首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational changes in the HA2 subunit of influenza hemagglutinin (HA) are coupled to membrane fusion. We investigated the fusogenic activity of the polypeptide FHA2 representing 127 amino-terminal residues of the ectodomain of HA2. While the conformation of FHA2 both at neutral and at low pH is nearly identical to the final low-pH conformation of HA2, FHA2 still induces lipid mixing between liposomes in a low-pH-dependent manner. Here, we found that FHA2 induces lipid mixing between bound cells, indicating that the "spring-loaded" energy is not required for FHA2-mediated membrane merger. Although, unlike HA, FHA2 did not form an expanding fusion pore, both acidic pH and membrane concentrations of FHA2, required for lipid mixing, have been close to those required for HA-mediated fusion. Similar to what is observed for HA, FHA2-induced lipid mixing was reversibly blocked by lysophosphatidylcholine and low temperature, 4 degrees C. The same genetic modification of the fusion peptide inhibits both HA- and FHA2-fusogenic activities. The kink region of FHA2, critical for FHA2-mediated lipid mixing, was exposed in the low-pH conformation of the whole HA prior to fusion. The ability of FHA2 to mediate lipid mixing very similar to HA-mediated lipid mixing is consistent with the hypothesis that hemifusion requires just a portion of the energy released in the conformational change of HA at acidic pH.  相似文献   

2.
We have simulated two conformations of the fusion domain of influenza hemagglutinin (HA) within explicit water, salt, and heterogeneous lipid bilayers composed of POPC:POPG (4:1). Each conformation has seven different starting points in which the initial peptide structure is the same for each conformation, but the location across the membrane normal and lipid arrangement around the peptide are varied, giving a combined total simulation time of 140 ns. For the HA5 conformation (primary structure from recent NMR spectroscopy at pH = 5), the peptide exhibits a stable and less kinked structure in the lipid bilayer compared to that from the NMR studies. The relative fusogenic behavior of the different conformations has been investigated by calculation of the relative free energy of insertion into the hydrophobic region of lipid bilayer as a function of the depth of immersion. For the HA7 conformations (primary structure from recent NMR spectroscopy at pH = 7.4), while the N-terminal helix preserves its initial structure, the flexible C-terminal chain produces a transient helical motif inside the lipid bilayer. This conformational change is pH-independent, and is closely related to the peptide insertion into the lipid bilayer.  相似文献   

3.
Targeted molecular dynamics simulations were used to study the conformational transition of influenza hemagglutinin (HA) from the native conformation to putative fusogenic or postfusion conformations populated at low pH. Three pathways for this conformational change were considered. Complete dissociation of the globular domains of HA was observed in one pathway, whereas smaller rearrangements were observed in the other two. The fusion peptides became exposed and moved toward the target membrane, although occasional movement toward the viral membrane was also observed. The effective energy profiles along the paths show multiple barriers. The final low-pH structures, which are consistent with available experimental data, are comparable in effective energy to native HA. As a control, the uncleaved precursor HA0 was also forced along the same pathway. In this case both the final energy and the energy barrier were much higher than in the cleaved protein. This study suggests that 1) as proposed, the native conformation is the global minimum energy conformation for the uncleaved precursor but a metastable state for cleaved HA; 2) the spring-loaded conformational change is energetically plausible in full-length HA; and 3) complete globular domain dissociation is not necessary for extension of the coiled coil and fusion peptide exposure, but the model with complete dissociation has lower energy.  相似文献   

