首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human CMV infections are a major health risk in patients with dysfunctional or compromised immunity, especially in patients with NK cell deficiencies, as these are frequently associated with high morbidity and mortality. In experimental murine CMV (MCMV) infections, Ly49H activation receptors on C57BL/6 (B6) NK cells engage m157 viral ligands on MCMV-infected cells and initiate dominant virus control. In this study, we report that MCMV resistance in MA/My relies on Ly49H-independent NK cell-mediated control of MCMV infection as NK cells in these mice do not bind anti-Ly49H mAb or soluble m157 viral ligands. We genetically compared MA/My resistance with MCMV susceptibility in genealogically and NK gene complex-Ly49 haplotype-related C57L mice. We found that MCMV resistance strongly associated with polymorphic H2k-linked genes, including MHC and non-MHC locations by analysis of backcross and intercross progeny. The H2b haplotype most frequently, but not absolutely, correlated with MCMV susceptibility, thus confirming a role for non-MHC genes in MCMV control. We also demonstrate a definite role for NK cells in H2k-type MCMV resistance because their removal from C57L.M-H2k mice before MCMV infection diminished immunity. NK gene complex-linked polymorphisms, however, did not significantly influence MCMV control. Taken together, effective NK cell-mediated MCMV control in this genetic system required polymorphic H2k genes without need of Ly49H-m157 interactions.  相似文献   

2.
3.
Whether or not NO plays a critical role in murine CMV (MCMV) infection has yet to be elucidated. In this study, we examined the role of NO in acute infection with MCMV using NO synthase type 2 (NOS2)-deficient mice. NOS2(-/-) mice were more susceptible to lethal infection with MCMV than NOS2(+/+) mice and generated a much higher peak virus titer in the salivary gland after acute infection. A moderate increase in the MCMV titer was also observed in other organs of NOS2(-/-) mice such as the spleen, lung, and liver. The immune responses to MCMV infection including NK cell cytotoxicity and CTL response in NOS2(-/-) mice were comparable with those of NOS2(+/+) mice. Moreover, the ability to produce IFN-gamma is not impaired in NOS2(-/-) mice after MCMV infection. The peritoneal macrophages from NOS2(-/-) mice, however, exhibited a lower antiviral activity than those from NOS2(+/+) mice, resulting in an enhanced viral replication in macrophages themselves. Treatment of these cells from NOS2(+/+) mice with a selective NOS2 inhibitor decreased the antiviral activity to a level below that obtained with NOS2(-/-) mice. In addition, the absence of NOS2 and NOS2-mediated antiviral activity of macrophages resulted in not only an enhanced MCMV replication and a high mortality but also a consequent risk of the latency. It was thus concluded that the NOS2-mediated antiviral activity of macrophages via NO plays a protective role against MCMV infection at an early and late stage of the infection.  相似文献   

4.
Exposure to air pollutants such as ozone (O(3)) induces airway hyperresponsiveness (AHR) and airway inflammation. Toll-like receptors (TLR) are first-line effector molecules in innate immunity to infections and signal via adapter proteins, including myeloid differentiation factor-88 (MyD88). We investigated the sensing of ozone by TLR2, TLR4, and MyD88. Ozone induced AHR in wild-type (WT) C57BL/6 mice, but AHR was absent in TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice. Bronchoalveolar lavage neutrophilia induced by ozone was inhibited at 3 h but not at 24 h in TLR2(-/-) and TLR4(-/-) mice, while in MyD88(-/-) mice, this was inhibited at 24 h. We investigated the expression of inflammatory cytokines and TLR2, TLR4, and MyD88 in these mice. Ozone induced time-dependent increases in inflammatory gene expression of keratinocyte chemoattractant (KC) and IL-6 and of TLR2, TLR4, and MyD88 in WT mice. IL-6 and KC expression induced by ozone was inhibited in TLR2(-/-), TLR4(-/-), and MyD88(-/-) mice. Expression of MyD88 was increased in TLR2(-/-) and TLR4(-/-) mice, while induction of TLR2 or TLR4 was reduced in TLR2(-/-) and TLR4(-/-) mice, respectively. TLR2 and TLR4 mediate AHR induced by oxidative stress such as ozone, while the adapter protein MyD88, but not TLR2 or TLR4, is important in mediating ozone-induced neutrophilia. TLR2 and TLR4 may also be important in regulating the speed of neutrophilic response. Therefore, ozone may induce murine AHR and neutrophilic inflammation through the activation of the Toll-like receptor pathway that may sense noninfectious stimuli such as oxidative stress.  相似文献   

