首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe devices designed for magnetic field exposures in which field amplitude and gradients are controlled simultaneously. Dosimetry based on field continuation of high resolution magnetic field scans and numerical models is compared with validation measurements. The dosimetry variables we consider are based on the assumption that the biological or chemical system under study has field transducers that are spatially isotropic, so that absolute field amplitude and two gradient components fully describe local exposure.  相似文献   

2.
3.
4.
In this experiment, we evaluated the effects of strong static magnetic fields (SMF) on the orientation of myotubes formed from a mouse-derived myoblast cell line, C2C12. Myogenic differentiation of C2C12 cells was conducted under exposure to SMF at a magnetic flux density of 0-10 T and a magnetic gradient of 0-41.7 T/m. Exposure to SMF at 10 T led to significant formation of oriented myotubes. Under the high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient, myotube orientation increased as the myogenic differentiation period increased. At the 3 T exposure position, where there was a moderate magnetic flux density and moderate magnetic field gradient, myotube orientation was not observed. We demonstrated that SMF induced the formation of oriented myotubes depending on the magnetic flux density, and that a high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient induced the formation of oriented myotubes 6 days after myogenic differentiation. We did not detect any effect of the static magnetic fields on myogenic differentiation or cell number. To the best of our knowledge, this is the first report to demonstrate that myotubes orient to each other under a SMF without affecting the cell number and myogenic differentiation.  相似文献   

5.
The effect of strong static magnetic field on lymphocytes   总被引:11,自引:0,他引:11  
We investigated whether static electromagnetic fields (EMFs) at a flux density of 4.75 T, generated by an NMR apparatus (NMRF), could promote movements of Ca2+, cell proliferation, and the eventual production of proinflammatory cytokines in human peripheral blood mononuclear cells (PBMC) as well as in Jurkat cells, after exposure to the field for 1 h. The same study was also performed after activation of cells with 5 mg/ml phytohaemagglutinin (PHA). Our results clearly demonstrate that static NMRF exposure has neither proliferative, nor activating, nor proinflammatory effects on both normal and PHA activated PBMC. Moreover, the concentration of interleukin-1beta, interleukin-2, interleukin-6, interferon, and tumour necrosis factor alpha (TNFalpha) remained unvaried in exposed cells. Exposure of Jurkat cells statistically decreased the proliferation and the proliferation indexes, which 24 and 48 h after exposure were 0.7 +/- 0.29 and 0.87 +/- 0.12, respectively. Moreover, in Jurkat cells the [Ca2+]i was higher than in PBMC and was reduced significantly to about one half after exposure. This is consistent with the decrease of proliferation and with the low levels of IL-2 measured. On the whole, our data suggest that NMRF exposure failed to affect the physiologic behaviour of normal lymphomonocytes. Instead in Jurkat cells, by changing the properties of cell membranes, NMRF can influence Ca2+ transport processes, and hence Ca2+ homeostasis with improvement of proliferation.  相似文献   

6.
7.
The intense inhomogeneous magnetic fields acting on the diamagnetic materials naturally present in cells can generate strong magnetic forces. We have developed a superconducting magnet platform with large gradient high magnetic field (LG‐HMF), which can produce three magnetic force fields of ?1360, 0, and 1312 T2/m, and three corresponding apparent gravity levels, namely 0, 1, and 2‐g for diamagnetic materials. In this study, the effects of different magnetic force fields on osteoblast‐like cells (MG‐63 and MC3T3‐E1) viability, microtubule actin crosslinking factor 1 (MACF1) expression and its association with cytoskeleton were investigated. Results showed that cell viability increased to different degrees after exposure to 0 or 1‐g conditions for 24 h, but it decreased by about 30% under 2‐g conditions compared with control conditions. An increase in MACF1 expression at the RNA or protein level was observed in osteoblast‐like cells under the magnetic force field of ?1360 T2/m (0‐g) relative to 1312 T2/m (2‐g). Under control conditions, anti‐MACF1 staining was scattered in the cytoplasm and partially colocalized with actin filaments (AFs) or microtubules (MTs) in the majority of osteoblast‐like cells. Under 0‐g conditions, MACF1 labeling was concentrated at perinuclear region and colocalization was not apparent. The patterns of anti‐MACF1 labeling on MTs varied with MTs' changing under LG‐HMF environment. In conclusion, LG‐HMF affects osteoblast‐like cell viability, MACF1 distribution, expression, and its association with cytoskeleton to some extent. Bioelectromagnetics 30:545–555, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
We have explored the mechanism of coupling of an approximately 50 mT static magnetic field with the α helices of poly-L-lysine. Structural changes in poly-L-lysine were determined by Raman spectroscopy. Our testable hypothesis is that static magnetic fields of this magnitude can couple with the α-helical segments of the polypeptide, and, as a result, the structure of the polypeptide is significantly altered. Our model further suggests that a static magnetic field can promote protein unfolding and can prevent refolding. © 1996 Wiley-Liss, Inc.  相似文献   

