首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The co-crystal structure of Compound 6b with tubulin was prepared and solved for indicating the binding mode and for further optimization. Based on the co-crystal structures of tubulin with plinabulin and Compound 6b, a total of 27 novel A/B/C-rings plinabulin derivatives were designed and synthesized. Their biological activities were evaluated against human lung cancer NCI-H460 cell line. The optimum phenoxy-diketopiperazine-type Compound 6o exhibited high potent cytotoxicity (IC50 = 4.0 nM) through SAR study of three series of derivatives, which was more potent than plinabulin (IC50 = 26.2 nM) and similar to Compound 6b (IC50 = 3.8 nM) against human lung cancer NCI-H460 cell line. Subsequently, the Compound 6o was evaluated against other four human cancer cell lines. Both tubulin polymerization assay and immunofluorescence assay showed that Compound 6o could inhibit microtubule polymerization efficiently. Furthermore, theoretical calculation of the physical properties and molecular docking were elucidated for these plinabulin derivatives. The binding mode of Compound 6o was similar to Compound 6b based on the result of molecular docking. The theoretical calculated LogPo/w and PCaco of Compound 6o were better than Compound 6b, which could enhance its cytostatic activity. Therefore, Compound 6o might be developed as a novel potent anti-microtubule agent.  相似文献   

2.
A series of novel tacrine-isatin Schiff base hybrid derivatives (7a-p) were designed, synthesized and evaluated as multi-target candidates against Alzheimer’s disease (AD). The biological assays indicated that most of these compounds displayed potent inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and specific selectivity for AChE over BuChE. It was also found that they act as excellent metal chelators. The compounds 7k and 7m were found to be good inhibitors of AChE-induced amyloid-beta (Aβ) aggregation. Most of the compounds inhibited AChE with the IC50 values, ranging from 0.42 nM to 79.66 nM. Amongst them, 7k, 7m and 7p, all with a 6 carbon linker between tacrine and isatin Schiff base exhibited the strongest inhibitory activity against AChE with IC50 values of 0.42 nM, 0.62 nM and 0.95 nM, respectively. They were 92-, 62- and 41-fold more active than tacrine (IC50 = 38.72 nM) toward AChE. Most of the compounds also showed a potent BuChE inhibition among which 7d with an IC50 value of 0.11 nM for BuChE is the most potent one (56-fold more potent than that of tacrine (IC50 = 6.21 nM)). In addition, most compounds exhibited the highest metal chelating property. Kinetic and molecular modeling studies revealed that 7k is a mixed-type inhibitor, capable of binding to catalytic and peripheral site of AChE. Our findings make this hybrid scaffold an excellent candidate to modify current drugs in treating Alzheimer’s disease (AD).  相似文献   

3.
Phosphodiesterase-9 (PDE9) is a promising target for treatment of Alzheimer’s disease (AD). To discover multifunctional anti-AD agents with capability of PDE9 inhibition and antioxidant activity, a series of novel pyrazolopyrimidinone derivatives, coupling with the pharmacophore of antioxidants such as ferulic and lipolic acids have been designed with the assistance of molecular docking and dynamics simulations. Twelve out of 14 synthesised compounds inhibited PDE9A with IC50 below 200?nM, and showed good antioxidant capacities in the ORAC assay. Compound 1h, the most promising multifunctional anti-AD agent, had IC50 of 56?nM against PDE9A and good antioxidant ability (ORAC (trolox)?=?3.3). The selectivity of 1h over other PDEs was acceptable. In addition, 1h showed no cytotoxicity to human neuroblastoma SH-SY5Y cells. The analysis on structure-activity relationship (SAR) and binding modes of the compounds may provide insight into further modification.  相似文献   

4.
Abstract

Fibroblast growth-factor receptor (FGFR) is a potential target for cancer therapy. We designed three novel series of FGFR1 inhibitors bearing indazole, benzothiazole, and 1H-1,2,4-triazole scaffold via fragment-based virtual screening. All the newly synthesised compounds were evaluated in vitro for their inhibitory activities against FGFR1. Compound 9d bearing an indazole scaffold was first identified as a hit compound, with excellent kinase inhibitory activity (IC50 = 15.0?nM) and modest anti-proliferative activity (IC50 = 785.8?nM). Through two rounds of optimisation, the indazole derivative 9?u stood out as the most potent FGFR1 inhibitors with the best enzyme inhibitory activity (IC50 = 3.3?nM) and cellular activity (IC50 = 468.2?nM). Moreover, 9?u also exhibited good kinase selectivity. In addition, molecular docking study was performed to investigate the binding mode between target compounds and FGFR1.  相似文献   

