首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type-I plasminogen activator inhibitor (PAI-1) is the primary inhibitor of both tissue- and urokinase-type plasminogen activators (t-PA, u-PA) and is thus a primary regulator of plasminogen activation and possibly of extracellular proteolysis. In anchorage-dependent cells, the PAI-1 gene was regulated by cell adhesion. PAI-1 gene expression was induced more evidently in cells adhered to the culture plate than in nonadherent cells. In this study, we investigated the signal pathway of the PAI-1 gene expression regulated by cell adhesion. We found the induction of both PAI-1 mRNA and protein, when cells adhered to culture dish, was inhibited by the PI-3 kinase specific inhibitors (Ly294002 and wortmannin). The cells seeded on collagen-1 coated plate with low serum further demonstrated that the PAI-1 gene expression was prolonged by the cell adhesion. The above-mentioned PI-3 kinase specific inhibitors also blocked the PAI-1 maintenance when cell adhered to collagen-1 coated plate. In addition, we found that both PI-3 kinase and its downstream molecule, Akt, were activated more evidently in adherent cells than in nonadherent cells. Furthermore, we transfected antisense oligodeoxynucleotides of Akt (AS-ODN-Akt) into cells to block the expression of Akt and found that the induction of PAI-1 mRNA was also inhibited. Hence, we conclude that the induction of PAI-1 gene expression is cell adhesion dependent and is through PI-3 kinase and Akt activation.  相似文献   

2.
3.
Skin extracellular matrix (ECM) molecules regulate a variety of cellular activities, including cell movement, which are central to wound healing and metastasis. Regulated cell movement is modulated by proteases and their associated molecules, including the serine proteases urinary-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) and their inhibitors (PAIs). As a result of wounding and loss of basement membrane structure, epidermal keratinocytes can become exposed to collagen. To test the hypothesis that during wounding, exposed collagen, the most abundant ECM molecule in the skin, regulates keratinocyte PA and PAI gene expression, we utilized an in vitro model in which activated keratinocytes were cultured in dishes coated with collagen or other ECM substrates. tPA, uPA, and PAI-1 mRNA and enzymatic activity were detected when activated keratinocytes attached to fibronectin, vitronectin, collagen IV, and RGD peptide. In contrast, adhesion to collagen I and collagen III completely suppressed expression of PAI-1 mRNA and protein and further increased tPA expression and activity. Similarly, keratinocyte adhesion to laminin-1 suppressed PAI-1 mRNA and protein expression and increased tPA activity. The suppressive effect of collagen I on PAI-1 gene induction was dependent on the maintenance of its native fibrillar structure. Thus, it would appear that collagen- and laminin-regulated gene expression of molecules associated with plasminogen activation provides an additional dimension in the regulation of cell movement and matrix remodeling in skin wound healing.  相似文献   

4.
Keloids are skin fibrotic conditions characterized by an excess accumulation of extracellular matrix (ECM) components secondary to trauma or surgical injuries. Previous studies have shown that plasminogen activator inhibitor-1 (PAI-1) can be upregulated by hypoxia and may contribute to keloid pathogenesis. In this study we investigate the signaling mechanisms involved in hypoxia-mediated PAI-1 expression in keloid fibroblasts. Using Northern and Western blot analysis, transient transfections, and pharmacological agents, we demonstrate that hypoxia-induced upregulation of PAI-1 expression is mainly controlled by hypoxia inducible factors-1alpha (HIF-1alpha) and that hypoxia leads to a rapid and transient activation of phosphatidylinositol-3-kinase/Akt (PI3-K/Akt) and extracellular signal-regulated kinases 1/2 (ERK1/2). Treatment of cells with PI-3K/Akt inhibitor (LY294002) and tyrosine protein kinase inhibitor (genistein) significantly attenuated hypoxia-induced PAI-1 mRNA and protein expression as well as promoter activation, apparently via an inhibition of the hypoxia-induced stabilization of HIF-1alpha protein, attenuation of the steady-state level of HIF-1alpha mRNA, and its DNA-binding activity. Even though disruption of ERK1/2 signaling pathway by PD98059 abolished hypoxia-induced PAI-1 promoter activation and mRNA/protein expression in keloid fibroblasts, it did not inhibit the hypoxia-mediated stabilization of HIF-1alpha protein and the steady-state level of HIF-1alpha mRNA nor its DNA binding activity. Our findings suggest that a combination of several signaling pathways, including ERK1/2, PI3-K/Akt, and protein tyrosine kinases (PTKs), may contribute to the hypoxia-mediated induction of PAI-1 expression via activation of HIF-1alpha in keloid fibroblasts.  相似文献   