5.
NK cells are capable of responding quickly to infectious challenge and contribute to the early defense against a wide variety of pathogens. Although the innate NK cell response to murine CMV (MCMV) has been extensively characterized, its resolution and the fate of the activated NK cell population remains unexplored. Herein, we characterize both the expansion and contraction phases of the NK cell response to MCMV. We demonstrate that NK cell recruitment into the immune response to MCMV infection is restricted to the first 3 days of infection and as the peripheral NK cell compartment expands, NK cells undergo accelerated phenotypic maturation. During the resolution of the immune response, NK cell compartmental contraction is marked by the selective death of responding NK cells. Additionally, throughout the infection, a naive NK cell pool that remains responsive to additional stimuli is actively maintained. These findings illustrate the plasticity of the NK cell compartment in response to pathogens and underscore the homeostatic maintenance of the resting peripheral NK cell pool.  相似文献   

6.
Apo-2L is a new member of the tumour necrosis factor (TNF) family shown to induce apoptosis in a number of tumour cell lines. Apo-2L mRNA is expressed by numerous human tissues. Here we report that Apo-2L is expressed and utilized by human Natural Killer (NK) cells. NK cells were shown to express surface Apo-2L in response to interleukin 2 (IL-2) activation, and this response was restricted to the CD3(-)population of the NK cells. Apo-2L mRNA and intracellular Apo-2L were present in both CD3(-)and CD3(+)NK cells; however, increased expression in response to IL-2 was only observed in CD3(-)CD56(+)cells. Also, IL-2-activated NK cells were shown to utilize membrane-bound Apo-2L in mediating lysis of Jurkat cells. Furthermore, Apo-2L-induced apoptosis of Jurkat cells was more rapid than FasL-induced apoptosis, indicating an important and distinct role for Apo-2L in apoptotic cell destruction. In conclusion, we report that NK cells express Apo-2L and that IL-2 activated CD3(-)NK cells utilize the Apo-2L pathway in mediating target cell lysis.  相似文献   

7.
The human cytomegalovirus (HCMV) major immediate-early enhancer has been postulated to play a pivotal role in the control of latency and reactivation. However, the absence of an animal model has obstructed a direct test of this hypothesis. Here we report on the establishment of an in vivo, experimentally tractable system for quantitatively investigating physiological functions of the HCMV enhancer. Using a neonate BALB/c mouse model, we show that a chimeric murine CMV under the control of the HCMV enhancer is competent in vivo, replicating in key organs of mice with acute CMV infection and exhibiting latency/reactivation features comparable for the most part to those of the parental and revertant viruses.  相似文献   

8.
NK cells are innate immune cells that can eliminate their targets through granule release. In this study, we describe a specialized role for the large GTPase Dynamin 2 (Dyn2) in the regulation of these secretory events leading to cell-mediated cytotoxicity. By modulating the expression of Dyn2 using small interfering RNA or by inhibiting its activity using a pharmacological agent, we determined that Dyn2 does not regulate conjugate formation, proximal signaling, or granule polarization. In contrast, during cell-mediated killing, Dyn2 localizes with lytic granules and polarizes to the NK cell-target interface where it regulates the final fusion of lytic granules with the plasma membrane. These findings identify a novel role for Dyn2 in the exocytic events required for effective NK cell-mediated cytotoxicity.  相似文献   

9.
IL-10 is an immunomodulatory cytokine that acts to antagonize T cell responses elicited during acute and chronic infections. Thus, the IL-10R signaling pathway provides a potential therapeutic target in strategies aimed at combating infectious diseases. In this study, we set out to investigate whether IL-10 expression had an effect on NK cells. Murine CMV infection provides the best characterized in vivo system to evaluate the NK cell response, with NK cells being critical in the early control of acute infection. Blockade of IL-10R during acute murine CMV infection markedly reduced the accumulation of cytotoxic NK cells in the spleen and lung, a phenotype associated with a transient elevation of virus DNA load. Impaired NK cell responsiveness after IL-10R blockade was attributed to elevated levels of apoptosis observed in NK cells exhibiting an activated phenotype. Therefore, we conclude that IL-10 contributes to antiviral innate immunity during acute infection by restricting activation-induced death in NK cells.  相似文献   

