首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mountain lakes in the Bohemian Forest, on both the Czech and German sides, were atmospherically acidified mainly in the 1960s–1980s and have since been recovering from acidification. In 2007, we performed the first complete study on littoral macroinvertebrates in all eight lakes. The goals of the study were to 1) compare macroinvertebrates in the lakes during the process of recovery and 2) investigate relations between the occurrence of taxa and water chemistry. Lake water pH varied from 4.6 to 5.7, concentrations of dissolved reactive Al and labile Al ranged from 118–601 and 11–470 μg L?1, respectively, and DOC concentrations were < 6 mg L?1. Altogether 73 taxa were identified from all lakes; a positive relationship was found between pH and the number of macroinvertebrate taxa. The highest number of taxa was found in the least acidic lakes Laka and Grosser Arbersee, including the mollusk Pisidium casertanum. In contrast, the lowest diversity was found in the most acidified ?ertovo jezero. Cluster analyses of macroinvertebrates and water chemistry suggested pH as the key factor influencing the occurrence of macroinvertebrate taxa. An interesting finding was the occurrence of the boreo-montane water beetle Nebrioporus assimilis in Prá?ilské record of this species in the Czech Republic since 1960.  相似文献   

3.
Increases in the concentration of dissolved organic matter (DOM) have been documented in many inland waters in recent decades, a process known as “browning”. Previous studies have often used space‐for‐time substitution to examine the direct consequences of increased DOM on lake ecosystems. However, browning often occurs concomitant with other ecologically important water chemistry changes that may interact with or overwhelm any potential ecological response to browning itself. Here we examine a long‐term (~20 year) dataset of 28 lakes in the Adirondack Park, New York, USA, that have undergone strong browning in response to recovery from acidification. With these data, we explored how primary producer and zooplankton consumer populations changed during this time and what physical and chemical changes best predicted these long‐term ecosystem changes. Our results indicate that changes in primary producers are likely driven by reduced water clarity due to browning, independent of changes in nutrients, counter to previously hypothesized primary producer response to browning. In contrast, declines in calcium concomitant with browning play an important role in driving long‐term declines in zooplankton biomass. Our results indicate that responses to browning at different trophic levels are decoupled from one another. Concomitant chemical changes have important implications for our understanding of the response of aquatic ecosystems to browning.  相似文献   

4.
Ninety-one lakes distributed along the Tatra Mountains (most of lakes > 1 ha and 65% of lakes > 0.01 ha) were sampled and analysed for ionic and nutrient composition in September 2004 (15 years after reduction in acid deposition). Eighty-one lakes were in alpine zone and ten lakes in Norway spruce forest. The results were compared to similar lake surveys from 1994 (the beginning of water recovery from acidification) and 1984 (maximum acidification). Atmospheric deposition of SO 4 2? and inorganic N decreased 57% and 35%, respectively, in this region from the late 1980s to 2000. Lake water concentrations of SO 4 2? and NO 3 ? have decreased both by ~50% on average (to 23 and 19 μmol L?1, respectively, in 2004) since 1984. While the decrease in SO 4 2? concentrations was stable throughout 1984–2004, most of the NO 3 ? decrease occurred from 1994 to 2004. The declines in SO 4 2? and NO 3 ? concentrations depended on catchment coverage with vegetation, being most rapid for SO 4 2? in forest lakes and for NO 3 ? in rocky lakes. Concentrations of the sum of base cations (dominated by Ca2+) significantly decreased between 1984 and 2004, with the highest change in rocky lakes. Most of this decline occurred between 1994 and 2004. Acid neutralising capacity (ANC) did not change in the 1984–1994 period, but increased on average by 29 μmol L?1 between 1994 and 2004, with the highest change in rocky lakes. Over the last decade, the proportion of lakes with ANC > 150 μmol L?1 increased from 15% to 21% and that of ANC < 20 μmol L?1 decreased from 37% to 20%. The highest decline in H+ and Al concentrations occurred in the most acid lakes. On a regional basis, no significant change was observed for total phosphorus, total organic nitrogen, and dissolved organic carbon (DOC) in the 1994–2004 period. However, these parameters increased in forest lakes, which exhibited an increasing trend in DOC concentrations, inversely related (P < 0.001) to their decreasing ionic strength (30% on average in 1994–2004).  相似文献   

