首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An established cell line (TM-4) derived from murine Sertoli cells, the major supportive cell type of the testes, secretes a protein that binds retinol when grown in serum-free chemically defined medium. The protein that binds retinol is trypsin-sensitive and has an apparent Kd for retinol of 54 nM. Cholesterol, retinyl acetate, or UV-irradiated retinol at levels 100-fold in excess of retinol are poor competitors of [3H]retinol binding. Retinoic acid at a 100-fold molar excess inhibited [3H]retinol binding by 71%. In contrast, excess unlabeled retinol completely inhibits [3H]retinol binding. More than 80% of the total retinol-binding activity in confluent cultures is found in the culture medium. Prior to incubation with retinol, the protein that binds retinol has an apparent Mr of less than 150,000 by column chromatography; however, after incubation with retinol the protein that binds retinol exhibits an apparent Mr of 2 X 10(6) or greater and a sedimentation coefficient greater than 4 S. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals that the major iodinatable component of the aggregated protein that binds retinol has an apparent Mr of 70,000. The secreted protein that binds retinol is not immunologically cross-reactive with either serum or cellular retinol-binding protein or transferrin. These findings suggest that Sertoli cells may secrete a protein that binds retinol. Such a protein could be involved in the transport of retinol either to the lumen of the seminiferous tubules or to the developing germ cells themselves.  相似文献   

2.
Ever since the fortuitous observation that beta-lactoglobulin (beta-Lg), the major whey protein in the milk of ruminants, bound retinol, the details of the binding have been controversial. beta-Lg is a lipocalin, like plasma retinol-binding protein, so that ligand association was expected to make use of the central cavity in the protein. However, an early crystallographic analysis and some of the more recent solution studies indicated binding elsewhere. We have now determined the crystal structures of the complexes of the trigonal form of beta-Lg at pH 7.5 with bound retinol (R=21.4% for 7329 reflections between 20 and 2.4 A resolution, R(free)=30.6%) and with bound retinoic acid (R=22.7% for 7813 reflections between 20 and 2.34 A resolution, R(free)=29.8%). Both ligands are found to occupy the central calyx in a manner similar to retinol binding in retinol-binding protein. We find no evidence of binding at the putative external binding site in either of these structural analyses. Further, competition between palmitic acid and retinol reveals only palmitate bound to the protein. An explanation is provided for the lack of ligand binding to the orthorhombic crystal form also obtained at pH 7.5. Finally, the possible function of beta-Lg is discussed in the light of its species distribution and similarity to other lipocalins.  相似文献   

3.
A minigene encoding rat retinol-binding protein (RBP) was transfected into HeLa cells, which do not express endogenous RBP, transthyretin, or cellular retinol-binding protein. The HeLa cells manufactured and secreted the transfected gene product, demonstrating that RBP-transthyretin assembly is not a requirement for the secretion of RBP. When HeLa cells were grown under vitamin A-deficient conditions, RBP accumulated in the endoplasmic reticulum. Both serum and retinol stimulated secretion of RBP in a concentration-dependent manner. The retinol-regulated secretion occurred also after protein synthesis had been blocked by cycloheximide. Addition of holo-RBP or retinal, but not retinoic acid, stimulated secretion of RBP. Thus, an in vitro model system that resembles the rat hepatocyte in vivo with regard to the known regulation of RBP secretion has been established in a human cell line of extrahepatic origin. It can be concluded that cellular retinol-binding protein is not required for the transfer of retinol to RBP and that the mechanism whereby retinol controls the intracellular transport of RBP is neither specific for tissues synthesizing RBP nor species-specific. To investigate the structural properties responsible for the endoplasmic reticulum retention of RBP in the absence of its ligand, a cDNA encoding chicken purpurin, a protein that is 50% identical to RBP and that binds retinol, was expressed in HeLa cells. In contrast to RBP, purpurin was not retained in vitamin A-deficient HeLa cells.  相似文献   