4.
Xu R  Wilson IA 《Journal of virology》2011,85(10):5172-5182
The hemagglutinin (HA) envelope protein of influenza virus mediates viral entry through membrane fusion in the acidic environment of the endosome. Crystal structures of HA in pre- and postfusion states have laid the foundation for proposals for a general fusion mechanism for viral envelope proteins. The large-scale conformational rearrangement of HA at low pH is triggered by a loop-to-helix transition of an interhelical loop (B loop) within the fusion domain and is often referred to as the "spring-loaded" mechanism. Although the receptor-binding HA1 subunit is believed to act as a "clamp" to keep the B loop in its metastable prefusion state at neutral pH, the "pH sensors" that are responsible for the clamp release and the ensuing structural transitions have remained elusive. Here we identify a mutation in the HA2 fusion domain from the influenza virus H2 subtype that stabilizes the HA trimer in a prefusion-like state at and below fusogenic pH. Crystal structures of this putative early intermediate state reveal reorganization of ionic interactions at the HA1-HA2 interface at acidic pH and deformation of the HA1 membrane-distal domain. Along with neutralization of glutamate residues on the B loop, these changes cause a rotation of the B loop and solvent exposure of conserved phenylalanines, which are key residues at the trimer interface of the postfusion structure. Thus, our study reveals the possible initial structural event that leads to release of the B loop from its prefusion conformation, which is aided by unexpected structural changes within the membrane-distal HA1 domain at low pH.  相似文献   

5.
X-ray studies show that influenza hemagglutinin (HA) forms an elongated structure connecting the influenza virus at one end to cell-surface receptors at the other. At neutral pH, the 20 N-terminal residues of HA2—referred to as the fusion peptide—are buried in a hydrophobic pocket, about 100 Å away from the receptor-binding site, and thus seem unlikely to affect HA binding to the receptor. To test this assumption, we mutated residues in the fusion peptide, heterologically expressed the mutated proteins in COS7 cells, and examined their ability to bind fluorescently labeled red blood cells (RBCs). Surprisingly, a significantly reduced binding was recorded for some of the mutants. Ample experimental data indicate that HA has at least two forms: the native structure at neutral pH (N) that is metastable and the fusogenic form (F), observed at low pH, which is stable. Thus, a simple interpretation of our data is that HA can bind to its receptors at the RBC surface in the N form much more effectively than in the F (or in any other stable) form and that the altered binding properties are due to destabilizing effects of the mutations on the N form. That is, some of the mutations involve reduction in the free energy barrier between the N and F forms. This, in turn, leads to reduction in the population of the N form, which is the only form capable of binding to the cell-surface receptors. To explore this possibility, we estimated the stability free energy difference between HA wild-type (wt) and mutants in the N form using an empirical surface tension coefficient. The calculated stability differences correlated well with the measured binding, supporting the above interpretation. Our results are examined taking into account the available experimental data on the affinity of different soluble and membrane-attached forms of HA to its receptors.  相似文献   

6.
The "fusion peptide," a segment of approximately 20 residues of the influenza hemagglutinin (HA), is necessary and sufficient for HA-induced membrane fusion. We used mean-field calculations of the free energy of peptide-membrane association (DeltaG(tot)) to deduce the most probable orientation of the fusion peptide in the membrane. The main contributions to DeltaG(tot) are probably from the electrostatic (DeltaG(el)) and nonpolar (DeltaG(np)) components of the solvation free energy; these were calculated using continuum solvent models. The peptide was described in atomic detail and was modeled as an alpha-helix based on spectroscopic data. The membrane's hydrocarbon region was described as a structureless slab of nonpolar medium embedded in water. All the helix-membrane configurations, which were lower in DeltaG(tot) than the isolated helix in the aqueous phase, were in the same (wide) basin in configurational space. In each, the helix was horizontally adsorbed at the water-bilayer interface with its principal axis parallel to the membrane plane, its hydrophobic face dissolved in the bilayer, and its polar face in the water. The associated DeltaG(tot) value was approximately -8 to -10 kcal/mol (depending on the rotameric state of one of the phenylalanine residues). In contrast, the DeltaG(tot) values associated with experimentally observed oblique orientations were found to be near zero, suggesting they are marginally stable at best. The theoretical model did not take into account the interactions of the polar headgroups with the peptide and peptide-induced membrane deformation effects. Either or both may overcompensate for the DeltaG(tot) difference between the horizontal and oblique orientations.  相似文献   