5.
Acidification of waters and soils caused by emissions and the long-range transport of air pollutants has been a serious worldwide problem during the last decades. The extent of the acidification problem in Finnish acid-sensitive forest lakes was examined in the Acidification Research Project (HAPRO) in the mid-1980s. The recent decline in the emissions of air pollutants has resulted in the chemical recovery of watersheds in many regions, and the present work on the recovery processes in acidified Finnish headwater lakes (REPRO) was launched to examine whether the chemical recovery has already been accompanied by biological recovery. The patterns of recovery were studied by re-sampling littoral macrozoobenthos in a subset of the previously sampled HAPRO lakes. Paleolimnological samples were taken in order to assess the possible dependence of lacustrine chironomid communities on the changing degree of acidification. Acid sensitive and moderately acid sensitive benthic species revealed slight recovery in the formerly most acidic (pH 5.5) but recently recovered lakes. The most significant factors affecting the response of benthic communities were increased mean lake pH and decreased labile aluminium concentration. Paleolimnological chironomid analysis revealed a slight response along the pH gradient, but also significant structural similarity between the present and pristine chironomid assemblages. This implies that no major changes in chironomid communities of these acidic lakes have occurred during the past centuries. The alternative future trends and threats to biological recovery in small headwater lakes are discussed.  相似文献   

6.
137Cs is one of the most important radionuclides released in the course of atmospheric nuclear weapon tests and during accidents in nuclear power plants such as that in Chernobyl, Ukraine, or Fukushima, Japan. The aim of this study was to compare 137Cs and 40K concentrations in particular species of mushrooms from selected locations in the Bohemian Forest (Czech: ?umava), Czech Republic, where a considerable contamination from the Chernobyl accident had been measured in 1986. Samples were collected between June and October 2014. Activities of 137Cs and 40K per dry mass were measured by means of a semiconductor gamma spectrometer. The 137Cs values measured range from below detection limit to 4300?±?20 Bq kg?1, in the case of 40K from 910?±?80 to 4300?±?230 Bq kg?1. Differences were found between individual locations, due to uneven precipitation in the course of the movement of the radioactive cloud after the Chernobyl accident. There are, however, also differences between individual species of mushrooms from identical locations, which inter alia result from different characteristics of the soil and depths of mycelia. The values measured are compared with established limits and exposures from other radiation sources present in the environment. In general, it can be stated that the values measured are relatively low and the effects on the health of the population are negligible compared to other sources of ionizing radiation.  相似文献   

7.
Decreasing trends in atmospheric emissions and acidic deposition during the 1990s have resulted in chemical recovery from acidification in the sensitive surface water systems of southern Finland. Responses of perch and roach populations to the improved water quality were studied in 30 small lakes with the aid of water chemistry monitoring data gathered in 1987–2002 and the data collected from two consecutive periods of gillnet test fishing, 1985–1988 and 2001–2002. In the most acidified lakes, alkalinity and ANC have increased and sulphate and labile aluminium concentrations decreasæed markedly. The response of perch populations to the improved water quality is seen in improved reproduction success, indicated by a higher CPUE in numbers and a lower mean weight. The growth rate of perch has declined as the population density has increased. Roach populations have not recovered in the same way as perch, there being no major changes in NPUE or mean weight. Lower growth rates were, however, observed in the roach populations of all study lakes. The increased perch population density as an obstacle to the recovery of roach populations is discussed. Despite the chemical and biological recovery of the study lakes, the buffer capacity of many headwater lakes is low and the lakes will be sensitive to any increases in acidic deposition in the future.  相似文献   

