首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic strains affiliated with a novel order‐level lineage of the Phycisphaerae class were retrieved from the suboxic zone of a hypersaline cyanobacterial mat and anoxic sediments of solar salterns. Genome sequences of five isolates were obtained and compared with metagenome‐assembled genomes representing related uncultured bacteria from various anoxic aquatic environments. Gene content surveys suggest a strictly fermentative saccharolytic metabolism for members of this lineage, which could be confirmed by the phenotypic characterization of isolates. Genetic analyses indicate that the retrieved isolates do not have a canonical origin of DNA replication, but initiate chromosome replication at alternative sites possibly leading to an accelerated evolution. Further potential factors driving evolution and speciation within this clade include genome reduction by metabolic specialization and rearrangements of the genome by mobile genetic elements, which have a high prevalence in strains from hypersaline sediments and mats. Based on genetic and phenotypic data a distinct group of strictly anaerobic heterotrophic planctomycetes within the Phycisphaerae class could be assigned to a novel order that is represented by the proposed genus Sedimentisphaera gen. nov. comprising two novel species, S. salicampi gen. nov., sp. nov. and S. cyanobacteriorum gen. nov., sp. nov.  相似文献   

2.
A strictly aerobic, Gram-negative, orange-pigmented, rod-shaped, non-motile and chemoheterotrophic bacteria representing a new genus and species, designated YM8-076T, was isolated from lake water collected at a harbor on Lake Notoro, Hokkaido, Japan. Preliminary analysis based on the 16S rRNA gene sequence revealed that the novel isolate could be affiliated with the family Saprospiraceae of the phylum Bacteroidetes and that it showed highest sequence similarity (88.5%) to Haliscomenobacter hydrossis ATCC 27775T. The strain could be differentiated phenotypically from recognized members of the family Saprospiraceae. The G+C content of DNA was 53.7 mol%, MK-7 was the major menaquinone and iso-C15:0, iso-C15:1 and iso-C17:0 3-OH were the major cellular fatty acids. On the basis of polyphasic taxonomic studies, it was concluded that strain YM8-076T represents a new genus and species of the family Saprospiraceae. We propose the name Portibacter lacus gen. nov., sp. nov. for this strain; its type strain is YM8-076T (=KCTC 23747T=NBRC 108769T).  相似文献   

3.
The taxonomic positions of two novel strains isolated from a soil sample collected in Japan using Glucose-Peptone-Meat extract (GPM) agar plates supplemented with superoxide dismutase or superoxide dismutase plus catalase were investigated based on the results of chemotaxonomic, phenotypic and genotypic characteristics. Strains were Gram-positive, catalase-positive, non-motile bacteria with L-ornithine as a diagnostic diamino acid of the peptidoglycan. The acyl type of the peptidoglycan was N-glycolyl. The major menaquinones were MK-12 and 13. Mycolic acids were not detected. The G+C content of the DNA was 70 mol%. Comparative 16S rRNA studies on the two isolated strains revealed that they belong to the genus Microbacterium. DNA-DNA relatedness data revealed that KV-448(T) and KV-769 are a new species of the genus Microbacterium. From these results, we propose that these bacteria should be classified in the genus Microbacterium as Microbacterium terricolae sp. nov. The type strain of Microbacterium terricolae is KV-448(T) (=NRRL B-24468(T), NBRC 101801(T)).  相似文献   

4.
The phylum Verrucomicrobia is increasingly recognized as an environmentally significant group of bacteria, particularly in soil habitats. At least six subdivisions of the Verrucomicrobia are resolved by comparative analysis of 16S rRNA genes, mostly obtained directly from environmental samples. To date, only two of these subdivisions (1 and 4) have characterized pure-culture representatives. We have isolated and characterized the first known pure-culture representative of subdivision 2. Strain Ellin428 is an aerobic heterotrophic bacterium that is able to grow with many of the saccharide components of plant biomass but does not grow with amino acids or organic acids other than pyruvate. Cells are yellow, rod-shaped, nonmotile, and gram-stain negative, and they contain peptidoglycan with direct cross-linkages of the A1 gamma meso-Dpm type. The isolate grows well at 25 degrees C on a variety of standard biological media, including some used in the routine cultivation of bacteria from soil. The pH range for growth is 4.0 to 7.0. Low levels of menaquinones MK-10 and MK-11 were detected. The major cellular fatty acids are C(14:0), a-C(15:0), C(16:1 omega 7c), and/or 2OH i-C(15:0), and C(16:0). The G+C content of the genomic DNA is 61 mol%. We propose a new genus and species, Chthoniobacter flavus gen. nov., sp. nov., with isolate Ellin428 as the type strain, and a new class for the subdivision to which it belongs, Spartobacteria classis nov. Environmental sequences indicate that the class Spartobacteria is largely represented by globally distributed, abundant, and active soil bacteria.  相似文献   