7.
A single amino acid exchange between the major histocompatibility complex molecules HLA-B(*)2705 and HLA-B(*)2709 (Asp-116/His) is responsible for the emergence of distinct HLA-B27-restricted T cell repertoires in individuals harboring either of these two subtypes and could correlate with their differential association with the autoimmune disease ankylosing spondylitis. By using fluorescence depolarization and pK(a) calculations, we investigated to what extent electrostatic interactions contribute to shape antigenic differences between these HLA molecules complexed with viral, self, and non-natural peptide ligands. In addition to the established main anchor of peptides binding to HLA-B27, arginine at position 2 (pArg-2), and the secondary anchors at the peptide termini, at least two further determinants contribute to stable peptide accommodation. 1) The interaction of Asp-116 with arginine at peptide position 5, as found in pLMP2 (RRRWRRLTV; viral) and pVIPR (RRKWRRWHL; self), and with lysine in pOmega, as found in gag (KRWIILGLNK; viral), additionally stabilizes the B(*)2705 complexes by approximately 5 and approximately 27 kJ/mol, respectively, in comparison with B(*)2709. 2) The protonation state of the key residues Glu-45 and Glu-63 in the B-pocket, which accommodates pArg-2, affects peptide binding strength in a peptide- and subtype-dependent manner. In B(*)2705/pLMP2, protonation of Glu-45/Glu-63 reduces the interaction energy of pArg-2 by approximately 24 kJ/mol as compared with B(*)2705/pVIPR. B(*)2705/pVIPR is stabilized by a deprotonated Glu-45/Glu-63 pair, evoked by allosteric interactions with pHis-8. The mutual electrostatic interactions of peptide and HLA molecule, including peptide- and subtype-dependent protonation of key residues, modulate complex stability and antigenic features of the respective HLA-B27 subtype.  相似文献   

8.
The refolding of the prototypic fusogenic protein hemagglutinin (HA) at the pH of fusion is considered to be a concerted and irreversible discharge of a loaded spring, with no distinct intermediates between the initial and final conformations. Here, we show that HA refolding involves reversible conformations with a lifetime of minutes. After reneutralization, low pH-activated HA returns from the conformations wherein both the fusion peptide and the kinked loop of the HA2 subunit are exposed, but the HA1 subunits have not yet dissociated, to a structure indistinguishable from the initial one in functional, biochemical and immunological characteristics. The rate of the transition from reversible conformations to irreversible refolding depends on the pH and on the presence of target membrane. Importantly, recovery of the initial conformation is blocked by the interactions between adjacent HA trimers. The existence of the identified reversible stage of refolding can be crucial for allowing multiple copies of HA to synchronize their release of conformational energy, as required for fusion.  相似文献   

9.
Yu Zhou  Chao Wu  Lifeng Zhao  Niu Huang 《Proteins》2014,82(10):2412-2428
Hemagglutinin (HA) mediates the membrane fusion process of influenza virus through its pH‐induced conformational change. However, it remains challenging to study its structure reorganization pathways in atomic details. Here, we first applied continuous constant pH molecular dynamics approach to predict the pKa values of titratable residues in H2 subtype HA. The calculated net‐charges in HA1 globular heads increase from 0e (pH 7.5) to +14e (pH 4.5), indicating that the charge repulsion drives the detrimerization of HA globular domains. In HA2 stem regions, critical pH sensors, such as Glu1032, His181, and Glu891, are identified to facilitate the essential structural reorganizations in the fusing pathways, including fusion peptide release and interhelical loop transition. To probe the contribution of identified pH sensors and unveil the early steps of pH‐induced conformational change, we carried out conventional molecular dynamics simulations in explicit water with determined protonation state for each titratable residue in different environmental pH conditions. Particularly, energy barriers involving previously uncharacterized hydrogen bonds and hydrophobic interactions are identified in the fusion peptide release pathway. Nevertheless, comprehensive comparisons across HA family members indicate that different HA subtypes might employ diverse pH sensor groups along with different fusion pathways. Finally, we explored the fusion inhibition mechanism of antibody CR6261 and small molecular inhibitor TBHQ, and discovered a novel druggable pocket in H2 and H5 subtypes. Our results provide the underlying mechanism for the pH‐driven conformational changes and also novel insight for anti‐flu drug development. Proteins 2014; 82:2412–2428. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Fusion of influenza viruses with membranes is catalyzed by the viral spike protein hemagglutinin (HA). Under mildly acidic conditions (approximately pH 5) this protein undergoes a conformational change that triggers the exposure of the "fusion peptide", the hydrophobic N-terminal segment of the HA2 polypeptide chain. Insertion of this segment into the target membrane (or viral membrane?) is likely to represent a key step along the fusion pathway, but the details are far from being clear. The photoreactive phospholipid 1-palmitoyl-2-[11-[4-[3-(trifluoromethyl)diazirinyl]phenyl] [2-3H]undecanoyl]-sn-glycero-3-phosphocholine ([3H]PTPC/11), inserted into the bilayer of large unilamellar vesicles (LUVs), allowed us to investigate both the interaction of viruses with the vesicles under "prefusion" conditions (pH 5; 0 degrees C) and the fusion process itself occurring at elevated temperatures (greater than 15-20 degrees C) only. Despite the observed binding of viruses to LUVs at pH 5 and 0 degrees C, labeling of HA2 was very weak (less than 0.002% of the radioactivity originally present). In contrast, fusion could be readily monitored by the covalent labeling of that polypeptide chain. We have studied also the effect of temperature on the acid-induced (pH 5) interaction of bromelain-solubilized HA (BHA) with vesicles. Labeling of the BHA2 polypeptide chain was found to show a remarkable correlation with the temperature dependence of the fusion activity of whole viruses. A temperature-induced structural change appears to be critical for both the interaction of BHA with membranes and the expression of fusion activity of intact viruses.  相似文献   