4.
A novel retinol-binding protein, resolved during purification into two essentially identical forms, has been discovered in the rat. It was purified to apparent homogeneity, using whole neonatal rat pups as source. The protein is distinct from other known retinol-binding proteins by behavior during purification, spectra of bound retinol, and immunochemical reactivity. It is a single polypeptide chain with molecular weight of about 16,000. The protein binds all-trans-retinol as an endogenous ligand. Retinol bound to the protein exhibited considerably altered absorbance and fluorescence excitation spectra compared to free retinol in organic solvent. The retinol-binding protein was found by radioimmunoassay in a number of tissues of the neonatal rat. However, liver and intestine had levels 100-fold higher than any other tissues examined. The intestine of the adult rat had levels 500-fold higher than any other tissue examined, with a decreasing gradient from jejenum to colon. The high levels in intestine suggest this protein may have a role in the absorption of retinol.  相似文献   

5.
Cellular retinol-binding protein (type II) (CRBP(II)), a newly described retinol-binding protein, is present in the small intestinal absorptive cell at high levels. Retinol (vitamin A alcohol) presented as a complex with CRBP(II) was found here to be esterified by microsomal preparations from rat small intestinal mucosa. The esterification observed utilized an endogenous acyl donor(s) and produced retinyl esters containing linoleate, oleate, palmitate, and stearate in a proportion quite similar to that previously reported for retinyl esters in lymph and isolated chylomicrons of rat. No dependence on endogenous or exogenous acyl-CoA could be demonstrated. The apparent Km for retinol-CRBP(II) in the reaction with endogenous acyl donor was 2.4 X 10(-7) M. Retinol presented as a complex with CRBP(II) was esterified more than retinol presented as a complex with cellular retinol-binding protein or retinol-binding protein, two other proteins known to bind retinol in vivo, but about the same as retinol presented bound to bovine serum albumin or beta-lactoglobulin. The ability of protein-bound retinol to be esterified was related to accessibility of the hydroxyl group, as judged by the ability of alcohol dehydrogenase to oxidize the bound retinol. However, whereas retinol bound to CRBP(II) was unavailable for esterification in any acyl-CoA-dependent reaction, retinol bound to bovine serum albumin was rapidly esterified in a reaction utilizing exogenous acyl-CoA. The results suggest that one of the functions of CRBP(II) is to accept retinol after it is absorbed or generated from carotenes in the small intestine and present it to the appropriate esterifying enzyme.  相似文献   

6.
F M Herr  D E Ong 《Biochemistry》1992,31(29):6748-6755
Esterification of retinol (vitamin A alcohol) with long-chain fatty acids by lecithin-retinol acyltransferase (LRAT) is an important step in both the absorption and storage of vitamin A. Retinol in cells is bound by either cellular retinol binding protein (CRBP), present in most tissues including liver, or cellular retinol binding protein type II [CRBP(II)], present in the absorptive cell of the small intestine. Here we investigated whether retinol must dissociate from these carrier proteins in order to serve as a substrate for LRAT by comparing Michaelis constants for esterification of retinol presented either free or bound. Esterification of free retinol by both liver and intestinal LRAT resulted in Km values (0.63 and 0.44 microM, respectively) similar to those obtained for esterification of retinol-CRBP (0.20 and 0.78 microM, respectively) and esterification of retinol-CRBP(II) (0.24 and 0.32 microM, respectively). Because Kd values for retinol-CRBP and retinol-CRBP(II) are 10(-8)-10-(-10) M, these similar Km values indicated prior dissociation is not required and that direct binding protein-enzyme interaction must occur. Evidence for such interaction was obtained when apo-CRBP proved to be a potent competitive inhibitor of LRAT, with a KI (0.21 microM) lower than the Km for CRBP-retinol (0.78 microM). Apo-CRBP(II), in contrast, was a poor competitor for esterification of retinol bound to CRBP(II). Apo-CRBP reacted with 4 mM p-(chloromercuri)benzenesulfonic acid lost retinol binding ability but retained the ability to inhibit LRAT, confirming that the inhibition could not be explained by a reduction in the concentration of free retinol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have reported previously that cellular retinol-binding protein (CRBP) is able to transfer retinol to specific binding sites in nuclei and chromatin. In this report, we have examined the specificity of the interaction of the protein moiety of retinol-CRBP (R-CRBP) with chromatin and nuclei in the transfer process. We first determined the ability of apo-CRBP, apo-serum retinol-binding protein (RBP), and apo beta-lactoglobulin (BLG), all capable of retinol binding, to compete with R-CRBP in the transfer of retinol to chromatin and nuclei. Apo-CRBP was an effective competitor but apo-RBP and apo-BLG showed no competitive ability. On the other hand, cellular retinol-binding protein type II (CRBP(II], whose amino acid sequence shows a considerable similarity to CRBP, did compete for the transfer of retinol from the R-CRBP complex, but less effectively than CRBP. These results demonstrate that the interaction of the protein moiety of the R-CRBP complex with nuclei and chromatin is quite specific.  相似文献   

