首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Identifying the macro-scale patterns and the underlying mechanisms of species richness are key aspects of biodiversity-related research. In China, previous studies on the mechanisms underlying insect richness have primarily focused on the current ecological conditions. Therefore, the impact of historical climate change on these mechanisms is less well understood. 2. Here, we use members of the Delphacidae family to evaluate the relative impact of the current environmental conditions and that of the Last Glacial Maximum on total species richness and endemism. Total species richness and endemic species richness were summed in 1° × 1° grid cells that the insects occupied. Generalised linear models, simultaneous autoregressive models, and random forest models were used to assess the effects of different environmental factors on total species richness and endemism. 3. The two patterns of species richness are jointly regulated by the current environment and the Last Glacial Maximum, but their key determinants differ. Winter coldness and the temperature annual range strongly affected the total species richness, but temperature variation during the Last Glacial Maximum also played an important role in the development of species richness. The distribution of endemic species was most strongly affected by the Last Glacial Maximum temperature change. 4. The studies confirm that historical climate change contributes to patterns of insect species richness, particularly patterns of endemism. Considering that China was mildly affected by the last glacial period, we propose that the incorporation of historical climate data into such studies will provide a better understanding of the underlying mechanisms.  相似文献   

2.
Paleoclimatic reconstructions coupled with species distribution models and identification of extant spatial genetic structure have the potential to provide insights into the demographic events that shape the distribution of intra-specific genetic variation across time. Using the globeflower Trollius europaeus as a case-study, we combined (1) Amplified Fragment Length Polymorphisms, (2) suites of 1000-years stepwise hindcasted species distributions and (3) a model of diffusion through time over the last 24,000 years, to trace the spatial dynamics that most likely fits the species' current genetic structure. We show that the globeflower comprises four gene pools in Europe which, from the dry period preceding the Last Glacial Maximum, dispersed while tracking the conditions fitting its climatic niche. Among these four gene pools, two are predicted to experience drastic range retraction in the near future. Our interdisciplinary approach, applicable to virtually any taxon, is an advance in inferring how climate change impacts species' genetic structures.  相似文献   

3.

Background

Climate is often considered as a key ecological factor limiting the capability of expansion of most species and the extent of suitable habitats. In this contribution, we implement Species Distribution Models (SDMs) to study two parapatric amphibians, Lissotriton vulgaris meridionalis and L. italicus, investigating if and how climate has influenced their present and past (Last Glacial Maximum and Holocene) distributions. A database of 901 GPS presence records was generated for the two newts. SDMs were built through Boosted Regression Trees and Maxent, using the Worldclim bioclimatic variables as predictors.

Results

Precipitation-linked variables and the temperature annual range strongly influence the current occurrence patterns of the two Lissotriton species analyzed. The two newts show opposite responses to the most contributing variables, such as BIO7 (temperature annual range), BIO12 (annual precipitation), BIO17 (precipitation of the driest quarter) and BIO19 (precipitation of the coldest quarter). The hypothesis of climate influencing the distributions of these species is also supported by the fact that the co-occurrences within the sympatric area fall in localities characterized by intermediate values of these predictors. Projections to the Last Glacial Maximum and Holocene scenarios provided a coherent representation of climate influences on the past distributions of the target species. Computation of pairwise variables interactions and the discriminant analysis allowed a deeper interpretation of SDMs’ outputs. Further, we propose a multivariate environmental dissimilarity index (MEDI), derived through a transformation of the multivariate environmental similarity surface (MESS), to deal with extrapolation-linked uncertainties in model projections to past climate. Finally, the niche equivalency and niche similarity tests confirmed the link between SDMs outputs and actual differences in the ecological niches of the two species.

Conclusions

The different responses of the two species to climatic factors have significantly contributed to shape their current distribution, through contractions, expansions and shifts over time, allowing to maintain two wide allopatric areas with an area of sympatry in Central Italy. Moreover, our SDMs hindcasting shows many concordances with previous phylogeographic studies carried out on the same species, thus corroborating the scenarios of potential distribution during the Last Glacial Maximum and the Holocene emerging from the models obtained.
  相似文献   