10.
We studied the swimming orientation of the ciliated protozoan Paramecium aurelia in a static magnetic field (0.78 T). P. aurelia is a complex of species termed syngens, whose cell morphology appears similar on microscopic examination. In the magnetic field, the cells of some syngens gradually changed their swimming orientation so that they were swimming perpendicular or parallel to the magnetic field, although such sensitivity to magnetic fields differs between syngens. When the temperature of the cell suspension was raised, the magnetic sensitivity of the cells was decreased. On the other hand, when the cells were cultured beforehand at a high temperature, their magnetic sensitivity was increased. These results raise the possibility that membrane lipid fluidity, which is inversely proportional to the membrane lipid order, contributes to the magnetic orientation of syngens. In this study, measurements of membrane lipid fluidity obtained using fluorescence image analysis with the lipophilic dye, laurdan (6-lauroyl-2-dimethylaminonaphtalene), showed that the degree of membrane lipid fluidity was correlated with the differences in magnetic orientation between syngens. That is, the syngens with decreased membrane fluidity showed an increased degree of magnetic orientation. Therefore, the membrane lipid order is a key factor in the magnetic orientation of Paramecium swimming.  相似文献   

11.
The design, construction, and results of evaluation of an animal-exposure system for the study of biological effects of extremely low frequency (ELF) magnetic fields are described. The system uses a square coil arrangement based on a modification of the Helmholtz coil. Due to the cubic configuration of this exposure system, horizontal and vertical magnetic fields as high as 0.3 mT can be generated. Circularly polarized magnetic fields can also be generated by changing the current and phase difference between two sets of coils. Tests were made for uniformity of the magnetic field, stray fields, sham-exposure ratio of stray field, changes of temperature and humidity, light intensity and distribution inside the animal-housing space, and noise due to air-conditioning equipment. Variation of the magnetic field was less than 2% inside the animal housing. The stray-field level inside the sham-exposure system is less than 2% of experimental exposure levels. The system can be used for simultaneous exposure of 48 rats (2 to a cage) or 96 mice (4 to a cage). © 1993 Wiley-Liss. Inc.  相似文献   

12.
Apparent biological effects of strong magnetic fields were observed in the hatching behavior of fresh mosquito eggs in the center of 9.4 and 14.1 T magnets. In the first experiment performed at 20 +/- 1 degrees C, the hatching was delayed 32 h by a 9.4 T magnetic field and 71 h by a 14.1 T magnetic field. In the second experiment performed at 22 +/- 1 degrees C, the hatching was delayed 14 h by a 9.4 T magnetic field and 27 h by a 14.1 T magnetic field. In the magnetic field range of this study, the hatching delay increases nonlinearly with the intensity of the magnetic field. The experimental results also suggest that the biological effects of magnetic fields could be reversible or partially reversible to some extent.  相似文献   

13.
Transformer stations in apartment buildings may offer a possibility to conduct epidemiological studies that involve high exposure to extremely low frequency magnetic fields (MF), avoid selection bias and minimize confounding factors. To validate exposure assessment based on transformer stations, measurements were performed in thirty buildings in three Finnish cities. In each building, spot measurements in all rooms and a 24-h recording in a bedroom were performed in one apartment above a transformer station (AAT), in one first floor (FF) reference apartment, and one reference apartment on upper floors (UF). The apartment mean of spot measurements was 0.62 microT in the AATs, 0.21 microT in the FF and 0.11 microT in the UF reference apartments The 24-h apartment mean (estimated from the spot measurements and the bedroom 24-h recording) was 0.2 microT or higher in 29 (97%) AATs, in 7 (25%) FF and in 3 (10 %) UF reference apartments. The corresponding numbers for the 0.4 microT cut-off point were 19 (63%), 4 (14%), and 1 (3.3%). The higher MF level in the FF reference apartments indicates that they should not be considered "unexposed" in epidemiological studies. If such apartments are excluded, a transformer station under the floor predicts 24-h apartment mean MF with a sensitivity of 0.41 (or 0.58) and a specificity of 0.997 (or 0.97), depending on the MF cut-off point (0.2 or 0.4 microT). The results indicate that apartments can be reliably classified as high and low MF field categories based on the known location of transformer stations.  相似文献   

14.
Extremely low-frequency (ELF) magnetic field exposure systems are usually subject to field disturbances induced by external sources. Here, a method for designing a feedback control system for cancelling the effect of external ELF magnetic field disturbances on the magnetic field over the exposure area is presented. This method was used in the design of a feedback-controlled exposure system for an inverted microscope stage. The effectiveness of the proposed feedback control system for disturbance rejection was verified experimentally and by means of computer simulation. Bioelectromagnetics 18:299–306, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
A magnetic field generator constructed of rare earth-cobalt magnets is proposed for examining the biological effects of static magnetic fields (less than 1 T) on tissue cultures. Important quantities of a magnetic field from a biological-effects viewpoint, ie, its strength and the product of strength and gradient, are analysed. A practical procedure for designing the generator with optimum parameters is given. Also, parameters are determined which will yield a sinusoidal spatial field distribution.  相似文献   

