首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stromal domain (PsaC, PsaD, and PsaE) of photosystem I (PSI) reduces transiently bound ferredoxin (Fd) or flavodoxin. Experimental structures exist for all of these protein partners individually, but no experimental structure of the PSI/Fd or PSI/flavodoxin complexes is presently available. Molecular models of Fd docked onto the stromal domain of the cyanobacterial PSI site are constructed here utilizing X‐ray and NMR structures of PSI and Fd, respectively. Predictions of potential protein‐protein interaction regions are based on experimental site‐directed mutagenesis and cross‐linking studies to guide rigid body docking calculations of Fd into PSI, complemented by energy landscape theory to bring together regions of high energetic frustration on each of the interacting proteins. The results identify two regions of high localized frustration on the surface of Fd that contain negatively charged Asp and Glu residues. This study predicts that these regions interact predominantly with regions of high localized frustration on the PsaC, PsaD, and PsaE chains of PSI, which include several residues predicted by previous experimental studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
PsaD subunit of Synechocystis sp PCC 6803 photosystem I (PSI) plays a critical role in the stability of the complex and is part of the docking site for ferredoxin (Fd). In the present study we describe major physiological and biochemical effects resulting from mutations in the accessible C-terminal end of the protein. Four basic residues were mutated: R111, K117, K131, and K135, and a large 36-amino acid deletion was generated at the C terminus. PSI from R111C mutant has a 5-fold decreased affinity for Fd, comparable with the effect of the C terminus deletion, and NADP+ is photoreduced with a 2-fold decreased rate, without consequence on cell growth. The K117A mutation has no effect on the affinity for Fd, but decreases the stability of PsaE subunit, a loss of stability also observed in R111C and the deletion mutants. The double mutation K131A/K135A does not change Fd binding and reduction, but decreases the overall stability of PSI and impairs the cell growth at temperatures above 30 degrees C. Three mutants, R111C, K117A, and the C-terminal deleted exhibit a higher content of the trimeric form of PSI, in apparent relation to the removal of solvent accessible positive charges. Various regions in the C terminus of cyanobacterial PsaD thus are involved in Fd strong binding, PSI stability, and accumulation of trimeric PSI.  相似文献   

3.
An improved electron density map of photosystem I (PSI) calculated at 4-A resolution yields a more detailed structural model of the stromal subunits PsaC, PsaD, and PsaE than previously reported. The NMR structure of the subunit PsaE of PSI from Synechococcus sp. PCC7002 (Falzone, C. J., Kao, Y.-H., Zhao, J., Bryant, D. A., and Lecomte, J. T. J. (1994) Biochemistry 33, 6052-6062) has been used as a model to interpret the region of the electron density map corresponding to this subunit. The spatial orientation with respect to other subunits is described as well as the possible interactions between the stromal subunits. A first model of PsaD consisting of a four-stranded beta-sheet and an alpha-helix is suggested, indicating that this subunit partly shields PsaC from the stromal side. In addition to the improvements on the stromal subunits, the structural model of the membrane-integral region of PSI is also extended. The current electron density map allows the identification of the N and C termini of the subunits PsaA and PsaB. The 11-transmembrane alpha-helices of these subunits can now be assigned uniquely to the hydrophobic segments identified by hydrophobicity analyses.  相似文献   