8.
Eight glacial lakes of the Bohemian Forest (Czech Republic and Germany) were characterised by the distribution of chironomids collected as pupal exuviae. Twenty-eight taxa were identified, including some faunistically interesting species of the region. Two-way indicator species analysis (TWINSPAN) was used to classify lakes according to their taxonomic composition. Canonical correspondence analysis (CCA) and multiple regression were used to relate the chironomid assemblages to two sets of explanatory variables: (i) local environmental variables, and (ii) broad-scale spatial variables. The TWINSPAN classified the lakes into four groups, whereas presence/absence of three taxa was indicative for this classification. The CCA of assemblage composition on environmental variables showed that chironomids respond significantly to altitude and alkalinity. The ordination of composition data on geographical variables revealed strong longitudinal gradient in chironomid distributions. Altitude and alkalinity accounted for 36.2% of the total variation, while the geographic gradient explained 20.5%. As revealed by the variation partitioning procedure, the significant effect of these variables was, in large part, independent of each other. Overall taxonomic richness appeared to be governed by altitude only. Causal ecological and historical factors underlying these results are discussed. This paper may provide a basis for hypothesis testing in future research of the Bohemian Forest lakes.  相似文献   

9.
Assessment of temporal trends and rates of change in hydrochemical parameters and forest cover has been conducted to elucidate key drivers of surface water acidification in glacial lakes in the Czech Republic. Since 1984, the key driver in acidification reversal was sulphate (SO4) concentration (median decrease of ?3.58 μeq L?1 yr?1) which fell in line with reductions in sulphur (S) deposition. Reduction of nitrogen (N) deposition was followed by proportional reduction in nitrate (NO3) leaching although decline in NO3 concentrations was more pronounced at two sites, the ?ertovo Lake (CT) and Prá?ilské Lake (PR) until 2006; only ??árské pond showed effective catchment N immobilization. Coherent decline of chloride concentration was detected across all sites. The decrease of strong mineral acids was partly compensated by decrease of inorganic aluminium (Alin), especially at sites most acidified in the beginning of observations (ANC1984–1986 between ?160 and ?90 μeq L?1 at CT, ?erné Lake—CN and Ple?né lake—PL) and by reductions of base cations and increases of pH. All lakes (CN, CT, PL, PR and LK) moved to the ANC range between ?29 and 30 μeq L?1 (2010–2012) where sensitivity of pH to further reductions in acid anions may be expected. Concurrently, charge of weak organic acids (OAs) increased and partly balanced the strong mineral acid decrease as a consequence of (i) significant DOC (dissolved organic carbon) increase (median change of 0.13 mgC L?1 yr?1 since 1993) and (ii) deprotonation of weak OAs caused by pH rise. Since 2000s, bark beetle induced forest decline accelerated NO3 leaching at most of the catchments (by 200 % at LK, PL and PR). However, elevated N leaching was effectively neutralized by base cations (K, Mg, Ca) originating from decaying fresh litter, thus acidification recovery was not reversed, but slowed down. After cessation of NO3 leaching we hypothesise that collapsed tree canopy across catchments (from 12 to 87 % compared to 1984) will cause lower total acid input in precipitation (S + N) and regrowth of vegetation may stimulate higher N immobilization (in biomass and soil); processes which could lead to further increase of ANC and pH, key indicators for biological recovery.  相似文献   

10.
Blooms ofChrysochromulina breviturrita Nich. (Prymnesiophyceae) have been found to be restricted to lakes above pH 5.5 even though the alga is able to tolerate pH 4.0 in laboratory culture. A possible explanation is the increased transparency in acidifying lakes and a sensitivity ofC. breviturrita to high light intensities. A comparison was made withMougeotia sp., a filamentous green alga which co-occurs in moderately acidic lakes and has a similar pH tolerance range. This alga forms dense, floating mats or amorphous clouds in the upper littoral zone, where it would be exposed to full sunlight irradiances. In cultures ofC. breviturrita, prolonged exposures to 1600 μE · m−2 · s−1 (I0′) resulted in reductions in cell yield which were dependent age at the onset of exposure to high light intensity. Only cultures exposed to high light intensities during late stationary phase were able to recover to control levels and no recovery occurred if these cultures were nitrogen deficient.Mougeotia was more tolerant of both high light intensity and nitrogen limitation during the recovery period. The inability ofC. breviturrita to recover from the effects of high light intensity during nitrogen deprivation may be particularly important in small, stratified lakes which are undergoing acidification. The slow rate of vertical circulation, and increasing transparency, would prolong exposure of the alga to the high irradiance levels of nutrient-deficient epilimnetic waters. This suggests that the geographic distribution ofC. breviturrita may be explained in part by the increasing light intensities in lakes undergoing acidification.  相似文献   