5.
Although there is no amino acid sequence similarity between maxadilan (Maxa) and pituitary adenylate cyclase activating polypeptide (PACAP), our synthetic Maxa was found to bind PACAP specific receptors (PAC-1 receptors) with a high affinity, but low potency for the accumulation of cAMP in PC12 cells. Competitive binding studies of 125I-PACAP-27 to rat cortical membranes allowed exploration of the structural requirements for this interaction using mini-libraries constructed by solid-phase peptided synthesis, that include disulfide isomers, N-, C- and middle segment deleted peptides and analogs. Maxa as well as PACAP38 inhibited the specific binding of 125I-PACAP-27 with IC50 values of 3.89 and 4.90 nM, respectively. The most potent derivative of our synthetic Maxa-analogs with an IC50 value of 1.99 nM was Maxa[1–23 + 43–61, S–S14–51 Ala1,5] which consists of N- (position 1–23) and C- (position 43-61) terminal linear fragments cross-linked by a disulfide bridge between positions 14 and 51. This peptide did not increase intracellular cAMP, at a concentration of 100 nM, but inhibited cAMP accumulation induced by 1 nM PACAP-27 in PC12 cells, whereas wild Maxa increased intracellular cAMP although it was weaker than PACAP-27. Our data suggest deletion of the middle segment between residues 24–42 affords some derivatives that behave as low affinity antagonists. This paper is dedicated to the memory of Professor Bruce Merrifield, a pioneer and one of the most important contributors to solid-phase synthesis.  相似文献   

6.
A microplate, scintillation proximity assay to measure the coupled transglycosylase–transpeptidase activity of the penicillin binding proteins in Escherichia coli membranes was developed. Membranes were incubated with the two peptidoglycan sugar precursors UDP-N-acetyl muramylpentapeptide (UDP-MurNAc(pp)) and UDP-[3H]N-acetylglucosamine in the presence of 40 μM vancomycin to allow in situ accumulation of lipid II. In a second step, vancomycin inhibition was relieved by addition of a tripeptide (Lys-d-ala-d-ala) or UDP-MurNAc(pp), resulting in conversion of lipid II to cross-linked peptidoglycan. Inhibitors of the transglycosylase or transpeptidase were added at step 2. Moenomycin, a transglycosylase inhibitor, had an IC50 of 8 nM. Vancomycin and nisin also inhibited the assay. Surprisingly, the transpeptidase inhibitors penicillin and ampicillin showed no inhibition. In a pathway assay of peptidoglycan synthesis, starting from the UDP linked sugar precursors, inhibition by penicillin was reversed by a ‘neutral’ combination of vancomycin plus tripeptide, suggesting an interaction thus far unreported.  相似文献   

7.
Colchicine is the major alkaloid isolated from the plant Colchicum autumnale, which shows strong therapeutic effects towards different types of cancer. However, due to the toxicity of colchicine towards normal cells its application is limited. To address this issue we synthesized a series of seven triple-modified 4-bromothiocolchicine analogues with amide moieties. These novel derivatives were active in the nanomolar range against several different cancer cell lines and primary acute lymphoblastic leukemia cells, specifically compounds: 5–9 against primary ALL-5 (IC50 = 5.3–14 nM), 5, 7–9 against A549 (IC50 = 10 nM), 5, 7–9 against MCF-7 (IC50 = 11 nM), 5–9 against LoVo (IC50 = 7–12 nM), and 5, 7–9 against LoVo/DX (IC50 = 48–87 nM). These IC50 values were lower than those obtained for unmodified colchicine and common anticancer drugs such as doxorubicin and cisplatin. Further studies revealed that colchicine and selected analogues induced characteristics of apoptotic cell death but manifested their effects in different phases of the cell cycle in MCF-7 versus ALL-5 cells. Specifically, while colchicine and the studied derivatives arrested MCF-7 cells in mitosis, very little mitotically arrested ALL-5 cells were observed, suggesting effects were manifest instead in interphase. We also developed an in silico model of the mode of binding of these compounds to their primary target, β-tubulin. We conducted a correlation analysis (linear regression) between the calculated binding energies of colchicine derivatives and their anti-proliferative activity, and determined that the obtained correlation coefficients strongly depend on the type of cells used.  相似文献   