4.
The two [4Fe-4S] clusters F(A) and F(B) are the terminal electron acceptors of photosystem I (PSI) that are bound by the stromal subunit PsaC. Soluble ferredoxin (Fd) binds to PSI via electrostatic interactions and is reduced by the outermost iron-sulfur cluster of PsaC. We have generated six site-directed mutants of the green alga Chlamydomonas reinhardtii in which residues located close to the iron-sulfur clusters of PsaC are changed. The acidic residues Asp(9) and Glu(46), which are located one residue upstream of the first cysteine liganding cluster F(B) and F(A), respectively, were changed to a neutral or a basic amino acid. Although Fd reduction is not affected by the E46Q and E46K mutations, a slight increase of Fd affinity (from 1.3- to 2-fold) was observed by flash absorption spectroscopy for the D9N and D9K mutant PSI complexes. In the FA(2) triple mutant (V49I/K52T/R53Q), modification of residues located next to the F(A) cluster leads to partial destabilization of the PSI complex. The electron paramagnetic resonance properties of cluster F(A) are affected, and a 3-fold decrease of Fd affinity is observed. The introduction of positively charged residues close to the F(B) cluster in the FB(1) triple mutant (I12V/T15K/Q16R) results in a 60-fold increase of Fd affinity as measured by flash absorption spectroscopy and a larger amount of PsaC-Fd cross-linking product. The first-order kinetics are similar to wild type kinetics (two phases with t((1)/(2)) of <1 and approximately 4.5 microseconds) for all mutants except FB(1), where Fd reduction is almost monophasic with t((1)/(2)) < 1 microseconds. These data indicate that F(B) is the cluster interacting with Fd and therefore the outermost iron-sulfur cluster of PSI.  相似文献   

5.
The wild-type, PsaD-less, and PsaL-less strains of the cyanobacterium Synechocystis sp. PCC 6803 were used to study subunit interactions in photosystem I (PSI). When the membranes of a PsaD-less strain were solubilized with Triton X-100 and PSI was purified using ion-exchange chromatography and sucrose-gradient ultracentrifugation, the PsaL subunit was substantially removed from the core of PSI, whereas other subunits, such as PsaE and PsaF, were quantitatively retained during purification. When the wild-type PSI was exposed to increasing concentrations of NaI, the PsaE, PsaD, and PsaC subunits were gradually removed, whereas PsaF, PsaL, PsaK, and PsaJ resisted removal by up to 3 M NaI. The absence of PsaL enhanced the accessibility of PsaD to removal by NaI. Treatment of the wild-type PSI complexes with glutaraldehyde at 4[deg] C resulted in a 29-kD cross-linked product between PsaD and PsaL. The formation of such cross-linked species was independent of PSI concentrations, suggesting an intracomplex cross-linking between PsaD and PsaL. Taken together, these results demonstrate a structural interaction between PsaD and PsaL that plays a role in their association with the PSI core.  相似文献   

6.
Shao J  Zhang Y  Yu J  Guo L  Ding Y 《PloS one》2011,6(5):e20342
Thylakoid membrane complexes of rice (Oryza sativa L.) play crucial roles in growth and crop production. Understanding of protein interactions within the complex would provide new insights into photosynthesis. Here, a new "Double-Strips BN/SDS-PAGE" method was employed to separate thylakoid membrane complexes in order to increase the protein abundance on 2D-gels and to facilitate the identification of hydrophobic transmembrane proteins. A total of 58 protein spots could be observed and subunit constitution of these complexes exhibited on 2D-gels. The generality of this new approach was confirmed using thylakoid membrane from spinach (Spinacia oleracea) and pumpkin (Cucurita spp). Furthermore, the proteins separated from rice thylakoid membrane were identified by the mass spectrometry (MS). The stromal ridge proteins PsaD and PsaE were identified both in the holo- and core- PSI complexes of rice. Using molecular dynamics simulation to explore the recognition mechanism of these subunits, we showed that salt bridge interactions between residues R19 of PsaC and E168 of PasD as well as R75 of PsaC and E91 of PsaD played important roles in the stability of the complex. This stromal ridge subunits interaction was also supported by the subsequent analysis of the binding free energy, the intramolecular distances and the intramolecular energy.  相似文献   

