotide at position 436 in the aligned sequence and within a Tru 9I restriction site was found to be present in individuals of J. osteosperma sampled from western Colorado and central Utah, but absent in sequences of J. osteosperma sampled from central and western Nevada and all sequences of J. occidentalis. Two hundred fourteen individuals from 34 populations of J. osteosperma and J. occidentalis were then screened for cpDNA haplotype by Tru 9I digestion of the trnL-trnF polymerase chain reaction (PCR) product. Two cpDNA haplotypes were evident, each consisting of restriction fragment profiles that differed solely with respect to the presence or absence of the Tru 9I site encompassing the adenine nucleotide at position 436. One of these haplotypes was monomorphic in J. occidentalis and exhibited a decreasing frequency in J. osteosperma with increasing geographic distance from J. occidentalis in west-central Nevada. Geographic patterns in nuclear ribosomal DNA (nrDNA) variation were examined by restriction fragment analysis and, although spatially more restricted, exhibited patterns of clinal variation similar to those observed in cpDNA haplotype. Genetic relationships based on DNA sequences and geographic patterns of genetic variation in chloroplast and nuclear ribosomal DNA are consistent with morphology in suggesting interspecific gene flow between J. occidentalis and J. osteosperma.  相似文献   

17.
Organelle inheritance in intergeneric hybrids of Festuca pratensis and Lolium perenne was investigated by restriction enzyme and Southern blot analyses of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA). All F1 hybrids exhibited maternal inheritance of both cpDNA and mtDNA. However, examination of backcross hybrids, obtained by backcrossing the intergeneric F1 hybrids to L. Perenne, indicated that both uniparental maternal organelle inheritance and uniparental paternal organelle inheritance can occur in different backcross hybrids.  相似文献   

18.
Summary Alfalfa protoclones were regenerated from the mesophyll protoplasts of two cloned source plants (parents), RS-K1 and RS-K2, initiated from Regen S seed. Because of the high frequency of karyotypic upset previously observed in these plants, chloroplast DNAs (cpDNA) from 23 protoclones and mitochondrial DNAs (mtDNA) from 20 protoclones were examined by restriction endonuclease analysis in order to assess recombination in their cytoplasmic genomes. Seven and four endonucleases were separately used for cpDNA and mtDNA analysis, respectively. Data were consistent with no, or a low frequency of, major sequence rearrangements in either the chloroplast or the mitochondrial genomes as a result of protocloning. However, two types of cpDNA were detected in the 23 protoclones, with only one protoclone possessing the cpDNA type of the cloned parental populations sampled. Possible explanations include a preferential selection during protocloning for one of two parental cpDNA types, an in planta sorting out of cpDNA types in the parental material or both.  相似文献   

19.
Restriction site variation in chloroplast DNA (cpDNA) was surveyed to analyze population dynamics in Liriodendron tulipifera L., a woody angiosperm found in eastern North America. Two cpDNA haplotypes, differing by the presence or absence of five restriction site changes (nucleotide sequence divergence estimated as approximately 0.15%) are geographically structured; 61 widespread populations possess the “northern” haplotype and three isolated populations of central Florida possess the “southern” haplotype. This geographic break in cpDNA distribution corresponds to patterns of geographic distribution revealed by a previous survey of allozyme variation, with the exception that analyses of allozyme data further divided the populations containing the northern cpDNA haplotype into two groups, a widespread upland group and a coastal intermediate group. Analyses of these two independent data sets together support the hypothesis that L. tulipifera survived the glacial advances of the Pleistocene in two distinct refugia, possibly as different taxa, and the intermediate coastal group was putatively formed from recent hybridizations between these entities.  相似文献   

20.
Summary Chloroplast DNA (cpDNA) variability of 60 taxa of the genus Brassica and allied genera comprising 50 species was studied. RFLPs for seven enzymes were generated and F values were estimated from five frequently cutting enzymes. Phenetic clusterings indicated a clear division of Brassica coenospecies into two distinct lineages referred to as the Brassica and Sinapis lineages. Two unexplored genera, Diplotaxis and Erucastrum, also exhibited two lineages in addition to the genera Brassica and Sinapis. This finding is inconsistent with the existing taxonomic classification based on morphology. Mitochondrial DNA (mtDNA) variability studied from EcoRI RFLP patterns, by hybridizing total DNA with four cosmid clones containing non-overlapping mtDNA fragments, did not show any congruence with cpDNA variation patterns. However, at the cytodeme level, the patterns of genetic divergence suggested by the cpDNA data could be correlated with mtDNA variation. In the Brassica lineage, Diplotaxis viminea was identified as the female parent of the allotetraploid D. muralis. The chloroplast DNAs of Erucastrum strigosum and Er. abyssinicum were found to be very closely related. In the Sinapis lineage, Brassica maurorum was found to be the diploid progenitor of autotetraploid B. cossoneana. B. amplexicaulis showed a very different cpDNA pattern from other members of the subtribe. Brassica adpressa was closest to Erucastrum laevigatum and could be the diploid progenitor of autotetraploid Er. laevigatum. Based on the close similarity of the cpDNA pattern of Diplotaxis siifolia with that of D. assurgens, we have proposed the retention of this species in the genus Diplotaxis. The taxonomic positions of some other species have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号