8.
9.
The autotaxin-lysophophatidic acid (ATX-LPA) signaling pathway is involved in several human diseases such as cancer, autoimmune diseases, inflammatory diseases neurodegenerative diseases and fibrotic diseases. Herein, a series of 4-phenyl-thiazole based compounds was designed and synthesized. Compounds were evaluated for their ATX inhibitory activity using FS-3 and human plasma assays. In the FS-3 assay, compounds 20 and 21 significantly inhibited the ATX at low nanomolar level (IC50 = 2.99 and 2.19 nM, respectively). Inhibitory activity of 21 was found to be slightly better than PF-8380 (IC50 = 2.80 nM), which is one of the most potent ATX inhibitors reported till date. Furthermore, 21 displayed higher potency (IC50 = 14.99 nM) than the first clinical ATX inhibitor, GLPG1690 (IC50 = 242.00 nM) in the human plasma assay. Molecular docking studies were carried out to explore the binding pattern of newly synthesized compounds within active site of ATX. Docking studies suggested the putative binding mode of the novel compounds. Good ATX inhibitory activity of 21 was attributed to the hydrogen bonding interactions with Asn230, Trp275 and active site water molecules; electrostatic interaction with catalytic zinc ion and hydrophobic interactions with amino acids of the hydrophobic pocket.  相似文献   

10.
Abstract

The interaction of SCH 23390 with dopamine (DA) and serotonin (5-HT) systems has been examined in vivo and in vitro. Like selective 5-HT2 blockers, SCH 23390 inhibited in vivo [3H]spiperone binding in the rat frontal cortex (ID50: 1.5 mg/kg) without interacting at D2 sites. SCH 23390 was equipotent to cinanserin and methysergide. In vitro, SCH 23390 inhibited [3H]ketanserin binding to 5-HT2 sites (IC50 = 30 nM). Biochemical parameters linked to DA and 5-HT were not changed excepted in striatum where SCH 23390 increased HVA and DOPAC. In the L-5-HTP syndrome model, SCH 23390 clearly showed antagonism of 5-HT2 receptors. SCH 23390 had weak affinity for 5-HT1B (IC50 = 0.5 μM), 5-HT1A (IC50 = 2.6 μM) and α;1-adenergic receptors (IC50 = 4.4 μM).  相似文献   

11.
Antiviral resistance is currently monitored by a labelled enzymatic assay, which can give inconsistent results because of the short half‐life of the labelled product, and variations in assay conditions. In this paper, we describe a competitive surface plasmon resonance (SPR) inhibition assay for measuring the sensitivities of wild‐type neuraminidase (WT NA) and the H274Y (histidine 274 tyrosine) NA mutant to antiviral drugs. The two NA isoforms were expressed in High‐five™ (Trichoplusia ni) insect cells. A spacer molecule (1,6‐hexanediamine (HDA)) was conjugated to the 7‐hydroxyl group of zanamivir, and the construct (HDA‐zanamivir) was immobilized onto a SPR sensor chip to obtain a final immobilization response of 431 response units. The immobilized HDA‐zanamivir comprised a bio‐specific ligand for the WT and mutant proteins. The effects of the natural substrate (sialic acid) and two inhibitors (zanamivir and oseltamivir) on NA binding to the immobilized ligand were studied. The processed SPR data was analysed to determine 50% inhibitory concentrations (IC50‐spr), using a log dose–response curve fit. Although both NA isoforms had almost identical IC50‐spr values for sialic acid (WT = 5.5 nM; H274Y mutant = 3.25 nM) and zanamivir (WT = 2.16 nM; H274Y mutant = 2.42 nM), there were significant differences between the IC50‐spr values obtained for the WT (7.7 nM) and H274Y mutant (256 nM) NA in the presence of oseltamivir, indicating that oseltamivir has a reduced affinity for the H274Y mutant. The SPR inhibition assay strategy presented in this work could be applied for the rapid screening of newly emerging variants of NA for their sensitivity to antiviral drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A new class of 2(1H)-pyrimidinone derivatives was identified as potential EGFR T790M inhibitors against TKI-resistant NSCLC. These novel compounds inhibited the EGFR T790M kinase activity at concentrations in the range of 85.3 to 519.9 nM. In particular, compound 7e exhibited the strongest activity against both EGFRWT (IC50 = 96.9 nM) and EGFRT790M (IC50 = 85.3 nM) kinases in the cells. Compared with inhibitor 7e, compound 7b displayed enhanced antiproliferative activity against gefitinib-resistant H1975 cells harboring the EGFR T790M mutation. In addition, compound 7b also has low toxicity against the normal human liver cells LO2, with an IC50 of 11.1 µM. Moreover, both the AO/EB and DAPI staining assays also demonstrated the inhibitory efficacy of 7b against the resistant H1975 cells. This contribution provides a new scaffold 2(1H)-pyrimidinone as potential EGFR T790M inhibitor against drug-resistant NSCLC.  相似文献   