7.
The X-ray structure of Photosystem I (PS I) from Synechococcus elongatus was recently solved at 2.5A resolution (PDB entry 1JB0). It provides a structural model for the stromal subunits PsaC, PsaD and PsaE, which comprise the "stromal ridge" of PS I. In a separate set of studies the three-dimensional solution structures of the unbound, recombinant PsaC (PDB entry 1K0T) and PsaE (PDB entries 1PSF, 1QP2 and 1GXI) subunits were solved by NMR. The PsaC subunit of PS I is a small (9.3 kDa) protein that harbors binding sites for two [4Fe-4S] clusters F(A) and F(B), which are the terminal electron acceptors in PS I. Comparison of the PsaC structure in solution with that in the X-ray structure of PS I reveals significant differences between them which are summarized and evaluated here. Changes in the magnetic properties of [4Fe-4S] centers F(A) and F(B) are related to changes in the protein structure of PsaC, and they are further influenced by the presence of PsaD. Based on experimental evidence, three assembly stages are analyzed: PsaC(free), PsaC(only), PsaC(PS I). Unbound, recombinant PsaD, studied by NMR, has only a few elements of secondary structure and no stable three-dimensional structure in solution. When PsaD is bound in PS I, it has a well-defined three-dimensional structure. For PsaE the three-dimensional structure is very similar in solution and in the PS I-bound form, with the exception of two loop regions. We suggest that the changes in the structures of PsaC and PsaD are caused by the sequential formation of multiple networks of contacts between the polypeptides of the stromal ridge and between those polypeptides and the PsaA/PsaB core polypeptides. The three-dimensional structure of the C(2)-symmetric F(X)-binding loops on PsaA and PsaB were also analyzed and found to be significantly different from the binding sites of other proteins that contain interpolypeptide [4Fe-4S] clusters. The aim of this work is to relate contact information to structural changes in the proteins and to propose a model for the assembly of the stromal ridge of PS I based on this analysis.  相似文献   

8.
The present study characterizes the assembly and organization of Photosystem I (PSI) complex, and its individual subunits into the thylakoid membranes of the thermophilic cyanobacterium, Mastigocladus laminosus. PSI is a multiprotein complex that contains peripheral as well as integral subunits. Hence, it serves as a suitable model system for understanding the formation and organization of membrane protein complexes. In the present study, two peripheral cytosol facing subunits of PSI, namely, PsaD and PsaE were overexpressed in E. coli and used for assembly studies. The gene encoding PsaK, an integral membrane spanning subunit of PSI, was cloned and the deduced amino acid sequence revealed PsaK to have two transmembrane alpha-helices. The characterization of the in vitro assembly of the peripheral subunits, PsaD and PsaE, as well as of the integral subunit, PsaK, was performed by incubating each subunit with thylakoids isolated from Mastigocladus laminosus. All three subunits studied were found to assemble into the thylakoids in a spontaneous mechanism, showing no requirement for cytosolic factors or NTP's (nucleotide 5'-triphosphate). Nevertheless, further characterization of the assembly of PsaK revealed its membrane integration to be most efficient at 55 degrees C. The associations and protein-protein interactions between different subunits within the assembled PSI complex were directly quantified by measurements performed using the BIACORE technology. The preliminary results indicated the existence of specific interaction between PsaD and PsaE, and revealed a very high binding affinity between PsaD and the PSI electron acceptor ferridoxin (Kd = 5.8 x 10(-11) M). PsaE has exhibited a much lower binding affinity for ferridoxin (Kd = 3.1 x 10(-5) M), thereby supporting the possibility of PsaE being one of the subunits responsible for the dissociation of ferridoxin from the PSI complex.  相似文献   

9.
The reaction center of photosystem I (PSI) reduces soluble ferredoxin on the stromal side of the photosynthetic membranes of cyanobacteria and chloroplasts. The X-ray structure of PSI from the cyanobacterium Synechococcus elongatus has been recently established at a 2.5 A resolution [Nature 411 (2001) 909]. The kinetics of ferredoxin photoreduction has been studied in recent years in many mutants of the stromal subunits PsaC, PsaD and PsaE of PSI. We discuss the ferredoxin docking site of PSI using the X-ray structure and the effects brought by the PSI mutations to the ferredoxin affinity.  相似文献   