11.
Fusion of influenza virus with the endosomal membrane of the host cell is mediated by the homotrimer-organized glycoprotein hemagglutinin (HA). Its fusion activity is triggered by a low pH-mediated conformational change affecting the structure of the HA1 and HA2 subunits. The HA2 subunits undergo a loop-to-helix transition leading to a coiled-coil structure, a highly conserved motif for many fusion mediating viral proteins. However, experimental studies showed that the HA2 coiled-coil structure is stable at neutral and low pH, implying that there is no direct relationship between low pH and the HA2 loop-to-helix transition. To interpret this observation, we used a computational approach based on the dielectric continuum solvent model to explore the influence of water and pH on the free energy change of the transition. The computations showed that the electrostatic interaction between HA2 fragments and water is the major driving force of the HA2 loop-to-helix transition leading to the coiled-coil structure, as long as the HA1 globular domain covering the HA2 subunits in the nonfusion competent conformation is reorganized and thereby allows water molecules to interact with the whole loop segments of the HA2 subunits. Moreover, we show that the energy released by the loop-to-helix transition may account for those energies required for driving the subsequent steps of membrane fusion. Such a water-driven process may resemble a general mechanism for the formation of the highly conserved coiled-coil motif of enveloped viruses.  相似文献   

12.
A reduction in pH is known to induce the disassociation of the tetrameric form of transthyretin and favor the formation of amyloid fibers. Using continuum electrostatic techniques, we calculate the titration curves and the stability of dimer and tetramer formation of transthyretin as a function of pH. We find that the tetramer and the dimer become less stable than the monomer as the pH is lowered. The free energy difference is 13.8 kcal/mol for dimer formation and 27 kcal/mol for tetramer formation, from the monomers, when the pH is lowered from 7 to 3.9. Similar behavior is observed for both the wild-type and the mutant protein. Certain residues (namely Glu-72, His-88, His-90, Glu-92, and Tyr-116), play an important role in the binding process, as seen by the considerable pK(1/2) change of these residues upon dimer formation.  相似文献   

13.
Influenza virus hemagglutinin (HA) fuses membranes at endosomal pH by a process which involves extrusion of the NH2-terminal region of HA2, the fusion peptide, from its buried location in the native trimer. We have examined the amino acid sequence requirements for a functional fusion peptide by determining the fusion capacities of site-specific mutant HAs expressed by using vaccinia virus recombinants and of synthetic peptide analogs of the mutant fusion peptides. The results indicate that for efficient fusion, alanine can to some extent substitute for the NH2-terminal glycine of the wild-type fusion peptide but that serine, histidine, leucine, isoleucine, or phenylalanine cannot. In addition, mutants containing shorter fusion peptides as a result of single amino acid deletions are inactive, as is a mutant containing an alanine instead of a glycine at HA2 residue 8. Substitution of the glycine at HA2 residue 4 with an alanine increases the pH of fusion, and valine-for-glutamate substitutions at HA2 residues 11 and 15 are without effect. We confirm previous reports on the need for specific HAo cleavage to generate functional HAs, and we show that both inappropriately cleaved HA and mutant HAs, irrespective of their fusion capacities, upon incubation at low pH undergo the structural transition required for fusion.  相似文献   