4.
Beatty GE  Provan J 《Molecular ecology》2010,19(22):5009-5021
Previous phylogeographical and palaeontological studies on the biota of northern North America have revealed a complex scenario of glacial survival in multiple refugia and differing patterns of postglacial recolonization. Many putative refugial regions have been proposed both north and south of the ice sheets for species during the Last Glacial Maximum, but the locations of many of these refugia remain a topic of great debate. In this study, we used a phylogeographical approach to elucidate the refugial and recolonization history of the herbaceous plant species Orthilia secunda in North America, which is found in disjunct areas in the west and east of the continent, most of which were either glaciated or lay close to the limits of the ice sheets. Analysis of 596 bp of the chloroplast trnS-trnG intergenic spacer and five microsatellite loci in 84 populations spanning the species' range in North America suggests that O. secunda persisted through the Last Glacial Maximum (LGM) in western refugia, even though palaeodistribution modelling indicated a suitable climate envelope across the entire south of the continent. The present distribution of the species has resulted from recolonization from refugia north and south of the ice sheets, most likely in Beringia or coastal regions of Alaska and British Columbia, the Washington/Oregon region in the northwest USA, and possibly from the region associated with the putative 'ice-free corridor' between the Laurentide and Cordilleran ice sheets. Our findings also highlight the importance of the Pacific Northwest as an important centre of intraspecific genetic diversity, owing to a combination of refugial persistence in the area and recolonization from other refugia.  相似文献   

5.
Some modeling studies indicated that the past distributions of species in east Asia during the Last Interglacial (LIG) and Last Glacial Maximum (LGM) periods differ from those of European and North American species and the deviant Asian distribution pattern is known under the term ‘pre‐LGM expansion’. It represents the unusually similar distribution patterns between the current and the LGM scenario. However, there is still no satisfying explanation for this phenomenon so far. Therefore, we took the two recently separated pheasant species of genus Chrysolophus in east Asia as an example to test the pattern by performing ecological niche models. The main findings of this study include: 1) the paleodistributions of these two pheasants also corresponded to the ‘pre‐LGM expansion’ pattern; 2) climatic similarity results from mobility‐oriented parity analysis also revealed similar pattern for both species; 3) climate regimes of east Asia showed patterns different from those in Europe and North America in a climate shift towards drier conditions and stronger seasonality and to more extreme temperatures of the coldest months particularly during the LIG; 4) the two Chrysolophus species occupied significantly different ecological niches according to current distribution. We suggest that ecological segregation established in allopatric glacial refugia should be the main determinants for the separation of two Chrysolophus species until they came into extant post‐Pleistocene contact.  相似文献   

6.
In order to develop niche models for tree species characteristic of the cerrado vegetation (woody savannas) of central South America, and to hindcast their distributions during the Last Glacial Maximum and Last Inter‐Glacial, we compiled a dataset of tree species checklists for typical cerrado vegetation (n = 282) and other geographically co‐occurring vegetation types, e.g. seasonally dry tropical forest (n = 355). We then performed an indicator species analysis to select ten species that best characterize typical cerrado vegetation and developed niche models for them using the Maxent algorithm. We used these models to assess the probability of occurrence of each species across South America at the following time slices: Current (0 ka pre‐industrial), Holocene (6 ka BP), Last Glacial Maximum (LGM – 21 ka BP), and Last Interglacial (LIG – 130 ka BP). The niche models were robust for all species and showed the highest probability of occurrence in the core area of the Cerrado Domain. The palaeomodels suggested changes in the distributions of cerrado tree species throughout the Quaternary, with expansion during the LIG into the adjacent Amazonian and Atlantic moist forests, as well as connections with other South American savannas. The LGM models suggested a retraction of cerrado vegetation to inter‐tableland depressions and slopes of the Central Brazilian Highlands. Contrary to previous hypotheses, such as the Pleistocene refuge theory, we found that the widest expansion of cerrado tree species seems to have occurred during the LIG, most probably due to its warmer climate. On the other hand, the postulated retractions during the LGM were likely related to both decreased precipitation and temperature. These results are congruent with palynological and phylogeographic studies in the Cerrado Domain.  相似文献   

