首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
These studies examined the structural specificity for guanine nucleotide-facilitated hormonal activation and guanine nucleotide stabilization of cardiac adenylate cyclase. 1. The phosphonate analogues of GTP, p[CH(2)]ppG (guanosine 5'-[betagamma-methylene]-triphosphate) and pp[CH(2)]pG (guanosine 5'-[alphabeta-methylene]triphosphate), were the most effective activators of adenylate cyclase. Other nucleotides producing significant activation (P<0.01) were, in decreasing order of activation: ITP, GDP, GMP, GTP, XTP, CTP, p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate), dGTP and 2'-O-methyl-GTP. Guanosine, cyclic GMP, UTP and ppppG (guanosine tetraphosphate) had no effect, and 7-methyl-GTP caused a decrease in the activity. 2. Preincubation of membranes at 37 degrees C for 15min before assay at 24 degrees C produced an 80% decrease in adenylate cyclase activity, and preincubation with p[CH(2)]ppG and pp[CH(2)]pG protected and resulted in a net increase in activity. Other nucleotides that completely or partially preserved activity in decreasing order of effectiveness were p[NH]ppG, GDP, GTP, dGTP, ITP, ppppG, 2'-O-methyl-GTP, GMP, CTP and XTP. Several compounds had no effect, including guanosine, cyclic GMP and UTP, whereas preincubation with 7-methyl-GTP produced a further decrease (P<0.05) in activity. 3. The concentration-dependence for activation and stabilization by the naturally occurring guanine nucleotides was examined in the absence of a regenerating system and revealed GMP to have no stabilizing effect and to be less potent than either GDP or GTP in activating adenylate cyclase. 4. A significant correlation (r=0.90) was found between the properties of activation and stabilization for the compounds examined. These findings are consistent with there being a single nucleotide site through which both the activation and stabilization of adenylate cyclase are mediated.  相似文献   

2.
Two reactions of bacteriophage-Qbeta RNA polymerase with synthetic templates were characterized and used to study the effects of substrate, metal and template on inhibition by Pi and PPi. Analysis of the poly(C)-dependent reaction yielded results on kinetics, GTP-dependence, preference for Mn2+ over Mg2+, and Michaelis constants for template similar to those in the literature. New data are provided for the poly(U2,C)-dependent reaction. Our results suggest that GTP and Mn2+ can form relatively stable complexes with the polymerase and that such complexes change the interaction of the enzyme with the inhibitors, Pi and PPi.  相似文献   

3.
Glycerol-induced tubulin polymerization supported by non-guanine nucleotides was examined. The electrophoretically homogeneous tubulin was devoid of nucleoside diphosphate kinase activity and 95% saturated with exchangeable GDP and nonexchangeable GTP. All purine ribonucleoside 5'-triphosphates were active but no polymerization occurred with CTP or UTP. All polymerization reactions, as a function of nucleotide concentration, were similar: above a minimum (threshold) concentration, as the amount of nucleotide increased the reaction became progressively more rapid and extensive with a progressively shorter nucleation period. Threshold concentrations of ATP, XTP, ITP and GTP were 0.6 mM, 0.3 mM, 30 microM and 7 microM, respectively. Most ribose- and polyphosphate-modified ATP analogs also supported polymerization at high concentrations, but the activity of these analogs relative to ATP was very similar to the activity of cognate GTP analogs relative to GTP. Polymerization with ATP was associated with an ATPase reaction. ATP hydrolysis was potently inhibited by GDP and GTP and altered by antimitotic drugs in parallel with the effects of these agents on GTP hydrolysis. Substantial amounts of [8-14C]GDP bound in the exchangeable site of tubulin were displaced during polymerization with GTP or ATP, but much higher concentrations of ATP were required for equivalent displacement of the tubulin-bound GDP. Polymerization with GTP or ATP was inhibited in a qualitatively similar manner by GDP, with increasing concentrations of GDP causing a progressive prolongation of the nucleation period and reduction in reaction rate and extent. However, complete inhibition of polymerization required that GDP:GTP much greater than 1, but that GDP:ATP much less than 1. Inhibition appeared to be primarily competitive, since with higher triphosphate concentrations higher GDP concentrations were required for comparable inhibition. We conclude that ATP effects on tubulin polymerization are mediated through a feeble interaction at the exchangeable GTP site.  相似文献   