14.
A detailed molecular dynamics study of the haemagglutinin fusion peptide (N-terminal 20 residues of the HA2 subunits) in a model bilayer has yielded useful information about the molecular interactions leading to insertion into the lipids. Simulations were performed on the native sequence, as well as a number of mutant sequences, which are either fusogenic or nonfusogenic. For the native sequence and fusogenic mutants, the N-terminal 11 residues of the fusion peptides are helical and insert with a tilt angle of approximately 30 degrees with respect to the membrane normal, in very good agreement with experimental data. The tilted insertion of the native sequence peptide leads to membrane bilayer thinning and the calculated order parameters show larger disorder of the alkyl chains. These results indicate that the lipid packing is perturbed by the fusion peptide and could be used to explain membrane fusion. For the nonfusogenic sequences investigated, it was found that most of them equilibrate parallel to the interface plane and do not adopt a tilted conformation. The presence of a charged residue at the beginning of the sequence (G1E mutant) resulted in a more difficult case, and the outcomes do not fall straightforwardly into the general picture. Sequence searches have revealed similarities of the fusion peptide of influenza haemagglutinin with peptide sequences such as segments of porin, amyloid alpha eta peptide, and a peptide from the prion sequence. These results confirm that the sequence can adopt different folds in different environments. The plasticity and the conformational dependence on the local environment could be used to better understand the function of fusion peptides.  相似文献   

15.
In vitro channel activity of the C-terminal colicin E1 channel polypeptide under conditions of variable electrostatic interaction with synthetic lipid membranes showed distinct maxima with respect to pH and membrane surface potential. The membrane binding energy was determined from fluorescence quenching of the intrinsic tryptophans of the channel polypeptide by liposomes containing N-trinitrophenyl-phosphatidylethanolamine. Maximum in vitro colicin channel activity correlated with an intermediate magnitude of the electrostatic interaction. For conditions associated with maximum activity (40% anionic lipid, I = 0.12 M, pH 4.0), the free energy of binding was delta G approximately -9 kcal/mol, with nonelectrostatic and electrostatic components, delta Gnel approximately -5 kcal/mol and delta Gel approximately -4 kcal/mol, and an effective binding charge of +7 at pH 4.0. Binding of the channel polypeptide to negative membranes at pH 8 is minimal, whereas initial binding at pH 4 followed by a shift to pH 8 causes only 3-10% reversal of binding, implying that it is kinetically trapped, probably by a hydrophobic interaction. It was inferred that membrane binding and insertion involves an initial electrostatic interaction responsible for concentration and binding to the membrane surface. This is followed by insertion into the bilayer driven by hydrophobic forces, which are countered in the case of excessive electrostatic binding.  相似文献   

16.
One of the best characterized fusion proteins, the influenza virus hemagglutinin (HA), mediates fusion between the viral envelope and the endosomal membrane during viral entry into the cell. In the initial conformation of HA, its fusogenic subunit, the transmembrane protein HA2, is locked in a metastable conformation by the receptor-binding HA1 subunit of HA. Acidification in the endosome triggers HA2 refolding toward the final lowest energy conformation. Is the fusion process driven by this final conformation or, as often suggested, by the energy released by protein restructuring? Here we explored structural properties as well as the fusogenic activity of the full sized trimeric HA2(1–185) (here called HA2*) that presents the final conformation of the HA2 ectodomain. We found HA2* to mediate fusion between lipid bilayers and between biological membranes in a low pH-dependent manner. Two mutations known to inhibit HA-mediated fusion strongly inhibited the fusogenic activity of HA2*. At surface densities similar to those of HA in the influenza virus particle, HA2* formed small fusion pores but did not expand them. Our results confirm that the HA1 subunit responsible for receptor binding as well as the transmembrane and cytosolic domains of HA2 is not required for fusion pore opening and substantiate the hypothesis that the final form of HA2 is more important for fusion than the conformational change that generates this form.  相似文献   