5.
Serine/threonine kinase Akt is a downstream effector protein of phosphatidylinositol-3-kinase (PI-3K). Many integrins can function as positive modulators of the PI-3K/Akt pathway. Integrin alpha 2 beta 1 is a collagen receptor that has been shown to induce specific signals distinct from those activated by other integrins. Here, we found that, in contrast what was found for cells adherent to fibronectin, alpha 2 beta 1-mediated cell adhesion to collagen leads to dephosphorylation of Akt and glycogen synthase kinase 3 beta (GSK3 beta) and concomitantly to the induction of protein serine/threonine phosphatase 2A (PP2A) activity. PP2A activation can be inhibited by mutation in the alpha 2 cytoplasmic domain and by a function-blocking anti-alpha 2 antibody. Akt can be coprecipitated with PP2A, and coexpression of Akt with PP2Ac (catalytic subunit) inhibits Akt kinase activity. Integrin alpha 2 beta 1-related activation of PP2A is dependent on Cdc42. These results indicate that cell adhesion to collagen modulates Akt activity via the alpha 2 beta 1-induced activation of PP2A.  相似文献   

6.
7.
Exposure of arsenite can induce hyperproliferation of skin cells, which is believed to play important roles in arsenite-induced carcinogenesis by affecting both promotion and progression stages. However, the signal pathways and target genes activated by arsenite exposure responsible for the proliferation remain to be defined. In the present study, we found that: (1) exposure of human keratinocytic HaCat cells to arsenite caused an increase in cell proliferation, which was significantly inhibited by pretreatment of wortmannin, a specific chemical inhibitor of PI-3K/Akt signal pathway; (2) arsenite exposure was also able to activate PI-3K/Akt signal pathway, which thereby induced the elevation of cyclin D1 expression level in both HaCat cells and human primary keratinocytes based on that inhibition of PI-3K/Akt pathway by either pretreatment of wortmannin or the transfection of their dominant mutants, significantly inhibited cyclin D1 expression upon arsenite exposure; (3) PI-3K/Akt pathway is implicated in arsenite-induced proliferation of HaCat cells through the induction of cyclin D1 because either knockdown of cyclin D1 by its siRNA or inhibition of PI-3K/Akt signal pathway by their dominant mutants markedly impaired the proliferation of HaCat cells induced by arsenite exposure. Taken together, we provide the direct evidence that PI-3K/Akt pathway plays a role in the regulation of cell proliferation through the induction of cyclin D1 in human keratinocytes upon arsenite treatment. Given the importance of aberrant cell proliferation in cell transformation, we propose that the activation of PI-3K/Akt pathway and cyclin D1 induction may be the important mediators of human skin carcinogenic effect of arsenite.  相似文献   

8.
9.
10.
Activation of cytosolic phosphoinositide-3 kinase (PI-3K) signaling pathway has been well established to regulate gene expression, cell cycle, and survival by feeding signals to the nucleus. In addition, strong evidences accumulated over the past few years indicate the presence of an autonomous inositol lipid metabolism and PI-3K signaling within the nucleus. Much less, however, is known about the role and regulation of this nuclear PI-3K pathway. Components of the PI-3K signaling pathway, including PI 3-kinase and its downstream kinase Akt, have been identified at the nuclear level. Consistent with the presence of a complete PI-3K signaling pathway in the nucleus, we have recently found that phosphoinositide-dependent kinase 1 (PDK1), a kinase functioning downstream of PI-3K and upstream of Akt, is a nucleo-cytoplasmic shuttling protein. In the present review, we update our current knowledge on the regulatory mechanisms and the functional roles of PDK1 nuclear translocation. We also summarize some of the kinase-independent activities of PDK1 in cell signaling.  相似文献   