4.
Thallium acetate (TIOAc) effectively stimulates poly(U)-directed Phe-tRNA binding to mouse ascitic tumour ribosomes under conditions when other ribosomal functions are completely blocked. The TI+ optimum is about 200 mM. The reaction is stimulated by EF-1, but not significantly by GTP. EF-1-dependent ribosomal GTPase is inhibited by T1+. The isolated Phe-tRNA . ribosome complex is relatively stable. The bound Phe-tRNA does not react with puromycin in the presence of 175 mM KCl. The complex formed in the presence of 90-100 mM TlOAc can, after isolation, be directly utilized for polyphenylalanine synthesis. The complex formed at 200 mM TlOAc is less active, apparently because of damage to the 60-S subunits. TlOAc at low concentrations (8 mM) stimulates K+ -containing poly(U)-translating systems, probably by stabilizing the translation complex.  相似文献   

5.
The properties and role in peptide elongation of ATPase intrinsic to rat liver ribosomes were investigated. (i) Rat liver 80S ribosomes showed high ATPase and GTPase activities, whereas the GTPase activity of EF-1alpha and EF-2 was very low. mRNA, aminoacyl-tRNA, and elongation factors alone enhanced ribosomal ATPase activity and in combination stimulated it additively or synergistically. The results suggest that these translational components induce positive conformational changes of 80S ribosomes by binding to different regions of ribosomes. Translation inhibitors, tetracyclin and fusidic acid, inhibited ribosomal ATPase with or without elongational components. (ii) Two ATPase inhibitors, AMP-P(NH)P and vanadate, did not inhibit GTPase activities of EF-1alpha and EF-2 assayed as uncoupled GTPase, but they did inhibit poly(U)-dependent polyphe synthesis of 80S ribosomes. (iii) Effects of AMP-P(NH)P and ATP on poly(U)-dependent polyphe synthesis at various concentrations of GTP were examined. ATP enhanced the activity of polyphe synthesis even at high concentrations of GTP, suggesting a specific role of ATP. At low concentrations of GTP, the extent of inhibition by AMP-P(NH)P was very low, probably owing to the prevention of the reduction of the GTP concentration. (iv) Vanadate inhibited the translocation reaction by high KCl-washed polysomes. These findings together indicate that ribosomal ATPase participates in peptide translation by inducing positive conformational changes of mammalian ribosomes, in addition to its role of chasing tRNA from the E site.  相似文献   

6.
The stoichiometry of GTP hydrolysis during poly(Phe) elongation by Phe on poly(U) covalently bound to Sepharose was determined. The concentrations of both EF-T and EF-G were saturating. The GTP/Phe stoichiometry was calculated without the usual correction for the uncoupled ribosomal EF-T and EF-G dependent GTP hydrolysis. At the Mg2+ optimum (6 mM) for the poly(Phe) elongation on poly(U) . Sepharose the stoichiometry ratio of GTP/Phe was 1.9/2.1. This indicates that two (or less) GTP molecules coupled with poly(Phe) elongation by Phe on poly(U) . Sepharose are hydrolyzed.  相似文献   

7.
The effect of GTP analogues on catecholamine secretion and [3H]arachidonic acid release from digitonin-permeabilized adrenal chromaffin cells was examined. Several GTP analogues stimulated Ca2(+)-independent exocytosis, with the order of efficacy being XTP greater than ITP greater than guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) greater than guanosine 5'-[gamma-thio]triphosphate (GTP[S]). The stimulatory effect of the GTP analogues appeared to be due to activation of a conventional GTP-binding protein, as it was inhibited by guanosine 5'-[beta-thio]diphosphate (GDP[S]). In contrast, Ca2(+)-dependent exocytosis was only partially inhibited by high doses of GDP[S]. GTP did not stimulate Ca2(+)-independent exocytosis, but instead was found to inhibit secretion caused by micromolar Ca2+. Arachidonic acid (100 microM) also stimulated Ca2(+)-independent catecholamine secretion. Determination of the effect of GTP analogues on release of free [3H]arachidonic acid into the medium showed that it was stimulated by GTP[S] but inhibited by GTP, p[NH]ppG, ITP and XTP. The inhibition of [3H]arachidonic acid release by XTP was not prevented by GDP[S]. These results demonstrate that activation of a GTP-binding protein by certain GTP analogues can induce Ca2(+)-independent secretion in adrenal chromaffin cells and that the effect of GTP analogues on Ca2(+)-independent secretion can be dissociated from generation of arachidonic acid.  相似文献   