7.
Lawing AM  Polly PD 《PloS one》2011,6(12):e28554
Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr).  相似文献   

8.
Pleistocene climatic oscillations have played an important role in shaping many species’ current distributions. In recent years, there has been increasing interest in studying the effects of glacial periods on East Asian birds. Integrated approaches allow us to study past distribution range changes due to Pleistocene glaciation, and how these changes have affected current population genetic structure, especially for species with unusual distribution patterns. The Wuyi disjunction is the disjunct distribution of birds between the Wuyi Mountains in south‐eastern China and south‐western China. Although several species exhibit the Wuyi disjunction, the process behind this unusual distribution pattern has remained relatively unstudied. Therefore, we used the Chestnut‐vented Nuthatch Sitta nagaensis as a model species to investigate the possible causes of the Wuyi disjunction. Based on phylogenetic analyses with three mitochondrial and six nuclear regions, the Wuyi population of the Chestnut‐vented Nuthatch was closely related to populations in mid‐Sichuan, from which it diverged approximately 0.1 million years ago, despite the long geographical distance between them (over 1,300 km). In contrast, geographically close populations in mid‐ and southern Sichuan were genetically divergent from each other (more than half a million years). Ecological niche modelling suggested that the Chestnut‐vented Nuthatch has experienced dramatic range expansions from Last Interglacial period to Last Glacial Maximum, with some range retraction following the Last Glacial period. We propose that the Wuyi disjunction of the Chestnut‐vented Nuthatch was most likely due to recent range expansion from south‐western China during the glacial period, followed by postglacial range retraction.  相似文献   

9.
Fagus mexicana Martínez (Mexican beech) is an endangered Arcto‐Tertiary Geoflora tree species that inhabit isolated and fragmented tropical montane cloud forests in eastern Mexico. Exploring past, present, and future climate change effects on the distribution of Mexican beech involves the study of spatial ecology and temporal patterns to develop conservation plans. These are key to understanding the niche conservatism of other forest communities with similar environmental requirements. For this study, we used species distribution models by combining occurrence records, to assess the distribution patterns and changes of the past (Last Glacial Maximum), present (1981–2010), and future (2040–2070) periods under two climate scenarios (SSP 3‐7.0 & SSP 5‐8.5). Next, we determined the habitat suitability and priority conservation areas of Mexican beech as associated with topography, land cover use, distance to the nearest town, and environmental variables. By considering the distribution of Mexican beech during different periods and under different climate scenarios, our study estimated that high‐impact areas of Mexican beech forests were restricted to specific areas of the Sierra Madre Oriental that constitute refugia from the Last Glacial Maximum. Regrettably, our results exhibited that Mexican beech distribution has decreased 71.3% since the Last Glacial Maximum and this trend will for the next 50 years, migrating to specific refugia at higher altitudes. This suggests that the states of Hidalgo, Veracruz, and Puebla will preserve the habitat suitability features as ecological refugia, related to high moisture and north‐facing slopes. For isolated and difficult‐to‐access areas, the proposed methods are powerful tools for relict‐tree species, which deserve further conservation.  相似文献   

10.
Ecological niche models (ENMs) provide a means of characterizing the spatial distribution of suitable conditions for species, and have recently been applied to the challenge of locating potential distributional areas at the Last Glacial Maximum (LGM) when unfavorable climate conditions led to range contractions and fragmentation. Here, we compare and contrast ENM-based reconstructions of LGM refugial locations with those resulting from the more traditional molecular genetic and phylogeographic predictions. We examined 20 North American terrestrial vertebrate species from different regions and with different range sizes for which refugia have been identified based on phylogeographic analyses, using ENM tools to make parallel predictions. We then assessed the correspondence between the two approaches based on spatial overlap and areal extent of the predicted refugia. In 14 of the 20 species, the predictions from ENM and predictions based on phylogeographic studies were significantly spatially correlated, suggesting that the two approaches to development of refugial maps are converging on a similar result. Our results confirm that ENM scenario exploration can provide a useful complement to molecular studies, offering a less subjective, spatially explicit hypothesis of past geographic patterns of distribution.  相似文献   

11.
Quaternary climate changes explain diversity among reptiles and amphibians   总被引:2,自引:0,他引:2  
It is widely believed that contemporary climate determines large-scale patterns of species richness. An alternative view proposes that species richness reflects biotic responses to historic climate changes. These competing "contemporary climate" vs "historic climate" hypotheses have been vigorously debated without reaching consensus. Here, we test the proposition that European species richness of reptiles and amphibians is driven by climate changes in the Quaternary. We find that climate stability between the Last Glacial Maximum (LGM) and the present day is a better predictor of species richness than contemporary climate; and that the 0°C isotherm of the LGM delimits the distributions of narrow-ranging species, whereas the current 0°C isotherm limits the distributions of wide-ranging species. Our analyses contradict previous studies of large-scale species richness patterns and support the view that "historic climate" can contribute to current species richness independently of and at least as much as contemporary climate.  相似文献   