16.
The present study deals with the analgesic effect induced by static magnetic fields (SMF) in mice exposed to the field with their whole body. It discusses how the effect depends on the distribution of the magnetic field, that is, on the specification and arrangement of the applied individual permanent magnets. A critical analysis of different magnet arrangements is given. As a result the authors propose a magnet arrangement recipe that achieves an analgesic effect of over 80% in the writhing test. This is a widely accepted screening method for animal pain and predictor of human experimental results. As a non-drug, non-invasive, non-contact, non-pain, non-addictive method for analgesia with immediate and long-lasting effect based on the stimulus of the endogenous opioid network, the SMF treatment may attract the attention of medical doctors, nurses, magnet therapists, veterinarians, physiotherapists, masseurs, and fitness trainers among others.  相似文献   

17.
Occupational magnetic field (MF) exposure is less thoroughly characterized in occupations typically held by women. Our objective was to characterize occupational 50 Hz MF personal exposure (PE) among female sewing machine operators. We measured the full shift PE of 51 seamstresses, who worked in two shifts (6-14 and 14-22 h) according to their normal work routine. Measurements were conducted using EMDEX PAL meters at chest level. The average duration of the measurement periods was 449 min (range 420-470). The average arithmetic mean exposure for all women was 0.76 microT (range 0.06-4.27). The average of maximum values was 4.30 microT (range 0.55-14.80). Women working with older sewing machines experienced higher exposure than women working on newer sewing machines. For women (n = 10) who operated sewing machines produced in 1990 or earlier, the average arithmetic mean exposure was 2.09 microT, and for women (n = 41) who operated sewing machines produced after 1990, the average arithmetic mean was 0.43 microT. We conclude that women working as sewing machine operators experience higher than average occupational MF exposure compared to other working women. Most important determinant of the women's personal MF exposure was the age of the sewing machine the women operated.  相似文献   

18.
In occupational environments, an increasing number of electromagnetic sources emitting complex magnetic field waveforms in the range of intermediate frequencies is present, requiring an accurate exposure risk assessment with both in vitro and in vivo experiments. In this article, an in vitro exposure system able to generate complex magnetic flux density B‐fields, reproducing signals from actual intermediate frequency sources such as magnetic resonance imaging (MRI) scanners, for instance, is developed and validated. The system consists of a magnetic field generation system and an exposure apparatus realized with a couple of square coils. A wide homogeneity (99.9%) volume of 210 × 210 × 110 mm3 was obtained within the coils, with the possibility of simultaneous exposure of a large number of standard Petri dishes. The system is able to process any numerical input sequence through a filtering technique aimed at compensating the coils' impedance effect. The B‐field, measured in proximity to a 1.5 T MRI bore during a typical examination, was excellently reproduced (cross‐correlation index of 0.99). Thus, it confirms the ability of the proposed setup to accurately simulate complex waveforms in the intermediate frequency band. Suitable field levels were also attained. Moreover, a dosimetry index based on the weighted‐peak method was evaluated considering the induced E‐field on a Petri dish exposed to the reproduced complex B‐field. The weighted‐peak index was equal to 0.028 for the induced E‐field, indicating an exposure level compliant with the basic restrictions of the International Commission on Non‐Ionizing Radiation Protection. Bioelectromagnetics 34:211–219, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Primary roots of radish (Raphanus sativus L.) seedlings were exposed to an inhomogeneous static magnetic field generated by a permanent magnet, during continuous rotation on a 0.06 rpm clinostat, thereby reducing the unilateral influence of gravity. The roots responded tropically to the static magnetic field with the tropism appearing to be negative. These roots responded significantly (P < 0.05) to the south pole of the magnet. The significant tropic response was found for a magnetic flux density of 13-68 mT, for a field gradient of 1.8-14.7 T/m, and for the product of magnetic field and field gradient of 0.023-1.0 T(2)/m. A small, but insignificant, response of the roots to the north pole has also been found.  相似文献   

20.
Acute effects of whole body exposure to static magnetic field (SMF) on pharmacologically induced hypertension in a conscious rabbit were evaluated. Hypertensive and vasoconstrictive actions were induced by norepinephrine (NE) or a nonselective nitric oxide synthase (NOS) inhibitor, N(omega)-nitro-l-arginine methyl ester (l-NAME). The hemodynamics in a central artery of the ear lobe was measured continuously and analyzed by penetrating microphotoelectric plethysmography (MPPG). Concurrently, blood pressure (BP) changes in a central artery, contralateral to that of the MPPG measured ear lobe, were monitored. Magnetic flux densities were 5.5 mT (Bmax), the magnetic gradient peaked in the throat at the level of approximately 0.09 mT/mm, and the duration of exposure was 30 min. The results demonstrated that under normal physiological conditions without treatment of pharmacological agents, there were no statistically significant differences in the hemodynamics and BP changes between the sham and the SMF exposure alone. Under pharmacologically induced hypertensive conditions, the whole body exposure to nonuniform SMF with peak magnetic gradient in the carotid sinus baroreceptor significantly attenuated the vasoconstriction and suppressed the elevation of BPs. These findings suggest that antipressor effects of the SMF on the hemodynamics under NE or l-NAME induced high vascular tone might be, in part, dependent on modulation of NE mediated response in conjunction with alteration in NOS activity, thereby modulating BPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号