10.
Electron input from plastocyanin into photosystem I (PSI) is slowed down in the Chlamydomonas reinhardtii mutants affected at the donor side (PsaF or PsaB, lumenal loop j) of PSI. In contrast, electron exit from PSI to ferredoxin is diminished in the PSI acceptor side PsaC mutants K35E and FB1. Although, the electron transfer reactions are diminished to a similar extent in both type of mutants, the PsaC mutants K35E and FB1 are more light‐sensitive than the PsaF‐deficient strain 3bF or the PsaB mutants E613N and W627F. To assess the differential photosensitivity of donor and acceptor side mutants fluorescence transients, gross oxygen evolution and uptake, PSII photo‐inhibition and rate of recovery were measured as well as NADP+ photoreduction. The NADP+ photoreduction measurements indicated that the donor side is limiting the reduction rate. In contrast, measurements of gross oxygen evolution and uptake showed that the reducing side limits linear electron transfer. However, under high light, donor and acceptor side mutations lead to PSII photo‐inhibition and to a diminished rate of PSII recovery, cause lipid peroxidation and result in a decrease in the levels of PSI and PSII. The wild type is not affected under the same conditions. These responses are most pronounced in the PsaC‐K35E and PsaB‐W627F mutants, and they correlate with the light sensitivity of these strains. The correlation between limitation of electron transfer through PSI and the formation of reactive oxygen species as a cause for the light‐sensitivity is discussed.  相似文献   

11.
Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.  相似文献   

12.
The absence of the PsaC subunit in the photosystem I (PSI) complex (native PSI complex) by mutagenesis or chemical manipulation yields a PSI core (P700-F(X) core) that also lacks subunits PsaD and PsaE and the two iron-sulfur clusters F(A) and F(B), which constitute an integral part of PsaC. In this P700-F(X) core, the redox potentials (E(m)) of the two quinones A(1A/B) and the iron-sulfur cluster F(X) as well as the corresponding protonation patterns are investigated by evaluating the electrostatic energies from the solution of the linearized Poisson-Boltzmann equation. The B-side specific Asp-B558 changes its protonation state significantly upon isolating the P700-F(X) core, being mainly protonated in the native PSI complex but ionized in the P700-F(X) core. In the P700-F(X) core, E(m)(A(1A/B)) remains practically unchanged, whereas E(m)(F(X)) is upshifted by 42 mV. With these calculated E(m) values, the electron transfer rate from A(1) to F(X) in the P700-F(X) core is estimated to be slightly faster on the A(1A) side than that of the wild type, which is consistent with kinetic measurements.  相似文献   

13.
In photosystem I (PSI) of oxygenic photosynthetic organisms the psaC polypeptide, encoded by the psaC gene, provides the ligands for two [4Fe-4S] clusters, FA and FB. Unlike other cyanobacteria, two different psaC genes have been reported in the cyanobacterium Synechocystis 6803, one (copy 1) with a deduced amino acid sequence identical to that of tobacco and another (copy 2) with a deduced amino acid sequence similar to those reported for other cyanobacteria. Insertion of a gene encoding kanamycin resistance into copy 2 resulted in a photosynthesis-deficient strain, CDK25, lacking the PsaC, PsaD and PsaE polypeptides in isolated thylakoid membranes, while the PsaA/PsaB and PsaF subunits were found. Growth of the mutant cells was indistinguishable from that of wild-type cells under light-activated heterotrophic growth (LAHG). A reversible P700+ signal was detected by EPR spectroscopy in the isolated thylakoids during illumination at low temperature. Under these conditions, the EPR signals attributed to FA and FB were absent in the mutant strain, but a reversible Fx signal was present with broad resonances at g=2.079, 1.903, and 1.784. Addition of PsaC and PsaD proteins to the thylakoids gave rise to resonances at g=2.046, 1.936, 1.922, and 1.880; these values are characteristic of an interaction-type spectrum of FA - and FB -. In room-temperature optical spectroscopic analysis, addition of PsaC and PsaD to the thylakoids also restored a 30 ms kinetic transient which is characteristic of the P700+ [FA/FB]- backreaction. Expression of copy 1 was not detected in cells grown under LAHG and under mixotrophic conditions. These results demonstrate that copy 2 encodes the PsaC polypeptide in PSI in Synechocystis 6803, while copy 1 is not involved in PSI; that the PsaC polypeptide is necessary for stable assembly of PsaD and PsaE into PSI complex in vivo; and that PsaC, PsaD and PsaE are not needed for assembly of PsaA-PsaB dimer and electron transport from P700 to Fx.  相似文献   