11.
Siglecs, an immunoglobulin-like lectin family that recognizes the sialic acid moiety, regulate various aspects of immune responses. In the present study, we investigated the effects of Siglecs on the macrophage cell line RAW264, which was stimulated with interleukin-4 (IL-4). The induction of arginase-1 (Arg1) by IL-4 was stronger in Siglec-9-expressing cells than in mock cells. Mutations in the cytoplasmic tyrosine-based inhibitory motifs in Siglec-9 markedly reduced the expression of Arg1. The phosphorylation of Akt by IL-4 and extracellular signal-regulated kinase (ERK) without IL-4 was stronger in Siglec-9-expressing cells, indicating the enhanced activation of the phosphatidylinositol 3 kinase (PI-3K) and mitogen-activated protein kinase kinase (MEK)/ERK pathways, respectively. The enhanced expression of Arg1 was inhibited by MEK inhibitors, but not by PI-3K inhibitor. These results indicate that Siglec-9 affects several different signaling pathways in IL-4-stimulated macrophages, which resulted in enhanced induction of Arg1 in Siglec-9-expressing RAW264 cells.  相似文献   

12.
13.
The net balance between urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) has been implicated in tumor cell invasion and metastasis. To elucidate the mechanism of the transforming growth factor-beta1 (TGF-beta1)-dependent up-regulation of PAI-1 expression, we investigated which signaling pathway transduced by TGF-beta1 is responsible for this effect. Here, we show (1) nontoxic concentrations of TGF-beta1 up-regulates uPA expression in HRA and SKOV-3 human ovarian cancer cells, (2) TGF-beta1 activates Smads (phosphorylation of Smad2 and nuclear translocation of Smad3) and subsequently up-regulates PAI-1 expression in HRA cells, whereas TGF-beta1 neither activates Smads nor up-regulates PAI-1 in SKOV-3 cells, (3) pharmacological Src inhibitor PP2 or antisense (AS) c-Src oligodeoxynucleotide (ODN) treatment significantly induces TGF-beta1-dependent activation of Smads, leading to PAI-1 synthesis, compared with controls, in SKOV-3 cells, (4) combination of TGF-beta1 and PP2, which activates PAI-1 expression and reduces uPA expression in SKOV-3, results in decreased invasiveness, (5) pharmacological inhibitors for mitogen-activated protein kinase (MAPK) (PD98059) and phosphoinositide-3-kinase (PI3K) (LY294002 and wortmannin) or AS-PI3K ODN transfection do not affect TGF-beta1-induced Smad signaling and up-regulation of PAI-1 expression in SKOV-3 cells pretreated with PP2, and (6) the induction of PAI-1 protein was partially inhibited by an inhibitor of Sp1-DNA binding, mithramycin, implicating, at least in part, Sp1 in the regulation of this gene by TGF-beta1. In conclusion, TGF-beta1-dependent activation of Smad2/3, leading to PAI-1 synthesis, may be negatively regulated by Src, but not its downstream targets MAPK and PI3K in SKOV-3 cells. These data also reflect the complex biological effect of uPA-PAI-1 system.  相似文献   

14.
15.
16.
We previously reported that 12-O-tetra-decanoylphorbol-13-acetate (TPA) induces microglia-like differentiation and decreases malignancy in human prostate cancer TSU-Pr1 cells. To investigate the mechanism underlying differentiation and decrease of malignancy in TSU-Pr1 cells treated with TPA, we attempted to identify genes expressed differentially during the differentiation using differential display. We successfully detected plasminogen activator inhibitor type-2 (PAI-2) as one gene up-regulated by TPA treatment. The change in expression of PAI-2 by TPA was blocked by treatment with protein kinase C or mitogen-activated protein kinase inhibitors. We also found that secretion of PAI-2 protein was increased by TPA treatment. Moreover, we demonstrated that suppression of invasive activity of TSU-Pr1 cells by TPA treatment was blocked by co-treatment with anti-PAI-2 antibody. These results suggest that induction of PAI-2 is associated with suppression of invasive activity in TSU-Pr1 cells treated with TPA.  相似文献   