10.
Cytokines and chemokines activate and direct effector cells during infection. We previously identified a functional group of five cytokines and chemokines, namely, IFN-gamma, activation-induced T cell-derived and chemokine-related cytokine/lymphotactin, macrophage-inflammatory protein 1alpha, macrophage-inflammatory protein 1beta, and RANTES, coexpressed in individual activated NK cells, CD8(+) T cells, and CD4(+) Th1 cells in vitro and during in vivo infections. However, the stimuli during infection were not known. In murine CMV (MCMV) infection, the DAP12/KARAP-associated Ly49H NK cell activation receptor is crucial for resistance through recognition of MCMV-encoded m157 but NK cells also undergo in vivo nonspecific responses to uncharacterized stimuli. In this study, we show that Ly49H ligation by m157 resulted in a coordinated release of all five cytokines/chemokines from Ly49H(+) NK cells. Whereas other cytokines also triggered the release of these cytokines/chemokines, stimulation was not confined to the Ly49H(+) population. At the single-cell level, the production of the five mediators showed strong positive correlation with each other. Interestingly, NK cells were a major source of these five cytokines/chemokines in vitro and in vivo, whereas infected macrophages produced only limited amounts of macrophage-inflammatory protein 1alpha, macrophage-inflammatory protein1beta, and RANTES. These findings suggest that both virus-specific and nonspecific NK cells play crucial roles in activating and directing other inflammatory cells during MCMV infection.  相似文献   

11.
Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. C57BL/6 (B6) mice are naturally resistant to mousepox due to the concerted action of innate and adaptive immune responses. Previous studies have shown that natural killer (NK) cells are a component of innate immunity that is essential for the B6 mice resistance to mousepox. However, the mechanism of NK cell-mediated resistance to OPV disease remains undefined. Here we show that B6 mice resistance to mousepox requires the direct cytolytic function of NK cells, as well as their ability to boost the T cell response. Furthermore, we show that the activating receptor NKG2D is required for optimal NK cell-mediated resistance to disease and lethality. Together, our results have important implication towards the understanding of natural resistance to pathogenic viral infections.  相似文献   

12.
13.
Role of nitric oxide in murine cytomegalovirus (MCMV) infection   总被引:8,自引:0,他引:8  
Cytomegalovirus (CMV) is a typical pathogen of an opportunistic infection. In this review article, various roles of nitric oxide (NO) in murine CMV (MCMV) infections, including acute, persistent and latent infections, are discussed. In the acute phase of MCMV infection, NO plays a protective role against MCMV infection. In contrast, NO has been proven to act as a pathogenic factor in a model of MCMV pneumonitis. In MCMV persistent infection, when MCMV was detected only in the salivary gland, T cells of mice were modified to produce a massive amount of such cytokines as TNF-alpha and IFN-gamma upon in vivo stimulation with anti-CD3. These cytokines then induced mRNA for inducible NO synthase (iNOS), thus resulting in the production of a large amount of NO. A histochemical study demonstrated that NO damaged bronchial epithelial cells, and thereby apparently inducing pneumonitis. In the case of a latent infection, when viral DNA was detected in the host in spite of the absence of any infectious particle, NO increased the amount of persistently-infected MCMV-DNA. As a result, NO was found to act as "a double edged sword" in the CMV-host relationship.  相似文献   

14.
The resistance of mice to cell culture passaged murine cytomegalovirus (CC-MCMV) infection developed with age. In parallel with this finding, augmentation of the splenic NK cell activity in older mice was always higher than that of younger mice. The splenic NK cell activity reached the maximum level at 6 day post infection (PI) in 2-4-week-old mice while in 6-8-week-old mice it peaked at 4 days PI. When the dose of CC-MCMV was increased, the NK cell activity was potentiated accordingly. However, it was decreased on the infection with increased doses of the salivary gland passaged MCMV (SG-MCMV). NK cells augmented by MCMV infection actually inhibited in vitro replication of MCMV when they were added to mouse embryonic fibroblast (MEF) monolayers infected with CC-MCMV. Splenic and peritoneal macrophages inhibited in vitro replication of MCMV, but their activities were less potent than those of NK cells.  相似文献   

15.
The important role played by the gut microbiota in host immunity is mediated, in part, through toll-like receptors (TLRs). We evaluated the postnatal changes in expression of TLR2 and TLR4 in the murine small intestine and assessed how expression is influenced by gut microbiota. The expression of TLR2 and TLR4 in the murine small intestine was highly dynamic during development. The changes were especially profound during the suckling period, with the maximal mRNA levels detected in the mid-suckling period. Immunohistochemical and flow-cytometric analyses indicated that the changes in TLR2 and TLR4 expression involve primarily epithelial cells. The germ-free mice showed minor changes in TLR2/TLR4 mRNA and TLR2 protein during the suckling period. This study demonstrated that the postnatal expression of TLR2 and TLR4 in small intestinal epithelial cells is dynamic and depends on the presence of commensal intestinal microbiota.  相似文献   