5.
During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11T, was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA–DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098T. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11T (=CGMCC 4.7304T=DSM 101531T).  相似文献   

6.
Four strains of budding, hyphal bacteria, which had very similar chemotaxonomic properties, were isolated from the Baltic Sea. The results of DNA-DNA hybridization experiments, indicated that three of the new isolates were closely related, while the fourth was only moderately related to the other three. Sequence signature and higher-order structural detail analyses of the 16S rRNA of strain IFAM 1418T (T = type strain) indicated that this isolate is related to the alpha subclass of the class Proteobacteria. Although our isolates resemble members of the genera Hyphomicrobium and Hyphomonas in morphology, assignment to either of these genera was excluded on the basis of their markedly lower DNA guanine-plus-cytosine contents. We propose that these organisms should be placed in a new genus, Hirschia baltica is the type species of this genus, and the type strain of H. baltica is strain IFAM 1418 (= DSM 5838).  相似文献   

7.
Four Gram-negative, chemoheterotrophic, nonmotile, yellow-colored strains were isolated from the East Sea or from deep-sea sediments of Nankai Trough by standard dilution plating. Characterization by polyphasic approaches indicated that the four strains are members of the same species. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains formed a coherent and novel genus-level lineage within the family Flavobacteriaceae. The dominant cellular fatty acids were i-C15:0, 3-OH i-C17:0, and 2-OH i-C15:0 and/or C16:1 omega7c. Predominance of 2-OH i-C 15:0 and/or C16:1omega7c clearly differentiated the strains from closely related members. The DNA G+C contents ranged 35.1-36.2 mol%. It is proposed, from the polyphasic evidence, that the strains should be placed into a novel genus and species named Sufflavibacter maritimus gen. nov., sp. nov., with strain IMCC 1001T (=KCCM 42359T=NBRC 102039T) as the type strain.  相似文献   

8.
Two phylogenetically distinct marine strains producing transparent exopolymers (TEP), designated HTCC2155(T) and HTCC2160, were cultivated from Oregon coast seawater by dilution to extinction in a high throughput culturing format. When cultured in low-nutrient seawater media, these strains copiously produced Alcian Blue-stainable viscous TEP. Growing cells were attached to each other by the TEP in a three dimensional network. Polymerase chain reaction employing 16S rDNA primers specific for the novel isolates indicated that they are indigenous to the water column of the Atlantic and Pacific oceans. The abundance of the isolates as determined by 16S rRNA dot blots, however, indicated that they are less than 1% of the total bacterial community. In phylogenetic analyses, the strains consistently formed a new phylum-level lineage within the domain Bacteria, together with members of the candidate phylum VadinBE97, which consists of Victivallis, the first cultured genus in the candidate phylum, and 16S rRNA gene clones from DNA extracted from marine or anaerobic terrestrial habitats. Five putative subgroups were delineated within this phylum-level lineage, including a marine group and an anaerobic group. The isolates are Gram negative, strictly aerobic, chemoheterotrophic, and facultatively oligotrophic sphere-shaped bacteria. The DNA G+C content of strain HTCC2155(T) was 48.3 mol% and the genome size was 2.9 mb. It is proposed from these observations that the strains be placed into a new genus and a new species named Lentisphaera araneosa (type strain HTCC2155(T) = ATCC BAA-859(T) = KCTC 12141(T)) gen. nov., sp. nov., the cultured marine representative of the Lentisphaerae phyl. nov., and the phylum be divided into two novel orders named the Lentisphaerales ord. nov. and the Victivallales ord. nov.  相似文献   

9.
10.
Urealytic strains of coryneform bacteria that are designated Corynebacterium group D2 and are isolated from human urine are a cause of urinary tract infections. Cell wall and lipid analyses confirmed that these organisms are members of the genus Corynebacterium but can be separated from other species in the genus on the basis of DNA base composition and DNA-DNA hybridization values. Biochemically, strains in this taxon can be distinguished from other Corynebacterium spp. by their failure to produce acid from carbohydrates, by their failure to reduce nitrates, and by their ability to hydrolyze urea. We regard these bacteria as a new species of the genus Corynebacterium and propose the name Corynebacterium urealyticum. The type strain is strain NCTC 12011 (= ATCC 43042).  相似文献   