8.
Vitamin A components, retinol and retinoic acid, are fat-soluble micronutrients and critical for many biological processes, including vision, reproduction, growth, and regulation of cell proliferation and differentiation. The cellular uptake of Vitamin A is through specific interaction of a plasma membrane receptor with serum retinol-binding protein. Human serum albumin (HSA), as a transport protein, is the major target of several micronutrients in vivo. The aim of present study was to examine the interaction of retinol and retinoic acid with human serum albumin in aqueous solution at physiological conditions using constant protein concentration and various retinoid contents. FTIR, UV–vis, CD and fluorescence spectroscopic methods were used to determine retinoid binding mode, the binding constant and the effects of complexation on protein secondary structure.

Structural analysis showed that retinol and retinoic acid bind non-specifically (H-bonding) via protein polar groups with binding constants of Kret = 1.32 (±0.30) × 105 M−1 and Kretac = 3.33 (±0.35) × 105 M−1. The protein secondary structure showed no alterations at low retinoid concentrations (0.125 mM), whereas at high retinoid content (1 mM), an increase of -helix from 55% (free HSA) to 60% and a decrease of β-sheet from 22% (free HSA) to 18% occurred in the retinoid–HSA complexes. The results point to a partial stabilization of protein secondary structure at high retinoid content.  相似文献   


9.
Novel retinoid-binding proteins from filarial parasites.   总被引:2,自引:1,他引:1       下载免费PDF全文
The present study deals with the discovery and partial characterization of specific binding proteins for retinol and retinoic acid from filarial parasites (worms of the superfamily Filarioidea), including those from two species of Onchocerca. These binding proteins, which are distinct in their physicochemical properties and in the mode of ligand interactions from the host-tissue retinoid-binding proteins, may be involved in the mediation of the putative biological roles of retinoids in the control of parasitic growth, differentiation and reproduction. Parasite retinol-binding protein and retinoic acid-binding protein exhibited specificity for binding retinol and retinoic acid respectively. Both the binding proteins showed an s20,w value of 2.0 S. On gel filtration, both proteins were retarded to a position corresponding to the same molecular size (19.0 kDa). On preparative columns, the parasite binding proteins exhibited isoelectric points at pH 5.7 and 5.75. Unlike the retinoid-binding proteins of mammalian and avian origin, the parasite retinoid-binding proteins showed a lack of mercurial sensitivity in ligand binding. The comparative amounts of retinoic acid-binding protein in five parasites, Onchocerca volvulus, Onchocerca gibsoni, Dipetalonema viteae, Brugia pahangi and Dirofilaria immitis, were between 2.7 and 3.1 pmol of retinoic acid bound/mg of extractable protein. However, the levels of parasite retinol-binding protein were between 4.8 and 5.8 pmol/mg, which is considerably higher than the corresponding levels of cellular retinol-binding protein of mammalian and avian origin. Both retinol- and retinoic acid-binding-protein levels in O. volvulus-infected human nodules and O. gibsoni-infected bovine nodules were similar to their levels in mammalian tissues. Also, these nodular binding proteins, like the host-binding proteins, exhibited mercurial sensitivity to ligand interactions.  相似文献   