17.
The cytokine transforming growth factor beta (TGFbeta) has strong antiproliferative activity in most normal cells but contributes to tumor progression in the later stages of oncogenesis. It is not fully understood which TGFbeta target genes are causally involved in mediating its cytostatic activity. We report here that suppression of the TGFbeta target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference leads to escape from the cytostatic activity of TGFbeta both in human keratinocytes (HaCaTs) and primary mouse embryo fibroblasts. Consistent with this, PAI-1 knock-out mouse embryo fibroblasts are also resistant to TGFbeta growth arrest. Conversely, we show that ectopic expression of PAI-1 in proliferating HaCaT cells induces a growth arrest. PAI-1 knockdown does not interfere with canonical TGFbeta signaling as judged by SMAD phosphorylation and induction of bona fide TGFbeta target genes. Instead, knockdown of PAI-1 results in sustained activation of protein kinase B. Significantly, we find that constitutive protein kinase B activity leads to evasion of the growth-inhibitory action of TGFbeta. Our data are consistent with a model in which induction of PAI-1 by TGFbeta is critical for the induction of proliferation arrest.  相似文献   

18.
19.
Phosphoinositide-3 kinase (PI-3 kinase) and its downstream signaling molecules PDK-1 and Akt were analyzed in SK-N-SH and SK-N-BE(2) human neuroblastoma cell lines. When cells were stimulated with insulin, PI-3 kinase was activated in both cell lines, whereas the translocation of PDK-1 to the membrane fraction and phosphorylated Akt were observed only in SK-N-SH cells. Analyses of the insulin-mediated reactive oxygen species (ROS) generation and Phosphatase and Tensin homolog (PTEN) oxidation indicate that PTEN oxidation occurred in SK-N-SH cells, which can produce ROS, but not in SK-N-BE(2) cells, which cannot increase ROS in response to insulin stimulation. When SK-N-SH cells were pretreated with the NADPH oxidase inhibitor diphenyleneiodonium chloride before insulin stimulation, insulin-mediated translocation of PDK-1 to the membrane fraction and phosphorylation of Akt were remarkably reduced, whereas PI-3 kinase activity was not changed significantly. These results indicate that not only PI-3 kinase activation but also inhibition of PTEN by ROS is needed to increase cellular level of phosphatidylinositol 3,4,5-trisphosphate for recruiting downstream signaling molecules such as PDK-1 and Akt in insulin-mediated signaling. Moreover, the ROS generated by insulin stimulation mainly contributes to the inactivation of PTEN and not to the activation of PI-3 kinase in the PI-3 kinase/Akt pathway.  相似文献   

20.
Functions of small GTPases in integrin expression were investigated when the interaction of nonadherent human colon carcinoma 201 cells with the extracellular matrix (ECM) was examined. By transfection of the constitutively active form of a small GTPase Rac1, Rac V12, adhesion of cells to the ECM increased with concomitant cell spreading and formation of membrane ruffles. Activated Cdc42 and Cdc42 V12, but not wild-type Rac1, Cdc42, or RhoA, also induced the adhesion and spreading of Colo201 cells. This adhesion is integrin beta4 dependent since an antibody for integrin beta4 inhibited the RacV12-dependent cell adhesion and numbers of adhesive cells on laminin-coated plates exceeded those on collagen- and fibronectin-coated plates. By immunofluorescence, in addition to clustering of integrin molecules, expression of integrin alpha6beta4 on the cell surface of Rac V12- and Cdc42 V12-expressing cells was selectively up-regulated without an increase in biosynthesis of alpha6beta4 integrin. Treatment of Rac V12-expressing cells with wortmannin or LY294002, specific inhibitors of phosphoinositide 3-OH kinase, decreased the up-regulated alpha6beta4 and cell adhesion. In light of this evidence, we propose that the regulation of integrin alpha6beta4 expression induced by Rac1 and Cdc42 may play an important role in cell adhesion and tumorigenesis of colon carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号