11.
Macrozoobenthos of three Pennsylvania lakes: responses to acidification   总被引:3,自引:3,他引:0  
The littoral macrozoobenthos (MZB) of three northeastern Pennsylvania lakes was sampled seasonally from summer 1981 until summer 1983, to determine if any changes were occurring in response to acid deposition. In the acidified lake (total alkalinity 0.0 eq L–1) the mean pH decreased from 5.5 in 1981 to 4.2 in 1983. Chironomidae comprised 71.30% of the MZB numbers and 19.6% of the wet weight. Over the study period the wet weight of Chironomidae increased (p < 0.04) as did the total numbers of Chironomidae in general (p < 0.01) and Tanytarsini (p < 0.01) in particular. Total numbers of MZB also increased (p < 0.02) in the acidified lake, but there was no significant change in the number of taxa, diversity or total wet weight. In the moderately sensitive lake (total alkalinity 47.4 eq L–1, mean pH 6.1) Chironomidae were numerically (43%) dominant but Odonata (18.6%) and Mollusca (12.7%) dominated wet weight. There were no significant changes in the MZB of the moderately sensitive lake over the study period. In the least sensitive lake (total alkalinity 190 eq L–1, mean pH 6.6) the Amphipoda (31.3%) and Chironomidae (27.3%) together provided 58.6% of the MZB numbers, and the Mollusca formed 55.1% of wet weight. Wet weight at the least sensitive lake was higher (p < 0.01) and there were more Ephemeroptera, Pelecypoda and Gastropoda than at the other two lakes. There were no differences in total numbers, diversity or number of taxa among the three lakes.  相似文献   

12.
Acidification has harmed freshwater ecosystems in Northern Europe since the early 1900s. Stricter regulations aimed at decreasing acidic emissions have improved surface-water chemistry since the late 1980s but the recovery of biotic communities has not been consistent. Generally, the recovery of flora and fauna has been documented only for a few lakes or regions and large-scale assessments of long-term dynamics of biotic communities due to improved water quality are still lacking. This study investigates a large biomonitoring dataset of pelagic and littoral crustacean zooplankton (Cladocera and Copepoda) from 142 acid-sensitive lakes in Norway spanning 24 years (1997–2020). The aims were to assess the changes in zooplankton communities through time, compare patterns of changes across lake types (defined based on calcium and humic content), and identify correlations between abiotic and biological variables. Our results indicate chemical and biological recovery after acidification, as shown by a general increase in pH, acid neutralizing capacity, changes in community composition and increases in the total number of species, number of acid-sensitive species and functional richness through time. However, the zooplankton responses differ across lake types. This indicates that the concentration of calcium (or alkalinity) and total organic carbon (or humic substances) are important factors for the recovery. Therefore, assessment methods and management tools should be adapted to the diverse lake types. Long-term monitoring of freshwater ecosystems is needed to fully comprehend the recovery dynamics of biotic communities from acidification.  相似文献   