13.
Based on the co-crystal structures of tubulin with plinabulin and Compound 1 (a derivative of plinabulin), a total of 18 novel plinabulin derivatives were designed and synthesized. Their biological activities were evaluated against human pancreatic cancer BxPC-3 cell lines. Two novel Compounds 13d and 13e exhibited potent activities with IC50 at 1.56 and 1.72?nM, respectively. The tubulin polymerization assay indicated that these derivatives could inhibit microtubule polymerization. Furthermore, the interaction between tubulin and these compounds were elucidated by molecular docking. The binding modes of Compounds 13d and 13e were similar to the co-crystal structure of Compound 1. H-π interaction was observed between the aromatic hydrogen of thiophene moiety with Phe20, which could enhance their binding affinities.  相似文献   

14.
Objectives: Resveratrol, with its robust antioxidant activity, has frequently been suggested as potentially having activity in cancer prevention and some recent reports have indicated that it has cancer treatment potential for several types of neoplasia. It has been found to block p‐glycoprotein and to protect against several chemotherapeutic agents’ side effects. In this study, we assessed interactive characteristics of resveratrol with docetaxel and doxorubicin and further investigated molecular bases of this interaction in cells of three different solid tumour lines (MCF‐7, HeLa and HepG2). Materials and methods and results: Resveratrol per se was found to have anti‐cancer properties, but with relatively low potency in all tested cell lines (IC50 ranged from 35.1 to 83.8 μM). Doxorubicin and docetaxel showed IC50 ranging from 0.48 to 0.72 μM and from 25.9 to 77.8 nM, respectively. Resveratrol in combination with doxorubicin and docetaxel significantly increased potencies of both chemotherapeutic agents showing IC50 ranging from 0.12 to 0.34 μM and from 7.2 to 53.02 nM, respectively. The combination index showed synergistic interaction between resveratrol and doxorubicin or docetaxel on MCF‐7 cells, and additive interactions on HeLa and HepG2 cells. Real time PCR revealed that expression of Bax and Bcl‐2 was simultaneously elevated on combination of resveratrol with doxorubicin or docetaxel in all tested cell lines, whereas p53 exhibited marginal elevation in MCF‐7 and HepG2 cells. In addition, p‐glycoprotein efflux activity was significantly inhibited, with subsequent accumulation of p‐glycoprotein substrate in intracellular compartments. Expression level of mdr1 gene was downregulated after resveratrol combined with doxorubicin or docetaxel in all tested cell lines. Conclusion: Resveratrol potentiates cytotoxic properties of both cancer drugs used in the study through increasing their intracellular level due to p‐glycoprotein inhibition and downregulation of mdr1 gene.  相似文献   

15.
The mitochondrial pathway of apoptosis proceeds when molecules, such as cytochrome c, sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane (MOM) permeabilization. Bax, a member of the Bcl-2 protein family, plays a pivotal role in mitochondrion-mediated apoptosis. In response to apoptotic stimuli, Bax integrates into the MOM, where it mediates the release of cytochrome c from the intermembrane space into the cytosol, leading to caspase activation and cell death. The pro-death action of Bax is regulated by interactions with both other prosurvival proteins, such as tBid, and the MOM, but the exact mechanisms remain largely unclear. Here, the mechanisms of integration of Bax into a model membrane mimicking the MOM were studied by Monte Carlo simulations preceded by a computer prediction of the docking of tBid with Bax. A novel model of Bax activation by tBid was predicted by the simulations. In this model, tBid binds to Bax at an interaction site formed by Bax helices α1, α2, α3 and α5 leading, due to interaction of the positively charged N-terminal fragment of tBid with anionic lipid headgroups, to Bax reorientation such that a hydrogen-bonded pair of residues, Asp98 and Ser184, is brought into close proximity with negatively charged lipid headgroups. The interaction with these headgroups destabilizes the hydrogen bond which results in the release of helix α9 from the Bax-binding groove, its insertion into the membrane, followed by insertion into the membrane of the α5–α6 helical hairpin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
A novel series of coumarin derivatives were designed, synthesized and investigated for inhibition of cholinesterase, including acetyl cholinesterase (AChE) and butyrylcholinesterase (BuChE). This biological study showed that these compounds containing piperazine ring had significant inhibition activities on AChE rather than BuChE. Further study suggested that 9x, as one of this kind of structure derivative, showed the strongest inhibition activity on AChE with an IC50 value of 34 nM. Moreover, molecular docking, flow cytometry (FCM), and western blot assay suggested that 9x could induce cytoprotective autophagy to attenuate H2O2-induced cell death in human neuroblastoma SH-SY5Y cells. These findings highlight a new approach for the development of a novel potential neuroprotective compound targeting AChE with autophagy-inducing activity in future Alzheimer’s disease (AD) therapy.  相似文献   