10.
The uptake of retinol was examined in cultured Sertoli cells when retinol was provided as a complex with the transport protein retinol-binding protein (RBP). Sertoli cells accumulated [3H]retinol in a time- and temperature-dependent manner. At 32 degrees C, the rate of retinol accumulation was biphasic. Accumulation was linear for approximately 1 h, but then accumulation continued at a linear but decreased rate for 23 h. The change in rate of retinol accumulation occurred when the cells had accumulated approximately 0.53 pmol of retinol/micrograms of cellular DNA. This amount of retinol was approximately equal to the cellular content of cellular retinol-binding protein (CRBP). Extraction and HPLC analysis of the cell-associated radioactivity yielded retinol and retinyl esters, indicating that a significant proportion of the accumulated retinol was esterified. Excess unlabeled retinol-RBP competed with [3H]retinol-RBP for [3H]retinol delivery to the cells, indicating that RBP delivery of retinol was a saturable and competable process. However, free [3H]retinol associated with Sertoli cells in a noncompetable manner. The transport constant for specific retinol accumulation from RBP was 3.0 microM, suggesting that any change in the normal circulating retinol-RBP level (approximately 2 microM) would directly affect the rate of retinol accumulation. Neither iodinated nor reductively methylated RBP was accumulated by or tightly bound to Sertoli cells. In addition, energy inhibitors and lysosomal poisons had no effect on [3H]retinol accumulation, indicating that RBP delivery of retinol to Sertoli cells did not occur by endocytosis of the retinol-RBP complex. Competition studies indicated, however, that protein recognition is important in the retinol uptake process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have investigated the steps by which retinol, released from plasma retinol-binding protein (RBP), enters the cells and is accumulated for the most part as a retinyl-ester, only a small fraction of it being present as a complex with cytoplasmic retinol-binding protein (CRBP). For this purpose, we have developed a cell-free system composed of plasma membrane-enriched fractions from bovine retinal pigment epithelium which selectively incorporates exogenous vitamin A when presented as a retinol-RBP complex. Upon incubation in the presence of [3H]retinol-RBP, isolated plasma membrane fractions take up and esterify retinol. A 4-fold reduction of total vitamin A incorporation is observed in conditions which specifically inhibit retinyl-ester formation, thus indicating that the two processes of retinol uptake and esterification are functionally coupled. Evidence is presented that retinol bound to a plasma membrane receptor sharing functional and structural similarities with CRBP is the actual substrate for esterification. Vitamin A accumulation seems to require retinol esterification to allow the recycling of a limited number of free, plasma membrane-associated, retinol receptors. Mobilization of retinol stored as a membrane-bound retinyl-ester is mediated by a membrane-associated hydrolase activity selectively controlled by the level of apo-CRBP which acts as a carrier for the released retinol. Up to 90% of membrane-bound vitamin A is released upon incubation in the presence of apo-CRBP (11 microM) with concomitant formation of retinol-CRBP. The overall process, in which retinol never needs to leave its binding proteins, allows the accumulation of vitamin A in the form of a membrane-bound retinyl-ester and its regulated mobilization as a retinol-CRBP complex.  相似文献   

12.
1. A simple, efficient three-step method for purification of serum retinol-binding-protein is described with homogeneity obtained after chromatography on DEAE-Sephadex, CM-Sephadex and Sephadex G-100. 2. Evidence is presented indicating that retinol receptors present in the cytosol fraction of chick retina and pigment epithelium are separate and distinct from purified retinol-binding protein. Fluorescence characteristics are different in tissue cytosol and serum as assessed by sucrose density gradient analysis. Tissue retinol receptors do not interact with human serum prealbumin although the prealbumin readily complexes with purified chicken retinol-binding protein. Likewise, no binding to serum retinol-binding protein antibody could be detected by sucrose density gradient analysis, in immunoprecipitation experiments or by double immunodiffusion. It thus appears that specific retinol receptors are present in neural retina and pigment epithelium that are different from serum retinol-binding protein.  相似文献   