16.
An H-2k MHC locus is critical for murine cytomegalovirus (MCMV) resistance in MA/My mice and virus control is abolished if H-2k is replaced with H-2b MHC genes from MCMV-susceptible C57L mice. Yet, H-2k resistance varies with genetic background; thus, modifiers of virus resistance must exist. To identify non-MHC resistance loci, spleen and liver MCMV levels and genome-wide genotypes were assessed in (C57L × MA/My) and (MA/My × C57L) F2 offspring (representing 550 meioses). Significantly, a non-Mendelian frequency of MHC genotypes was observed for offspring of the latter cross. Quantitative trait loci (QTL) and their interaction potential in MCMV resistance were assessed in R/qtl; QTL on chromosomes 17, 6, and 19 affected MCMV levels in infected animals. A chromosome 6 QTL was linked with the NK gene complex and acted in an additive fashion with an H-2k MHC QTL to mitigate spleen MCMV levels. We provide biological confirmation that this chromosome 6 QTL provided MCMV control independent of H-2k via NK cells. Importantly, both chromosome 6 and 19 QTLs contribute to virus control independent of H-2k. Altogether, MHC and non-MHC MCMV-resistance QTL contribute in early resistance to MCMV infection in this genetic system.  相似文献   

17.
The cell surface component CD14 and the toll-like receptors 2 and 4 (TLR2 and TLR4) are important in mediating the immune responses to bacterial products in mammals. Using mice genetically deficient in CD14, TLR2, or TLR4, we studied the role of these molecules in the anorectic effects of LPS and muramyl dipeptide (MDP). CD14 or TLR2 knockout (KO) and TLR4-deficient (TLR4-DEF) mice as well as corresponding wild-type (WT) colittermates were injected intraperitoneally at dark onset with LPS (2 microg/mouse), MDP (10 mg/kg), interleukin-1 beta (IL-1 beta, 150 ng/mouse), or vehicle, and food intake was recorded. LPS and MDP reduced food intake in WT mice of all genotypes tested. The anorectic effect of LPS was attenuated (P < 0.04) in CD14-KO and TLR4-DEF mice but not in TLR2-KO (P > 0.05). The anorectic effect of MDP was blunted in CD14-KO and TLR2-KO (P < 0.02) mice but not in TLR4-DEF mice. IL-1 beta reduced food intake similarly in all genotypes tested. These results indicate that CD14 is involved in mediating the anorectic effects of both LPS and MDP. Furthermore, TLR4 and TLR2 are specifically involved in mediating the anorectic effects of LPS and MDP, respectively. The results are consistent with the hypothesis that TLR4 functions as the true LPS receptor and that TLR2 is involved in recognition of gram-positive bacterial products.  相似文献   

18.
19.
Human CMV has evolved multiple strategies to interfere with immune recognition of the host. A variety of mechanisms target Ag presentation by MHC class I molecules resulting in a reduced class I cell-surface expression. This down-regulation of class I molecules is expected to trigger NK cytotoxicity, which would have to be counteracted by the virus to establish long-term infection. Here we describe that the human CMV open reading frame UL40 encodes a canonical ligand for HLA-E, identical with the HLA-Cw03 signal sequence-derived peptide. Expression of UL40 in HLA-E-positive target cells conferred resistance to NK cell lysis via the CD94/NKG2A receptor. Generation of the UL40-derived HLA-E ligand was also observed in TAP-deficient cells. The presence of a functional TAP-independent HLA-E ligand in the UL40 signal sequence implicates this viral gene as an important negative regulator of NK activity.  相似文献   

20.
Protein tyrosine kinase activation is one of the first biochemical events in the signaling pathway leading to activation of NK cell cytolytic machinery. Here we investigated whether proline-rich tyrosine kinase 2 (Pyk2), the nonreceptor protein tyrosine kinase belonging to the focal adhesion kinase family, could play a role in NK cell-mediated cytotoxicity. Our results demonstrate that binding of NK cells to sensitive target cells or ligation of beta2 integrins results in a rapid induction of Pyk2 phosphorylation and activation. By contrast, no detectable Pyk2 tyrosine phosphorylation is found upon CD16 stimulation mediated by either mAb or interaction with Ab-coated P815 cells. A functional role for Pyk2 in natural but not Ab-mediated cytotoxicity was demonstrated by the use of recombinant vaccinia viruses encoding the kinase dead mutant of Pyk2. Finally, we provide evidence that Pyk2 is involved in the beta2 integrin-triggered extracellular signal-regulated kinase activation, supporting the hypothesis that Pyk2 plays a role in the natural cytotoxicity by controlling extracellular signal-regulated kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号