12.
Recent studies have increasingly implicated deep (pre-Pleistocene) events as key in the vertebrate speciation, downplaying the importance of more recent (Pleistocene) climatic shifts. This work, however, has been based almost exclusively on evidence from molecular clock inferences of splitting dates. We present an independent perspective on this question, using ecological niche model reconstructions of Pleistocene Last Glacial Maximum (LGM) potential distributions for the Thrush-like Mourner (Schiffornis turdina) complex in the neotropics. LGM distributional patterns reconstructed from the niche models relate significantly to phylogroups identified in previous molecular systematic analyses. As such, patterns of differentiation and speciation in this complex are consistent with Pleistocene climate and geography, although further testing will be necessary to establish dates of origin firmly and unambiguously.  相似文献   

13.
The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo‐drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo‐connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo‐disconnected basins. Palaeo‐connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo‐river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo‐connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.  相似文献   

14.
Aim  To provide a test of the conservatism of a species' niche over the last 20,000 years by tracking the distribution of eight pollen taxa relative to climate type as they migrated across eastern North America following the Last Glacial Maximum (LGM).
Location  North America.
Methods  We drew taxon occurrence data from the North American pollen records in the Global Pollen Database, representing eight pollen types – all taxa for which ≥5 distinct geographic occurrences were available in both the present day and at the LGM (21,000 years ago ± 3000 years). These data were incorporated into ecological niche models based on present-day and LGM climatological summaries available from the Palaeoclimate Modelling Intercomparison Project to produce predicted potential geographic distributions for each species at present and at the LGM. The output for each time period was projected onto the 'other' time period, and tested using independent known occurrence information from that period.
Results  The result of our analyses was that all species tested showed general conservatism in ecological characteristics over the climate changes associated with the Pleistocene-to-Recent transition.
Main conclusions  This analysis constitutes a further demonstration of general and pervasive conservatism in ecological niche characteristics over moderate periods of time despite profound changes in climate and environmental conditions. As such, our results reinforce the application of ecological niche modelling techniques to the reconstruction of Pleistocene biodiversity distribution patterns, and to project the future potential distribution range of species in the face of global-scale climatic changes.  相似文献   

15.
Climate changes during the Pleistocene produced shifts, reductions, and expansions of biomes that, in turn, have been hypothesized to have driven speciation and extinction and shaped patterns of biodiversity. Here, we explore effects of Late Pleistocene climatic changes on environmentally and geographically cohesive areas mimicking species’ distributions. We analyzed persistence of these ‘species’ over the transition from the warm Last Interglacial period to the cool Last Glacial Maximum period to warm present‐day conditions, for four levels of environmental restriction (5, 10, 15 and 20% of overall variation; akin to niche breadths). African environments were overall much less conserved over these periods than those of South America, matching diversity contrasts between the two continents. Results thus indicate that biodiversity patterns relate closely to historical patterns of environmental grain and their stability through time; this view is a step toward an integral understanding of the role of environmental and geographic factors in the process of biological diversification.  相似文献   

16.
Phylogeographical studies are typically based on haplotype data, occasionally on nuclear markers such as microsatellites, but rarely combine both. This is unfortunate because the use of markers with contrasting modes of inheritance and rates of evolution might provide a more accurate and comprehensive understanding of a species' history. Here we present a detailed study of the phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum , using 1098 bp of the mitochondrial ND2 gene from 45 localities from across its Palaearctic range to infer population history. In addition, we re-analysed a large microsatellite data set available for this species and compared the results of both markers to infer population relationships and the historical processes influencing them. We show that mtDNA, the most popular marker in phylogeography studies, yielded a misleading result, and would have led us to conclude erroneously that a single expansion had taken place in Europe. Only by combining the mitochondrial and microsatellite data sets are we able to reconstruct the species' history and show two colonization events in Europe, one before the Last Glacial Maximum (LGM) and one after it. Combining markers also revealed the importance of Asia Minor as an ancient refugium for this species and a source population for the expansion of the greater horseshoe bat into Europe before the LGM.  相似文献   