17.
Huwentoxin-IV (HwTx-IV) is a 35-residue neurotoxin peptide with potential application as a novel analgesic. It is a member of the inhibitory cystine knot (ICK) peptide family, characterised by a compact globular structure maintained by three intramolecular disulfide bonds. Here we describe a novel strategy for producing non-tagged, fully folded ICK-toxin in a bacterial system. HwTx-IV was expressed as a cleavable fusion to small ubiquitin-related modifier (SUMO) in the cytoplasm of the SHuffle T7 Express lysY Escherichia coli strain, which allows cytosolic disulfide bond formation. Purification by IMAC with selective elution of monomeric SUMO fusion followed by proteolytic cleavage and polishing chromatographic steps yielded pure homogeneous toxin. Recombinant HwTx-IV is produced with a C-terminal acid, whereas the native peptide is C-terminally amidated. HwTx-IV(acid) inhibited Nav1.7 in a dose dependent manner (IC50 = 463-727 nM). In comparison to HwTx-IV(amide) (IC50 = 11 ± 3 nM), the carboxylate was ~50 fold less potent on Nav1.7, which highlights the impact of the C-terminus. As the amide bond of an additional amino acid may mimic the carboxamide, we expressed the glycine-extended analogue HwTx-IVG36(acid) in the SUMO/SHuffle system. The peptide was approximately three fold more potent on Nav1.7 in comparison to HwTx-IV(acid) (IC50 = 190 nM). In conclusion, we have established a novel system for expression and purification of fully folded and active HwTx-IV(acid) in bacteria, which could be applicable to other structurally complex and cysteine rich peptides. Furthermore, we discovered that glycine extension of HwTx-IV(acid) restores some of the potency of the native carboxamide. This finding may also apply to other C-terminally amidated peptides produced recombinantly.  相似文献   

18.
Thrombo-occlusive diseases are major causes of morbidity and mortality, and tissue-type plasminogen activator (t-PA) is recommended for the treatment of the maladies. However, both t-PA and u-PA are rapidly inactivated by plasminogen activator inhibitor-1 (PAI-1). Here, we show that longistatin, a novel plasminogen activator isolated from the ixodid tick, Haemaphysalis longicornis is resistant to PAI-1. Longistatin was relatively less susceptible to the inhibitory effect of SDS-treated platelet lysate than physiologic PAs. Platelet lysate inhibited t-PA and tcu-PA with the IC50 of 7.7 and 9.1 μg/ml, respectively, whereas for longistatin inhibition IC50 was 20.1 μg/ml (p < 0.01). Similarly, activated PAI-1 (20 nM) inhibited only 21.47% activity of longistatin but almost completely inhibited t-PA (99.17%) and tcu-PA (96.84%). Interestingly, longistatin retained 76.73% initial activity even after 3 h of incubation with 20 nM of PAI-1. IC50 of PAI-1 during longistatin inhibition was 88.3 nM while it was 3.9 and 3.2 nM in t-PA and tcu-PA inhibition, respectively. Longistatin completely hydrolyzed fibrin clot by activating plasminogen efficiently in the presence of 20 nM of PAI-1. Importantly, unlike t-PA, longistatin did not form complex with PAI-1. Collectively, our results suggest that longistatin is resistant to PAI-1 and maybe an interesting tool for the development of a PAI-1 resistant effective thrombolytic agent.  相似文献   

19.
Arsenic trioxide (ATO; As2O3) can induce apoptotic cell death in various cancer cells including lung cancer cells. However, little is known about the toxicological effects of ATO on normal primary lung cells. In this study, we investigated the cellular effects of ATO on human pulmonary fibroblast (HPF) cells in relation to cell growth inhibition and death. ATO inhibited HPF cell growth with an IC50 of approximately 30–40 μM at 24 h and induced cell death accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). Thus, HPF cells were considered to be very resistant to ATO insults. ATO increased the expression of p53 protein and decreased that of Bcl-2 protein. This agent activated caspase-8 but not caspase-3 in HPF cells. Z-VAD (a pan-caspase inhibitor; 15 μM) did not significantly decrease cell growth inhibition, death and MMP (ΔΨm) loss by ATO. Moreover, administration of Bax or casase-8 siRNA attenuated HPF cell death by ATO whereas p53 or caspase-3 siRNAs did not affect cell death. In conclusion, HPF cells were resistant to ATO and higher doses of ATO induced the growth inhibition and death in HPF cells via the regulation of Bcl-2 family and caspase-8.  相似文献   

20.
Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 μM in the LAD2 cell assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号