14.
Interorganellar signaling interactions are poorly understood. The maize non-chromosomal stripe (NCS) mutants provide models to study the requirement of mitochondrial function for chloroplast biogenesis and photosynthesis. Previous work suggested that the NCS6 mitochondrial mutation, a cytochrome oxidase subunit 2 (cox2) deletion, is associated with a malfunction of Photosystem I (PSI) in defective chloroplasts of mutant leaf sectors (Gu et al., 1993). We have now quantified the reductions of photosynthetic rates and PSI activity in the NCS6 defective stripes. Major reductions of the plastid-coded PsaC and nucleus-coded PsaD and PsaE PSI subunits and of their corresponding mRNAs are seen in mutant sectors; however, although thepsaA/B mRNA is greatly reduced, levels of PsaA and PsaB (the core proteins of PSI) are only slightly decreased. Levels of the PsaL subunit and its mRNA appear to be unchanged. Tested subunits of other thylakoid membrane complexes – PSII, Cyt b6/f, and ATP synthase, have minor (or no) reductions within mutant sectors. The results suggest that specific signaling pathways sense the dysfunction of the mitochondrial electron transport chain and respond to down-regulate particular PSI mRNAs, leading to decreased PSI accumulation in the chloroplast. The reductions of both nucleus and plastid encoded components indicate that complex interorganellar signaling pathways may be involved.  相似文献   

15.
Q Xu  J A Guikema    P R Chitnis 《Plant physiology》1994,106(2):617-624
Photosystem I (PSI) is a multisubunit enzyme that catalyzes the light-driven oxidation of plastocyanin or cytochrome c6 and the concomitant photoreduction of ferredoxin or flavodoxin. To identify the surface-exposed domains in PSI of the cyanobacterium Synechocystis sp. PCC 6803, we mapped the regions in PsaE, PsaD, and PsaF that are accessible to proteases and N-hydroxysuccinimidobiotin (NHS-biotin). Upon exposure of PSI complexes to a low concentration of endoproteinase glutamic acid (Glu)-C, PsaE was cleaved to 7.1- and 6.6-kD N-terminal fragments without significant cleavage of other subunits. Glu63 and Glu67, located near the C terminus of PsaE, were the most likely cleavage sites. At higher protease concentrations, the PsaE fragments were further cleaved and an N-terminal 9.8-kD PsaD fragment accumulated, demonstrating the accessibility of Glu residue(s) in the C-terminal domain of PsaD to the protease. Besides these major, primary cleavage products, several secondary cleavage sites on PsaD, PsaE, and PsaF were also identified. PsaF resisted proteolysis when PsaD and PsaE were intact. Glu88 and Glu124 of PsaF became susceptible to endoproteinase Glu-C upon extensive cleavage of PsaD and PsaE. Modification of PSI proteins with NHS-biotin and subsequent cleavage by endoproteinase Glu-C or thermolysin showed that the intact PsaE and PsaD, but not their major degradation products lacking C-terminal domains, were heavily biotinylated. Therefore, lysine-74 at the C terminus of PsaE was accessible for biotinylation. Similarly, lysine-107, or lysine-118, or both in PsaD could be modified by NHS-biotin.  相似文献   