13.
The role of litter composition and quality on the nutrient release was studied in three month laboratory experiment. Spruce needles and leaves of four species dominant in understorey vegetation of the Norway spruce forest were collected in early autumn and incubated at 5°C, 10°C and 15°C. C mineralization was measured every two weeks, concentration of NH4, NO3, dissolved organic N, dissolved organic C and oxalate extractable P at the beginning and end of incubation and decay rate and nutrient release was calculated. Freshly senescent leaves contained less N and P indicating nutrient reallocation. Effect of temperature on a decay rate and nutrient transformation was not significant while the effect of litter quality expressed by C/N ratio at the end of incubation was. The decay rate was the fastest for the fern (Athyrium alpestre) and decreased in order: Callamagrostis villosa > Vaccinium myrtillus > Avenella flexuosa > spruce needles. The critical C/N ratio bellow which mineral N was released in high amount was around a value of 32. The results indicte that an increase of coverage of understorey vegetation can increase a risk of nutrient release.  相似文献   

14.
Data from two surveys of the Tatra Mountain lakes (Slovakia and Poland) performed in the autumns of 1984 (53 lakes) and 1993 or 1994 (92 lakes) were used to estimate spatial variability in water chemistry in this lake district during the period of maximum European acid deposition. The ionic content of the lakes was generally low, with conductivity (at 20°C) ranging from 1.1 to 4.7 mS m?1 and 23% of the lakes had a depleted carbonate buffering system. Major factors governing differences in lake-water chemistry were bedrock composition and amount of soil and vegetation in their catchment areas. Compared to lakes in the predominantly granitic central part of the Tatra Mountains, lakes in the West Tatra Mountains had higher concentrations of base cations and alkalinity due to the presence of metamorphic rocks in the bedrock. Concentrations of phosphorus, organic carbon, organic nitrogen, and chlorophyll-a were highest in forest lakes and decreased with decreasing density of vegetation and soil cover in the catchment areas. Concentrations of nitrate showed an opposite trend. Several exceptions to these general patterns in chemical and biological composition were due to exceptional geology or hydrology of the lake catchments.  相似文献   

15.
Jaromír Lukavský 《Biologia》2006,61(20):S485-S490
Coelastrum pascheri sp. n. is described. It is similar to Coelastrum morus W. et G. S. West sensu Skuja (1930) in the morphology of the free processes, but differs from it in cell size (it is significantly smaller, 13–16 µm) and in the number of cells in a cenobium (usually 4). The new alga was found in the littoral of some lakes: ?erné jezero (?erné Lake), Grosser Arbersee and Kleiner Arbersee in the Bohemian Forest (?umava, Böhmerwald) and also in Sphagnum within a small puddle in the Upolínová meadow in the Slavkovský les Mts.  相似文献   

16.
We tested two predictions required to support the hypothesis that anthropogenic acidic episodes might explain the poor biological response of upland British streams otherwise recovering from acidification: (i) that invertebrate assemblages should differ between episodic and well-buffered streams and (ii) these effects should differentiate between sites with episodes caused by anthropogenic acidification as opposed to base-cation dilution or sea-salt deposition. Chronic and episodically acidic streams were widespread, and episodes reflected acid titration more than dilution. Nonmarine sulphate (16–18% vs. 5–9%), and nitrate (4–6% vs. 1–2%) contributed more to anion loading during episodes in Wales than Scotland, and Welsh streams also had a larger proportion of total stream sulphate from nonmarine sources (64–66% vs. 35–46%). Sea-salts were rarely a major cause of episodic ANC or pH reduction during the events sampled. By contrast, streams with episodes driven by strong anthropogenic acids had lower pH (5.0±0.6) and more dissolved aluminium (288±271 μg L−1) during events than where episodes were caused by dilution (pH 5.4±0.6; 116±110 μg Al L−1) or where streams remained circumneutral (pH 6.7±1.0; 50±45 μg Al L−1). Both biological predictions were supported: invertebrate assemblages differed among sites with different episode chemistry while several acid-sensitive species were absent only where episodes reflected anthropogenic acidification. We conclude that strong acid anions – dominantly nonmarine sulphate – still cause significant episodic acidification in acid-sensitive areas of Britain and may be a sufficient explanation for slow biological recovery in many locations.  相似文献   