11.
A new genus, Hansschlegelia, and a new species, Hansschlegelia plantiphila, are proposed for three strains of methanol-utilizing bacteria isolated from lilac buds (strain S(1)(T)), linden buds (strain S(2)) and blue spruce needles (strain S(4)), which were selected in winter at -17 degrees C. These bacteria are aerobic, Gram-negative, colorless, non-motile short rods that multiply by binary fission and employ the ribulose bisphosphate (RuBP) and the serine pathways for C(1) assimilation. The strains have a limited number of growth substrates and use methanol, methylamine, formate, CO(2)/H(2) and glycerol as carbon and energy sources. Only strain S(1)(T) grows with ethanol and inulin. The strains are neutrophilic and mesophilic, and synthesize phytohormones (auxins and cytokinins) and vitamin B(12). Their major cellular fatty acids are saturated C(16:0), straight-chain, unsaturated C(18:1)(omega)(7) and cyclopropane C(19 cyc) acids. The main ubiquinone is ubiquinone-10 (Q-10). The dominant phospholipids are phosphatidylethanolamine, phosphatidylcholine and diphosphatidylglycerol (cardiolipin). The DNA G+C content is 68.5+/-0.2 mol%. The strains share almost identical 16S rRNA gene sequences, a high DNA-DNA hybridization value (72-86%) and represent a novel lineage of autotrophic methanol-utilizing bacteria within the Alphaproteobacteria. Collectively, these strains comprise a new genus and species H. plantiphila gen. nov., sp. nov., with strain S(1)(T) (VKM B-2347(T), NCIMB 14035(T)) as the type strain.  相似文献   

12.
A novel Janibacter species is described on the basis of phenotypic, chemotaxonomic and genotypic data. Two bacterial strains were isolated in Palau, which were both Gram-positive, catalase-positive bacteria with meso-diaminopimelic acid as the diagnostic diamino acid of the peptidoglycan. The major menaquinone was MK-8(H(4)). Mycolic acids were not detected. The G+C content of the DNA was 70-71 mol%. Comparative 16S rDNA studies of the two isolated strains revealed that they both belonged to the genus Janibacter. DNA-DNA relatedness data revealed that 04PA2-Co5-61(T) and 02PA-Ca-009 belong to the same species, a new species of the genus Janibacter. From these results, Janibacter corallicola sp. nov. is proposed, with the type strain 04PA2-Co5-61(T) (=MBIC 08265(T), DSM 18906(T)).  相似文献   

13.
14.
15.
The genus Listonella, which was recently described on the basis of 5S rRNA sequence data, was found to be of dubious value on the basis of the results of a comparison of a number of taxonomic studies involving members of the Vibrionaceae. The available data suggest that 5S rRNA sequences may be of limited taxonomic use at the intra- and intergeneric levels, at least for apparently recently evolved groups, such as the Vibrionaceae. In this light, we assessed the generic assignment of the species Listonella damsela. Phenotypic characterization of 12 strains of bacteria assigned to L. damsela, including type strain ATCC 33539, revealed a strong resemblance to members of the genus Photobacterium. All of the strains conformed to major characteristics common to all known Photobacterium species. The characteristics of these organisms included the absence of a flagellar sheath and accumulation of poly-beta-hydroxybutyrate during growth on glucose coupled with the inability to utilize DL-beta-hydroxybutyrate as a sole carbon source. On the basis of the phenotypic data, we propose that L. damsela should be reassigned to the genus Photobacterium as Photobacterium damsela comb. nov.  相似文献   

16.
Among the ballistoconidium-forming yeast strains isolated from various plant leaves collected in North and Northeast China, 12 strains forming orange to orange-red colored colonies were revealed to represent four novel species of the genus Sporobolomyces by conventional, chemotaxonomic and molecular phylogenetic studies, based on the 26S-rDNA D1/D2 domain and internal transcribed spacer (ITS) region sequences. Sporobolomyces beijingensis sp. nov., represented by eight strains (type strain CB 80T = AS 2.2365T = CBS 9730T), and Sporobolomyces jilinensis sp. nov., represented by two strains (type strain CB 118T = AS 2.2301T = CBS 9728T), clustered in the Johnsonii clade of the Sporidiobolus lineage. Sporobolomyces clavatus sp. nov., represented by strain CB 281T (= AS 2.2318T = CBS 9729T), belonged to the Agaricostilbum lineage and showed a close relationship to Sporobolomyces ruber and Sporobolomyces dracophylli. Sporobolomyces symmetricus sp. nov., represented by strain CB 64T(= AS 2.2299T = CBS 9727T), formed nearly symmetrical ballistoconidia and was closely related with Sporobolomyces vermiculatus and Sporobolomyces gracilis in the Gracilis clade of the Erythrobasidium lineage.  相似文献   