13.
When the 100,000 X g supernatant fractions of several rat organs are incubated with all-trans-[3H]retinoic acid, a binding component for retinoic acid with a sedimentation coefficient of 2 S can be detected by sucrose gradient centrifugation. This tissue binding protein for retinoic acid is distinct from the tissue binding protein for retinol which has been previously described. The tissue retinoic acid-binding protein has been partially purified from rat testis and this partially purified protein would appear to have a molecular weight of 14,500 as determined by gel filtration and high binding specificity for all-trans-retinoic acid. Binding of [3H]retinoic acid is not diminished by a 200-fold molar excess of retinal, retinol, or oleic acid but is reduced by a 200-fold excess of unlabeled retinoic acid. Tissue retinoic acid-binding protein can be detected in extracts of brain, eye, ovary, testis, and uterus but is apparently absent in heart muscle, small intestine, kidney, liver, lung, gastrocnemious muscle, serum, and spleen. This distribution is different than that observed for the tissue retinol-binding protein. Tissue retinol-binding protein was also purified extensively from rat testis. The partially purified protein has an apparent molecular weight of 14,000 and high binding specificity for all-trans-[3H]retinol as only unlabeled all-trans-retinol but not retinal, retinoic acid, retinyl acetate, retinyl palmitate, or oleic acid could diminish binding of the 3H ligand under the conditions employed. The partially purified protein has a fluorescence excitation spectrum with lambda max at 350 nm. In contrast, the retinol-binding protein isolated from rat serum and described by others has a fluorescence excitation spectrum with lambda max at 334 nm and an apparent molecular weight of 19,000. When partially purified tissue retinol-binding protein is extracted with heptane, the heptane extract has a fluorescence excitation spectrum similar to that of all-trans-retinol.  相似文献   

14.
Human small intestine was found to contain a retinol-binding protein similar to the gut-specific cellular retinol-binding protein, type two [CRBP (II)], described in the rat. This newly detected human protein was immunochemically distinct from human cellular retinol binding protein previously described but immunochemically similar to rat CRBP (II). The partially purified protein bound retinol and exhibited fluorescence excitation and emission spectra distinct from those spectra for retinol bound to pure human CRBP but similar to the spectra for retinol bound to rat CRBP (II). Human CRBP (II) could be localized to the villus-associated enterocytes by immunohistochemistry, using antiserum against rat CRBP (II). The protein was abundant representing 0.4% of the total soluble protein in a jejunum mucosal extract. This protein may play an important role in the absorption and necessary intestinal metabolism of vitamin A.  相似文献   

15.
The transfer of retinol from its complex with the retinol-binding protein to cell surfaces was studied using unilamellar liposomes as a cell surface model. The transfer of retinol to liposomes at 37°C was rapid and reached an apparent equilibrium within 60 min. The amount of retinol transferred to the liposomes at equilibrium was directly proportional to the starting concentration of retinol: retinol-binding protein over a wide range of retinol:retinol-binding protein concentrations and also directly proportional to the concentration of liposomal phospholipid in the system, when the concentration of retinol:retinol-binding protein was held constant. The transfer increased slightly with temperature. Transfer was increased by a factor of 1.8 at pH 4.5 compared to pH around 7. Prealbumin in amounts sufficient to complex all retinol:retinol-binding protein, decreased retinol transfer to liposomes indicating that prealbumin increases the affinity of retinol-binding protein for retinol. Addition of apo retinol-binding protein to the system decreased the transfer of retinol to liposomes considerably probably through competition with the liposomes for retinol. In similarly designed experiments delipidated bovine serum albumin competed much less with liposomes for retinol. The results show that spontaneous transfer of retinol from the retinol:retinol-binding protein complex to liposomal membranes occurs in vitro and suggests that a similar transfer may occur in vivo from retinol:retinol-binding protein to cell surface membranes.  相似文献   