16.
A covalent stoichiometric complex between photosystem I (PSI) and ferredoxin from the cyanobacterium Synechocystis sp. PCC 6803 was generated by chemical cross-linking. The photoreduction of ferredoxin, studied by laser flash absorption spectroscopy between 460 and 600 nm, is a fast process in 60% of the covalent complexes, which exhibit spectral and kinetic properties very similar to those observed with the free partners. Two major phases with t(1/2) <1 micros and approximately 10-14 micros are observed at two different pH values (5.8 and 8.0). The remaining complexes do not undergo fast ferredoxin reduction and 20-25% of the complexes are still able to reduce free ferredoxin or flavodoxin efficiently, thus indicating that ferredoxin is not bound properly in this proportion of covalent complexes. The docking site of ferredoxin on PSI was determined by electron microscopy in combination with image analysis. Ferredoxin binds to the cytoplasmic side of PSI, with its mass center 77 angstroms distant from the center of the trimer and in close contact with a ridge formed by the subunits PsaC, PsaD and PsaE. This docking site corresponds to a close proximity between the [2Fe- 2S] center of ferredoxin and the terminal [4Fe-4S] acceptor FII of PSI and is very similar in position to the docking site of flavodoxin, an alternative electron acceptor of PSI.  相似文献   

17.
Photosystem I (PS I) is a transmembranal multisubunit complex that mediates light-induced electron transfer from plactocyanine to ferredoxin. The electron transfer proceeds from an excited chlorophyll a dimer (P700) through a chlorophyll a (A0), a phylloquinone (A1), and a [4Fe-4S] iron-sulfur cluster FX, all located on the core subunits PsaA and PsaB, to iron-sulfur clusters FA and FB, located on subunit PsaC. Earlier, it was attempted to determine the function of FX in the absence of FA/B mainly by chemical dissociation of subunit PsaC. However, not all PsaC subunits could be removed from the PS I preparations by this procedure without partially damaging FX. We therefore removed subunit PsaC by interruption of the psaC2 gene of PS I in the cyanobacterium Synechocystis sp. PCC 6803. Cells could not grow under photosynthetic conditions when subunit PsaC was deleted, yet the PsaC-deficient mutant cells grew under heterotrophic conditions and assembled the core subunits of PS I in which light-induced electron transfer from P700 to A1 occurred. The photoreduction of FX was largely inhibited, as seen from direct measurement of the extent of electron transfer from A1 to FX. From the crystal structure it can be seen that the removal of subunits PsaC, PsaD, and PsaE in the PsaC-deficient mutant resulted in the braking of salt bridges between these subunits and PsaB and PsaA and the formation of a net of two negative surface charges on PsaA/B. The potential induced on FX by these surface charges is proposed to inhibit electron transport from the quinone. In the complete PS I complex, replacement of a cysteine ligand of FX by serine in site-directed mutation C565S/D566E in subunit PsaB caused an approximately 10-fold slow down of electron transfer from the quinone to FX without much affecting the extent of this electron transfer compared with wild type. Based on these and other results, we propose that FX might have a major role in controlling electron transfer through PS I.  相似文献   

18.
Nield J  Morris EP  Bibby TS  Barber J 《Biochemistry》2003,42(11):3180-3188
Here we describe the three-dimensional structure of the newly discovered CP43'-photosystem I (PSI) supercomplex of cyanobacteria calculated by single-particle analysis of images obtained by electron cryomicroscopy (cryo-EM). This large membrane protein complex has a molecular mass of approximately 2 MDa and is found in cyanobacteria when grown in iron deficient media. It is composed of a reaction center trimer surrounded by 18 subunits of the chlorophyll a binding CP43'protein, encoded by the isiA gene, which increases the light harvesting capacity of PSI by approximately 70%. By modeling higher-resolution structural data obtained from X-ray crystallography into the three-dimensional (3D) cryo-EM map, we have been able to gain a better understanding of the structure and functional properties of this supermolecular complex. We have identified three separate clusters of chlorophyll molecules at the periphery of the PSI core which may aid energy transfer from the CP43' antenna ring to the reaction center. Moreover, it is shown that despite the replacement of ferredoxin with flavodoxin as an electron acceptor under iron stress conditions, the 3D map has density to accommodate the extrinsic proteins, PsaC, PsaD, and PsaE. The presence of these three proteins was also confirmed by immunoblotting.  相似文献   