17.
Six strains of denitrifying bacteria isolated from various oxic and anoxic habitats on different monocyclic aromatic substrates were characterized by sequencing 16S rRNA genes, determining physiological and morphological traits, and DNA-DNA hybridization. According to these criteria, strains S100, SP and LG356 were identified as members of Thauera aromatica. Strains B5-1 and B5-2 were tentatively affiliated to the species Azoarcus tolulyticus. Strains B4P and S2 were only distantly related to each other and to other described Thauera species. These two strains are proposed as the type strains of two new species, Thauera phenylacetica sp. nov. and Thauera aminoaromaticasp. nov., respectively. By 16S rRNA gene analysis, strain U120 was highly related to the type strains of Azoarcus evansii and Azoarcus anaerobius, whereas corresponding DNA-DNA reassociation values indicated only a low degree of genomic relatedness. Based upon a low DNA similarity value and the presence of distinguishing physiological properties, strain U120 is proposed as the type strain of a new species, Azoarcus buckelii sp. nov. Almost all of the new isolates were obtained with different substrates. The highly varied substrate spectra of the isolates indicates that an even higher diversity of denitrifying bacteria degrading aromatic compounds would be discovered in the different habitats by using a larger spectrum of aromatic substrates for enrichment and isolation.  相似文献   

18.
Three strains of sulfate-reducing bacteria (ADR21, ADR26 and ADR28) were isolated from Adour estuary sediments (French South Atlantic coast). Cells of these isolates were rod-shaped, motile and stained Gram-negative. The 16S rRNA and dsrAB genes sequence analyses indicated that these three strains belonged to the genus Desulfomicrobium within the delta Proteobacteria, with Desulfomicrobium escambiense strain DSM10707T as their closest relative. According to phenotypic characteristics, strains ADR21 and ADR28 could be considered as members of the same species. The relatedness values, based on DNA–DNA hybridization studies, between strains ADR21/DSM10707T, ADR26/DSM10707T and ADR21/ADR26 ranged between 30.6–40.8%, 45.2–43.0% and 19.0–26.4%, respectively. Strains ADR21 and ADR28 grew well on lactate, fumarate, malate, formate, ethanol and H2/acetate in the presence of sulfate as an electron acceptor. Thiosulfate, nitrate, fumarate and DMSO were alternative electron acceptors. Malate was well fermented but pyruvate and fumarate only poorly. Strain ADR26 could not grow on ethanol or fumarate and was unable to use DMSO or fumarate as electron acceptors. The three new strains exhibited differences compared to the type strain of D. escambiense, such as temperature optima, substrate utilization and mercury methylation capacities. On the basis of both genetic and phenotypic evidences, strain ADR21 is proposed as the type strain of the species Desulfomicrobium salsuginis sp. nov., and strain ADR26 as the type strain of the species Desulfomicrobium aestuarii sp. nov.  相似文献   

19.
链霉菌属菌株AS4.693和AS4.702的分类学研究   总被引:1,自引:1,他引:0       下载免费PDF全文
链霉菌属“Setae”种群原为北里孢菌属Kitasatosporia (Omura,1982)。1992年,Wellington根据16S rRNA序列分析结果将其并入链霉菌属,并建立“Setae”种群。通过对保藏的链霉菌AS 4.693、AS 4.702进行的形态学、细胞化学、分子遗传分类研究结果表明,它们与链霉菌属“Setae”种群中的典型种——西唐链霉菌Streptomyces setae(JCM3304’)具有相似性。它们的rDNA相似性高达100%,证明它们应归属于同一种群。AS.4.693定名为西唐链霉菌不规则新亚种Streptomyces setae subsp.irregularis nov.,AS 4.702定名为西唐链霉菌波曲弗氏新亚种Streptomyces setae subsp.flexuofradiae nov.。  相似文献   

20.
We describe three new species of the genus Peptostreptococcus which were isolated from human specimens and were tentatively identified as Peptostreptococcus prevotii. These three organisms were not homologous with previously described type strains of the genus Peptostreptococcus. A total of 12 strains that were identified biochemically as P. prevotii were divided into five independent DNA similarity groups; 10 of these strains were divided into three similarity groups which exhibited significant phenotypic differences from previously described species. Therefore, we propose the following new species: Peptostreptococcus vaginalis for group 1 strains, Peptostreptococcus lacrimalis for group 2 strains, and Peptostreptococcus lactolyticus for group 3 strains. The type strain of P. vaginalis is strain GIFU 12669 (= JCM 8138), the type strain of P. lacrimalis is strain GIFU 7667 (= JCM 8139), and the type strain of P. lactolyticus is strain GIFU 8586 (= JCM 8140).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号