17.
A conformationally restricted analog of the N-terminal 12-residue peptide segment of the HA2 subunit of the PPV/34, PR/8/34, and Jap/57 strains of influenza virus hemagglutinin was synthesized containing three residues of Calpha-methyl-valine. This peptide has a higher content of helical structure in the presence of 50% trifluoroethanol or when interacting with liposomes of egg phosphatidylcholine compared with the conformationally more flexible control peptide with the native sequence. The control and analog peptides had opposite effects on membrane curvature as measured by shifts in the bilayer-to-hexagonal phase transition temperature of a synthetic phosphatidylethanolamine derivative. The control peptide promoted more negative curvature, particularly at acidic pH and was also more potent than the analog in promoting lipid mixing. The results indicate that the ability of the peptide to sample a broader range of conformations is required for the influenza fusion peptide to destabilize membranes and that a rigid helical structure is less fusogenic. The difference between the two peptides and between pH 7.4 and pH 5.0 show a correlation between the ability to promote negative curvature and to accelerate lipid mixing.  相似文献   

18.
《Biophysical journal》2022,121(20):3811-3825
In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films. In contrast, we observed that the hemagglutinin 2 fusion peptide (HA2-FP) and the VSV-transmembrane domain (VSV-TMD) can penetrate deeply into the membranes. However, in the case of VSV-TMD, the penetration was suppressed already at low surface pressures, whereas HA2-FP was able to insert even into highly compressed films. Membrane fusion is accompanied by drastic changes of the membrane curvature. To investigate how the peptides affect the curvature of model lipid membranes, we examined the effect of the fusogenic peptides on the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt hydrostatic pressure reduction. We monitored this process in presence and absence of the peptides with small-angle x-ray scattering and found that HA2-FP and VSV-TMD drastically accelerate the equilibration, while the fusion loops of TBEV and VSV stabilize the swollen state of the lipid structures. In this work, we show that the class I fusion peptide of HA2 penetrates deeply into the hydrophobic region of membranes and is able to promote and accelerate the formation of negative curvature. In contrast, we found that the class II and III fusion loops of TBEV and VSV tend to counteract negative membrane curvature.  相似文献   

19.
Marked differences were observed between the H2 and H3 strains of influenza virus in their sensitivity to pretreatment at low pH. Whereas viral fusion and hemolysis mediated by influenza virus X:31 (H3 subtype) were inactivated by pretreatment of the virus at low pH, influenza virus A/Japan/305/57 (H2 subtype) retained those activities even after a 15-min incubation at pH 5.0 and 37 degrees C. Fusion with erythrocytes was measured by using the octadecylrhodamine-dequenching assay with both intact virions and CV-1 monkey kidney cells expressing hemagglutinin (HA) on the plasma membrane. To study the nature of the differences between the two strains, we examined the effects of low-pH treatment on the conformational change of HA by its susceptibility to protease digestion, exposure of the fusion peptide, and electron microscopy of unstained, frozen, hydrated virus. We found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH. The relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments.  相似文献   

20.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in the VSV G protein, comprising the residues 145-164, directly involved in membrane interaction and fusion. In the present work we studied the interaction of pep[145-164] with membranes using NMR to solve the structure of the peptide in two membrane-mimetic systems: SDS micelles and liposomes composed of phosphatidylcholine and phosphatidylserine (PC:PS vesicles). The presence of medium-range NOEs showed that the peptide has a tendency to form N- and C-terminal helical segments in the presence of SDS micelles. Analysis of the chemical shift index indicated helix-coil equilibrium for the C-terminal helix under all conditions studied. At pH 7.0, the N-terminal helix also displayed a helix-coil equilibrium when pep[145-164] was free in solution or in the presence of PC:PS. Remarkably, at the fusogenic pH, the region of the N-terminal helix in the presence of SDS or PC:PS presented a third conformational species that was in equilibrium with the helix and random coil. The N-terminal helix content decreases pH and the minor beta-structured conformation becomes more prevalent at the fusogenic pH. These data point to a beta-conformation as the fusogenic active structure-which is in agreement with the X-ray structure, which shows a beta-hairpin for the region corresponding to pep[145-164].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号