19.
The polypeptide composition of the Photosystem I complex from Synechococcus sp. PCC 6301 was determined by sodium-dodecyl sulfate polyacrylamide gel electrophoresis and N-terminal amino acid sequencing. The PsaA, PsaB, PsaC, PsaD, PsaE, PsaF, PsaK and PsaL proteins, as well as three polypeptides with apparent masses less than 8 kDa and small amounts of the 12.6 kDa GlnB (PII) protein, wee present in the Photosystem I complex. No proteins homologous to the PsaG and PsaH subunits of eukaryotic Photosystem I complexes were detected. When the Photosystem I complex was treated with 6.8 M urea and ultrafiltered using a 100 kDa cutoff membrane, the resulting Photosystem I core protein was found to be depleted of the PsaC, PsaD and PsaE proteins. The filtrate contained the missing proteins, along with five proteolytically-cleaved polypeptides with apparent masses of less than 16 kDa and with N-termini identical to that of the PsaD protein. The PsaF and PsaL proteins, along with the three less than 8 kDa polypeptides, were not released from the Photosystem I complex to any significant extent, but low-abundance polypeptides with N-termini identical to those of PsaF and PsaL were found in the filtrate with apparent masses slightly smaller than those found in the native Photosystem I complex. When the filtrate was incubated with FeCl3, Na2S and beta-mercaptoethanol in the presence of the isolated Photosystem I core protein, the PsaC, PsaD and PsaE proteins were rebound to reconstitute a Photosystem I complex functional in light-induced electron flow from P700 to FA/FB. In the absence of the iron-sulfur reconstitution agents, there was little rebinding of the PsaC, psaD or PsaE proteins to the Photosystem I core protein. No binding of the truncated PsaD polypeptides occurred, either in the presence or absence of the iron-sulfur reagents. The reconstitution of the FA/FB iron-sulfur clusters thus appears to be a necessary precondition for rebinding of the PsaC, psaD and psaE proteins to the Photosystem I core protein.  相似文献   

20.
V P Chitnis  A Ke    P R Chitnis 《Plant physiology》1997,115(4):1699-1705
The PsaD subunit of photosystem I (PSI) is a peripheral protein that provides a docking site for ferredoxin and interacts with the PsaB, PsaC, and PsaL subunits of PSI. We used site-directed mutagenesis to determine the function of a basic region in PsaD of the cyanobacterium Synechocystis sp. PCC 6803. We generated five mutant strains in which one or more charged residues were altered. Western blotting showed that replacement of lysine (Lys)-74 with glutamine or glutamic acid led to a substantial decrease in the level of PsaD in the membranes. The mutant PSI complexes showed reduced NADP+ photoreduction activity mediated by ferredoxin; the decrease in activity correlated with the reduced level of PsaD. Using protein synthesis inhibitors we showed that the degradation rates of the mutant and wild-type PsaD were similar, indicating a defect in the assembly of the mutant protein. Treatment of the mutant PSI complexes with a different concentration of NaI showed that the mutations decreased affinity between PsaD and the transmembrane components of PSI. With glutaraldehyde, the mutant and wild-type PsaD proteins could be cross-linked with PsaC, but the PsaD-PsaL cross-linked product was reduced drastically when arginine-72, Lys-74, and Lys-76 were mutated simultaneously. These studies demonstrate that the basic residues in the central region of PsaD, especially Lys-74, are crucial in the assembly of PsaD into the PSI complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号