8.
Several nucleotide analogues have been described as inhibitors of NS5B, the essential viral RNA-dependent RNA polymerase of hepatitis C virus. However, their precise mode of action remains poorly defined at the molecular level, much like the different steps of de novo initiation of viral RNA synthesis. Here, we show that before elongation, de novo RNA synthesis is made of at least two distinct kinetic phases, the creation of the first phosphodiester bond being the most efficient nucleotide incorporation event. We have studied 2'-O-methyl-GTP as an inhibitor of NS5B-directed RNA synthesis. As a nucleotide competitor of GTP in RNA synthesis, 2'-O-methyl-GTP is able to act as a chain terminator and inhibit RNA synthesis. Relative to GTP, we find that this analogue is strongly discriminated against at the initiation step ( approximately 150-fold) compared with approximately 2-fold at the elongation step. Interestingly, discrimination of the 2'-O-methyl-GTP at initiation is suppressed in a variant NS5B deleted in a subdomain critical for initiation (the "flap," encompassing amino acids 443-454), but not in P495L NS5B, which shows a selective alteration of transition from initiation to elongation. Our results demonstrate that the conformational change occurring between initiation and elongation is dependent on the allosteric GTP-binding site and relaxes nucleotide selectivity. RNA elongation may represent the most probable target of 2'-modified nucleotide analogues, because it is more permissive to inhibition than initiation.  相似文献   

9.
The effect of the protein synthesis inhibitor II from barley seeds (Hordeum sp.) on protein synthesis was studied in rabbit reticulocyte lysates. Inhibitor treatment of the lysates resulted in a rapid decrease in amino acid incorporation and an accumulation of heavy polysomes, indicating an effect of the inhibitor on polypeptide chain elongation. The protein synthesis inhibition was due to a catalytic inactivation of the large ribosomal subunit with no effect on the small subparticle. The inhibitor-treated ribosomes were fully active in participating in the EF-1-dependent binding of [14C]phenylalanyl-tRNA to poly(U)-programmed ribosomes in the presence of GTP and the binding of radioactively labelled EF-2 in the presence of GuoPP[CH2]P. Furthermore, the ribosomes were still able to catalyse peptide-bond formation. However, the EF-1- and ribosome-dependent hydrolysis of GTP was reduced by more than 40% in the presence of inhibitor-treated ribosomes, while the EF-2- and ribosome-dependent GTPase remained unaffected. This suggests that the active domains involved in the two different GTPases are non-identical. Treatment of reticulocyte lysates with the barley inhibitor resulted in a marked shift of the steady-state distribution of the ribosomal phases during the elongation cycle as determined by the ribosomal content of elongation factors. Thus, the content of EF-1 increased from 0.38 mol/mol ribosome to 0.71 mol/mol ribosome, whereas the EF-2 content dropped from 0.20 mol/mol ribosome at steady state to 0.09 mol/mol ribosome after inhibitor treatment. The data suggest that the inhibitor reduces the turnover of ribosome-bound ternary EF-1 X GTP X aminoacyl-tRNA complexes during proof-reading and binding of the cognate aminoacyl-tRNA by inhibiting the EF-1-dependent GTPase.  相似文献   

10.
Arginine inhibits the formation of acetylleucyl-puromycin from C(U)-A-C-C-A-LeuAc and puromycin ('fragment reaction'), catalized by Escherichia coli and yeast ribosomes. From 18 different L-amino acids assayed, arginine was the most effective in producing inhibition (50% inhibition at 20 mM, with 1 mM puromycin). L-Argininamide and D-arginine gave about the same inhibition as L-arginine. The inhibition by L-arginine is competitive with respect to puromycin. The plot of the slopes obtained in a Lineweaver and Burk representation versus [Arg]2, and the plot of 1/v versus [Arg]2 at a fixed concentration of puromycin, are linear, which seems to indicate that two arginine molecules must interact at the puromycin binding site to produce inhibition. In addition to the 'fragment reaction', arginine inhibits the non-enzymatic binding of AcPhe-tRNA, C(U)-A-C-C-A-Leu and C(U)-A-C-C-A-LeuAc to ribosomes. However, it does not inhibit poly(U)-directed polyphenylalanine synthesis or the reaction of puromycin with AcPhe-tRNA previously bound to the peptidyl site. The results agree with arginine binding to the acceptor site, and with a sequential mechanism for the 'fragment reaction', puromycin binding first.  相似文献   