16.
The transfer of retinol from its complex with the retinol-binding protein to cell surfaces was studied using unilamellar liposomes as a cell surface model. The transfer of retinol to liposomes at 37 degrees C was rapid and reached an apparent equilibrium within 60 min. The amount of retinol transferred to the liposomes at equilibrium was directly proportional to the starting concentration of retinol:retinol-binding protein over a wide range of retinol:retinol-binding protein concentrations and also directly proportional to the concentration of liposomal phospholipid in the system, when the concentration of retinol:retinol-binding protein was held constant. The transfer increased slightly with temperature. Transfer was increased by a factor of 1.8 at pH 4.5 compared to pH around 7. Prealbumin in amounts sufficient to complex all retinol:retinol-binding protein, decreased retinol transfer to liposomes indicating that prealbumin increases the affinity of retinol-binding protein for retinol. Addition of apo retinol-binding protein to the system decreased the transfer of retinol to liposomes considerably probably through competition with the liposomes for retinol. In similarly designed experiments delipidated bovine serum albumin competed much less with liposomes for retinol. The results show that spontaneous transfer of retinol from the retinol:retinol-binding protein complex to liposomal membranes occurs in vitro and suggests that a similar transfer may occur in vivo from retinol:retinol-binding protein to cell surface membranes.  相似文献   

17.
N Noy  W S Blaner 《Biochemistry》1991,30(26):6380-6386
The interactions of retinol with rat cellular retinol-binding protein (CRBP) and with rat serum retinol-binding protein (RBP) were studied. The equilibrium dissociation constants of the two retinol-protein complexes (Kd) were found to be 13 x 10(-9) and 20 x 10(-9) M for CRBP and for RBP, respectively. The kinetic parameters governing the interactions of retinol with the two binding proteins were also studied. It was found that although the equilibrium dissociation constants of the two retinol-protein complexes were similar, retinol interacted with CRBP 3-5-fold faster than with RBP; the rate constants for dissociation of retinol from CRBP and from RBP (koff) were 0.57 and 0.18 min-1, respectively. The rate constants for association of retinol with the two proteins (kon) were calculated from the expression: Kd = koff/kon. The kon's for retinol associating with CRBP and with RBP were found to be 4.4 x 10(7) and 0.9 x 10(7) M-1 min-1, respectively. The data suggest that the initial events of uptake of retinol by cells are not rate-limiting for this process and that the rate of uptake is probably determined by the rate of metabolism of this ligand. The data indicate further that the distribution of retinol between RBP in blood and CRBP in cytosol is at equilibrium and that intracellular levels of retinol are regulated by the levels of CRBP.  相似文献   