17.
该研究以分布区主要在横断山脉的多星韭为对象,基于最大熵模型(MaxEnt)和地理信息系统(ArcGIS)模拟了多星韭在末次盛冰期、全新世中期、当前以及未来的分布格局,以探讨多星韭对末次盛冰期以来气候变化的响应。结果显示:(1)多星韭当前的分布区主要受到最暖季度降水量、年均温变化范围和温度季节性变化标准差3个气候因子的影响;海拔对多星韭的当前分布也有着较大的影响。(2)最大熵模型的模拟精度较高(AUC=0.98)。(3)根据多星韭各个时期分布面积的变化得出多星韭与部分高山植物相似,相比当前的分布,多星韭末次盛冰期的分布区发生了较为明显的扩张。研究推测,未来多星韭的分布区将向西移动。  相似文献   

18.
Elucidating the colonization processes associated with Quaternary climatic cycles is important in order to understand the distribution of biodiversity and the evolutionary potential of temperate plant and animal species. In Europe, general evolutionary scenarios have been defined from genetic evidence. Recently, these scenarios have been challenged with genetic as well as fossil data. The origins of the modern distributions of most temperate plant and animal species could predate the Last Glacial Maximum. The glacial survival of such populations may have occurred in either southern (Mediterranean regions) and/or northern (Carpathians) refugia. Here, a phylogeographic analysis of a widespread European small mammal (Microtus arvalis) is conducted with a multidisciplinary approach. Genetic, fossil and ecological traits are used to assess the evolutionary history of this vole. Regardless of whether the European distribution of the five previously identified evolutionary lineages is corroborated, this combined analysis brings to light several colonization processes of M. arvalis. The species' dispersal was relatively gradual with glacial survival in small favourable habitats in Western Europe (from Germany to Spain) while in the rest of Europe, because of periglacial conditions, dispersal was less regular with bottleneck events followed by postglacial expansions. Our study demonstrates that the evolutionary history of European temperate small mammals is indeed much more complex than previously suggested. Species can experience heterogeneous evolutionary histories over their geographic range. Multidisciplinary approaches should therefore be preferentially chosen in prospective studies, the better to understand the impact of climatic change on past and present biodiversity.  相似文献   

19.
David Lack 《Bird Study》2013,60(1):14-17
Capsule This study is the first ever documented evidence of an interglacial refugium during the Last Interglacial for birds in Anatolia and suggests the need of a re-examination of the effects of the Last Interglacial on the geographic distribution and genetic structure of species.

Aims We tested whether, in accordance with the ‘refugia within refugia’ model, multiple refugia existed for Kruper's Nuthatch Sitta krueperi during the Last Glacial Maximum or the species survived along the coastal belt of Anatolia through the Late Quaternary glacial–interglacial cycles.

Methods An ecological niche model was developed to predict the geographic distribution of Kruper's Nuthatch under reconstructed past (the Last Interglacial and the Last Glacial Maximum), present, and projected future bioclimatic conditions. Also, robust coalescent-based analyses were used to assess demographic events over the history of Kruper's Nuthatch.

Results Kruper's Nuthatch survived the Last Glacial Maximum almost along the coastal belt of Anatolia, but not in multiple refugia, and surprisingly, contrary to expectations, it survived the Last Interglacial in southern Anatolia, but not along the coastal belt of Anatolia.

Conclusion A kind of the ‘refugia within refugia’ model (i.e. the ‘refugium within refugium’ model) was supported because range shifts took place within Anatolia (itself also a refugium) for Kruper's Nuthatch.  相似文献   

20.
Several lines of evidence suggest that savannas currently distributed disjointedly in the southern and northern portions of South America might have been connected and disconnected many times during the Quaternary climatic fluctuations. Here, we investigated how climate change since the Last Interglacial may have modified the distribution of bird species associated with South American savannas. We evaluated the connections between South America's savannas using 10 broadly distributed species and the impact of climate changes in community composition using 18 species endemic to Cerrado. We fit ecological niche models to each of the 28 bird species to compare the potential distribution patterns for the Last Interglacial (120 kyr BP), the Last Glacial Maximum (21 kyr BP) and the present. Our results corroborated hypotheses of past connections between northern and southern blocks of savannas through three hypothetical corridors that existed along the Andes, Atlantic Coast and through central Amazonia. In addition, our results also suggested the existence of a fourth plausible corridor located along the Madeira River, crossing Amazonia from the southwest to the northeast. Finally, our analysis showed significant changes in the community composition dynamics of endemic Cerrado species. Our results further reinforce the notion that climate change has major impacts on the distribution of savanna species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号