11.
Two inhibitors of ribosome-dependent GTP hydrolysis by elongation factor (EF)G were found in the ribosome wash of Escherichia coli strain B. One of these inhibitors was purified to homogeneity and characterized. The isolated inhibitor was found to consist of two polypeptide subunits with apparent molecular masses of 23 kDa and 10 kDa. Inhibition of EF-G GTPase could not be overcome by increasing amounts of the elongation factor or high concentrations of GTP, but was reversed by large amounts of ribosomes. The effect of the inhibitor was reduced by increasing concentrations of either 30S or 50S ribosomal subunits. EF-G-dependent GTPase of 50S ribosomal subunits was not affected by the inhibitor. These findings clearly show that the inhibitor interferes with the modulation of EF-G GTPase activity by the interactions between 30S and 50S ribosomal subunits. Under conditions, where 30S CsCl core particles are able to associate with 50S subunits and to stimulate EF-G GTPase, the effect of the inhibitor was considerably reduced when intact 30S ribosomal subunits were substituted by 30S CsCl core particles. This finding indicates that 30S CsCl split proteins are important for the action of the inhibitor and that the inhibitor does not affect the EF-G GTPase merely by interfering with the association of ribosomal subunits. Furthermore, poly(U)-dependent poly(phenylalanine) synthesis was considerably less sensitive to the inhibitor than EF-G GTPase. When ribosomes were preincubated with poly(U) and Phe-tRNA(Phe), poly(phenylalanine) synthesis was considerably less affected by the inhibitor, whereas EF-G GTPase was still sensitive.  相似文献   

12.
L Y Chu  R E Rhoads 《Biochemistry》1978,17(12):2450-2455
The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.  相似文献   

13.
The 2',3'-dialdehyde derivative of NADPH (oNADPH) acts as a coenzyme for the reaction catalyzed by bovine liver glutamate dehydrogenase. Incubation of 250 microM oNADPH with enzyme for 300 min at 30 degrees C and pH 8.0 yields covalent incorporation of 1.0 mol of oNADPH/mol of enzyme subunit. The modified enzyme has a functional catalytic site and is activated by ADP, but is no longer inhibited by high NADH concentrations and exhibits decreased sensitivity to GTP inhibition. Using the change in inhibition by 600 microM NADH or 1 microM GTP to monitor the reaction leads to rate constants of 44.0 and 41.5 min-1 M-1, respectively, suggesting that loss of inhibition by the two regulatory compounds results from reaction by oNADPH at a single location. The oNADPH incorporation is proportional to the decreased inhibition by 600 microM NADH or 1 microM GTP, extrapolating to less than 1 mol of oNADPH/mol of subunit when the maximum change in NADH or GTP inhibition has occurred. Modified enzyme is still 93% inhibited at saturating levels of GTP, although its K1 is increased 20-fold to 4.6 microM. The kinetic effects caused by oNADPH are not prevented by alpha-ketoglutarate, ADP, 5 mM NADH, or 200 microM GTP alone, but are prevented by 5 mM NADH with 200 microM GTP. Incorporation of oNADPH into enzyme at 255 min is 0.94 mol/mol of peptide chain in the absence of ligands but only 0.53 mol/mol of peptide chain in the presence of the protectants 5 mM NADH plus 200 microM GTP. These results indicate that oNADPH modifies specifically about 0.4-0.5 sites/enzyme subunit or about 3 sites/enzyme hexamer and that reaction occurs at a GTP-dependent inhibitory NADH site of glutamate dehydrogenase.  相似文献   

14.
The GTPase activity of the stimulatory guanine nucleotide-binding regulatory protein (Gs) of hormone-sensitive adenylate cyclase was investigated using purified rabbit hepatic Gs and either [alpha-32P]- or [gamma-32P] GTP as substrate. The binding of [35S]guanosine 5'-O-(thiotriphosphate) (GTP gamma S) was used to quantitate the total concentration of Gs. 1) GTPase activity was a saturable function of the concentration of GTP, with Km = 0.3 microM. MgCl2 monotonically increased the activity. The maximum observed turnover number was about 1.5 min-1. 2) During steady-state hydrolysis, 20-40% of total Gs could be trapped as a Gs-GDP complex and 1-2% could be trapped as Gs-GTP. The hydrolysis of Gs-GTP to Gs-GDP occurred with t 1/2 less than or equal to 5 s at 30 degrees C and t 1/2 approximately 1 min at 0 degrees C. Hydrolysis of Gs-GTP was inhibited by 1.0 mM EDTA in the absence of added Mg2+. 3) The rate of formation of Gs-GDP and the initial GTPase rate varied in parallel as functions of the concentrations of either GTP or MgCl2 (above 0.1 mM Mg2+). The ratio of the rate of accumulation of Gs-GDP to the GTPase rate was constant at 0.3-0.4. 4) The rate of dissociation of assayable Gs-GDP was biphasic. The initial phase accounted for 60-80% of total assayable Gs-GDP and was characterized by a t 1/2 of about 1 min. 5) Lubrol 12A9 potently inhibited the GTPase reaction and the dissociation of Gs-GDP in parallel, and inhibition of product release may account for the inhibition of steady-state hydrolysis. 6) The beta and gamma subunits of Gs markedly inhibited the dissociation of GDP from Gs in contrast to their ability to stimulate the dissociation of GTP gamma S. 7) GDP, GTP gamma S, and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) competitively inhibited the accumulation of Gs-GDP. GTP gamma S and Gpp(NH)p inhibited the GTPase reaction noncompetitively, GDP displayed mixed inhibition, and Pi did not inhibit. These data are interpretable in terms of the coexistence of two specific mechanistic pathways for the overall GTPase reaction.  相似文献   