18.
Retinol esterification in Sertoli cells by lecithin-retinol acyltransferase   总被引:1,自引:0,他引:1  
Esterification of retinol occurs during the metabolism of vitamin A in the testis. An acyl-CoA:retinol acyltransferase (ARAT) activity has been described for microsomes isolated from testis homogenates. That activity was also observed here in microsomal preparations obtained from cultured Sertoli cells from 20-day-old (midpubertal) rats. ARAT catalyzed the synthesis of retinyl laurate when free retinol and lauroyl-CoA were provided as substrates. However, in the absence of exogenous acyl-CoA, retinol was esterified by a different activity in a manner similar to the lecithin:retinol acyltransferase (LRAT) activity described recently for liver and intestine. Microsomal preparations obtained from enriched Sertoli cell fractions from the adult rat testis had 75-fold higher levels of LRAT than the preparations from midpubertal animals, but ARAT activity was the same in both these preparations. LRAT utilized an endogenous acyl donor and either unbound retinol or retinol complexed with cellular retinol-binding protein (CRBP) to catalyze the synthesis of retinyl linoleate, retinyl oleate, retinyl palmitate, and retinyl stearate. The addition of exogenous dilaurylphosphatidylcholine (DLPC) resulted in the synthesis of retinyl laurate. The esterification from both exogenous DLPC and endogenous acyl donor was inhibited by 2 mM phenylmethanesulfonyl fluoride (PMSF). ARAT activity was not affected by similar concentrations of PMSF. Furthermore, retinol bound to CRBP, a protein known to be present in Sertoli cells, was not an effective substrate for testicular ARAT. When retinol uptake and metabolism were examined in cultured Sertoli cells from 20-day-old rats, the cells synthesized the same retinyl esters that were produced by microsomal LRAT in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Comparative 19F NMR studies were performed on rat cellular retinol-binding protein (CRBP) and cellular retinol-binding protein II (CRBPII) to better understand their role in intracellular retinol metabolism within the polarized absorptive epithelial cells (enterocytes) of the intestine. Efficient incorporation of 6-fluorotryptophan (6-FTrp) into these homologous proteins was achieved by growing a tryptophan auxotroph of Escherichia coli, harboring prokaryotic expression vectors with either a full-length rat CRBPII or CRBP cDNA on defined medium supplemented with the analog. It is possible to easily distinguish resonances corresponding to 6-FTrp-apoCRBP, 6-FTrp-CRBP-retinol (or retinal), 6-FTrp-apoCRBPII, and 6-FTrp-CRBPII-retinol (or retinal). We were thus able to use 19F NMR spectroscopy to monitor transfer of all-trans-retinol and all-trans-retinal between CRBPII and CRBP in vitro. Retinol complexed to CRBPII is readily transferred to CRBP, whereas retinol complexed to CRBP is not readily transferred to CRBPII. We estimated that the Kd for CRBP-retinol is approximately 100-fold less than the Kd for CRBPII-retinol. Transfer of all-trans-retinal occurs readily from CRBPII to CRBP and from CRBP to CRBPII. Results from competitive binding studies with retinol and retinal indicated that there is a much larger difference between the affinities of CRBP for retinol and retinal than between the affinities of CRBPII for these two ligands. However, the differences in binding specificities reflect differences in how the two proteins interact with retinol, rather than with retinal. 19F NMR analysis of recombinant isotopically labeled proteins represents a sensitive new and useful method for monitoring retinoid flux between the CRBPs in vitro.  相似文献   

20.
视黄醇结合蛋白及其基因的分子生物学   总被引:12,自引:0,他引:12  
郭晓红  储明星  周忠孝 《遗传》2004,26(2):257-262
视黄醇结合蛋白(RBP)是一类维生素A(VitA)的运载蛋白,参与血清和细胞内视黄醇/视黄酸的转运,是疏水小分子结合蛋白家族的成员。这类RBP主要在肝脏中合成并释放入血液进而进入各种组织。血清RBP通过与视黄醇、前白蛋白及细胞表面受体相互作用,在VitA 的储存、代谢、转运到周围靶器官中具有重要功能;细胞RBP则主要在细胞内发挥类似作用。本文介绍了视黄醇结合蛋白的作用机理、组织定位和发育性表达,还介绍了视黄醇结合蛋白基因的结构、染色体定位以及与动物繁殖性能的关系。Abstract: Retinol-binding proteins (RBPs) are a kind of circulating carrier proteins for serum and cellular retinol and retinol acid, which are lipid-soluble vitamins, and are members of hydrophobic binding protein family. Serum RBPs were synthesized primarily in liver, then was released into blood streams, and then to various tissues. Under the interaction with substances such as retinol, pre-albumin and the receptors of cellular surface, they play important roles in storage, metabolism of VitA and transport of VitA to the target cells. Cellular RBPs play the similar function as serum RBPs in intracell. This review introduces action mechanism, tissue localization and developmental expression of retinol-binding proteins. This review also introduces the structure, chromosome mapping and their relationships with reproductive performance of retinol-binding protein genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号