15.
Tetrahymena pyriformis ribosomal subunits were obtained by incubation of post-mitochondrial supernatant in the presence of 0.2 mM GTP and 0.1 mM puromycin for 45 min at 28 degrees C, followed by sucrose density gradient centrifugation. Isolated 40-S subunits were able to reassociate in vitro in the presence of 5 mM MgCl2 and 50 mM KCl and to perform poly(U)-dependent protein synthesis. The 60-S subunit carries the peptidyl transferase activity. The number of proteins in T. pyriformis ribosomal subunits was determined by two-dimensional polyacrylamide gel electrophoresis. The 40-S subunit contains 30 different protein species (including two acidic proteins). The 60-S subunit contains 35 different protein species (including two acidic proteins). The proteins were numbered following the system of Kaltschmidt and Wittmann.  相似文献   

16.
Cytidine 5'-triphosphate synthase catalyzes the ATP-dependent formation of CTP from UTP using either NH(3) or l-glutamine (Gln) as the source of nitrogen. GTP acts as an allosteric effector promoting Gln hydrolysis but inhibiting Gln-dependent CTP formation at concentrations of >0.15 mM and NH(3)-dependent CTP formation at all concentrations. A structure-activity study using a variety of GTP and guanosine analogues revealed that only a few GTP analogues were capable of activating Gln-dependent CTP formation to varying degrees: GTP approximately 6-thio-GTP > ITP approximately guanosine 5'-tetraphosphate > O(6)-methyl-GTP > 2'-deoxy-GTP. No activation was observed with guanosine, GMP, GDP, 2',3'-dideoxy-GTP, acycloguanosine, and acycloguanosine monophosphate, indicating that the 5'-triphosphate, 2'-OH, and 3'-OH are required for full activation. The 2-NH(2) group plays an important role in binding recognition, whereas substituents at the 6-position play an important role in activation. The presence of a 6-NH(2) group obviates activation, consistent with the inability of ATP to substitute for GTP. Nucleotide and nucleoside analogues of GTP and guanosine, respectively, all inhibited NH(3)- and Gln-dependent CTP formation (often in a cooperative manner) to a similar extent (IC(50) approximately 0.2-0.5 mM). This inhibition appeared to be due solely to the purine base and was relatively insensitive to the identity of the purine with the exception of inosine, ITP, and adenosine (IC(50) approximately 4-12 mM). 8-Oxoguanosine was the best inhibitor identified (IC(50) = 80 microM). Our findings suggest that modifying 2-aminopurine or 2-aminopurine riboside may serve as an effective strategy for developing cytidine 5'-triphosphate synthase inhibitors.  相似文献   

17.
Snu114p, a yeast U5 small nuclear ribonucleoprotein (snRNP) homologous to the ribosomal GTPase EF-2, was recently found to play a part in the dissociation of U4 small nuclear RNA (snRNA) from U6 snRNA. Here, we show that purified Snu114p binds GTP specifically. To test the possibility that binding and hydrolysis of GTP by Snu114p are required to stimulate the unwinding of U4 from U6, we produced several mutations of Snu114p. Residues whose mutations led to lethal phenotypes were all clustered in the P loop and in the guanine-ring binding sequence (NKXD) of the G domain, which in elongation factor-G is required for the binding and hydrolysis of GTP. An arginine residue in domain II, which in EF-G forms a salt bridge with a residue of the G domain, when mutated in Snu114p (R487E), led to a temperature-sensitive phenotype. The substitution D271N in the NKXD sequence is predicted to bind XTP instead of GTP. Spliceosomes containing this mutant, isolated by affinity chromatography after heat treatment, retained U4 snRNA paired with the U6 snRNA. U4 snRNA was released efficiently only when these arrested spliceosomes were reactivated by lowering the temperature in the presence of a mixture of ATP and XTP. Because non-hydrolyzable XTP analogues did not consent the release of U4, we conclude that the release requires hydrolysis of XTP. This suggests that Snu114p needs GTP to influence, directly or indirectly, the unwinding of U4 from U6. An additional role for Snu114p is also demonstrated: after growth of the D271N and R487E strains at high temperatures, we observed decreased levels of the U5 and the U4/U6.U5 snRNPs. This indicates that, before splicing, Snu114p plays a part in the assembly of both particles.  相似文献   

18.
DNA ligase from the hyperthermophilic marine archaeon Pyrococcus furiosus (Pfu DNA ligase) synthesizes adenosine 5'-tetraphosphate (p4A) and dinucleoside polyphosphates by displacement of the adenosine 5'-monophosphate (AMP) from the Pfu DNA ligase-AMP (E-AMP) complex with tripolyphosphate (P3), nucleoside triphosphates (NTP), or nucleoside diphosphates (NDP). The experiments were performed in the presence of 1-2 microM [alpha-32P]ATP and millimolar concentrations of NTP or NDP. Relative rates of synthesis (%) of the following adenosine(5')tetraphospho(5')nucleosides (Ap4N) were observed: Ap4guanosine (Ap4G) (from GTP, 100); Ap4deoxythymidine (Ap4dT) (from dTTP, 95); Ap4xanthosine (Ap4X) (from XTP, 94); Ap4deoxycytidine (Ap4dC) (from dCTP, 64); Ap4cytidine (Ap4C) (from CTP, 60); Ap4deoxyguanosine (Ap4dG) (from dGTP, 58); Ap4uridine (Ap4U) (from UTP, <3). The relative rate of synthesis (%) of adenosine(5')triphospho(5')nucleosides (Ap3N) were: Ap3guanosine (Ap3G) (from GDP, 100); Ap3xanthosine (Ap3X) (from XDP, 110); Ap3cytidine (Ap3C) (from CDP, 42); Ap3adenosine (Ap3A) (from ADP, <1). In general, the rate of synthesis of Ap4N was double that of the corresponding Ap3N. The enzyme presented optimum activity at a pH value of 7.2-7.5, in the presence of 4 mM Mg2+, and at 70 degrees C. The apparent Km values for ATP and GTP in the synthesis of Ap4G were about 0.001 and 0.4mM, respectively, lower values than those described for other DNA or RNA ligases. Pfu DNA ligase is used in the ligase chain reaction (LCR) and some of the reactions here reported [in particular the synthesis of Ap4adenosine (Ap4A)] could take place during the course of that reaction.  相似文献   

19.
20.
With the use of a reconstituted poly(ADP-ribosyl)ating enzyme system and three purified nucleases, micrococcal nuclease (MN), bull seminal RNase (BS RNase) and Ca2+, Mg2+-dependent endonuclease (BS DNase), as model acceptor proteins for ADP-ribose, the effect of ionic strength on the modification reaction was examined in detail. When these three nucleases were extensively poly(ADP-ribosyl)ated in this system at a low ionic strength (5 mM Tris), they were all inhibited by about 80% and the chain length of the polymer covalently bound to the nucleases was 13 to 23 ADP-ribose units. The observed inhibition was markedly prevented by increasing the ionic strength in the reaction mixture with a concomitant decrease in the polymer size bound to the nucleases. The NaCl concentrations required for decreasing the extent of the inhibition to half of the maximum were calculated to be 20, 50, and 100 mM for MN, BS RNase, and BS DNase, respectively. These values are similar to the NaCl concentrations required for decreasing the average chain lengths of the polymer to half, suggesting that the length of polymer is closely correlated to the extent of inhibition of these nucleases. DNA-binding affinities of these nucleases, expressed in terms of the NaCl concentrations required for eluting the enzymes from DNA-cellulose, were 140, 280, and 340 mM for MN, BS RNase, and BS DNase, respectively. Considering that maintainance of a ternary complex of poly(ADP-ribose) synthetase, acceptor and DNA may be essential for the modification reaction, the relatively strong salt effect observed in the modification of MN may be explained by its low DNA-binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号