17.
Forest damage and recovery from catastrophic wind   总被引:1,自引:0,他引:1  
The literature on the effects of catastrophic wind disturbance (windstorms, gales, cyclones, hurricanes, tornadoes) on forest vegetation is reviewed to examine factors controlling the severity of damage and the dynamics of recovery. Wind damage has been quantified in a variety of ways that lead to differing conclusions regarding severity of disturbance. Measuring damage as structural loss (percent stems damaged) and as compositional loss (percent stems dead) is suggested as a standard for quantifying severity. Catastrophic wind produces a range of gaps from the size caused by individual treefalls to much larger areas. The spatial pattern of damage is influenced by both biotic and abiotic factors. Biotic factors that influence severity of damage include stem size, species, stand conditions (canopy structure, density), and the presence of pathogens. Abiotic factors that influence severity of damage include the intensity of the wind, previous disturbance, topography, and soil characteristics. Recovery from catastrophic wind disturbance follows one of four paths: regrowth, recruitment, release, or repression. The path of recovery for a given site is controlled both by the severity of disturbance and by environmental gradients of resources. Recovery is influenced also by frequency of wind disturbance, which varies across geographical regions. To develop robust theories regarding catastrophic wind disturbance, the relative roles of different abiotic and biotic factors in controlling the patterns of severity of damage must be determined. These patterns of severity and environmental gradients must then be tied to long-term dynamics of recovery.  相似文献   

18.
19.
Pelagic rotifers were studied in lakes with contrasting acidification histories situated in an acid-stressed region of southern Norway. Life histories and spatial distribution varied considerably between the investigated species, and influenced the recovery processes. Most headwater lakes have experienced strongly acidified environments during the last five decades, whereas lakes close to the Skagerrak coast have been stable within the same period. Rotifer diversity and abundance were reduced in the most acidic sites and increased towards the coast. Most surveyed species are known to possess sediment egg-banks, and after chemical recovery most rotifers dispersed into the plankton from these egg-banks and produced viable populations. Some species of the genera Polyarthra and Collotheca, and the species Kellicotta longispina and Keratella serrulata showed a striking ability to tolerate acidification, and were the dominant taxa in the acidmost environments. K. serrulata characterised, but did not numerically dominate, acid rotifer communities especially in the most coloured sites, and decreased following liming. The predominantly bacteriophageous genus Conochilus exploded in numbers shortly after liming, most probably because bacteria increased strongly during this transition phase. Planktivorous fish influenced indirectly rotifer abundance by consuming invertebrate predators and important rotifer competitors such as filter feeding cladocerans. Invertebrate predators, such as larvae of Chaoborus spp. and Heterocope saliens probably influenced rotifer distributional patterns in a complex top-down manner, both during chronic acidification and liming in environments with low fish predation. Important rotifer predators such as pelagic cyclopoid copepods, Bythotrephes longimanus and Leptodora kindti, were absent from the most acidic fishless lakes. Considerable populations of large-sized Daphnia longispina probably suppressed several rotifer species in sites with low fish predation, as did large populations of Bosmina longispina and Ceriodaphina quadrangula in lakes with intense fish predation.  相似文献   

20.
The effects of acidification on metal budgets of lakes and catchments   总被引:2,自引:0,他引:2  
Metal (Cu, Ni, Zn, Fe, Mn and Al) budgets were measured for 5 lakes and their catchments near Sudbury, Ontario, an area severely affected by the emission and deposition of strong acids (H2SO4/SO2) and metals. Three of the lakes were circum-neutral (pH 6.3–7.1) during the study period, while one lake had a pH of 4.8 and a fifth had very low pH ( 4.4).The lakes' catchments were all sources of Al, Mn and Ni, but were sinks for Cu and Zn. The Fe results were inconsistent; two lakes' catchments were sources while three were sinks.The acidic lakes were conservative (i.e. net retention of zero) with respect to Cu and Ni, while the circum-neutral lakes were effective sinks for these 2 metals. All of the lakes were sinks for Zn and Al, but the acidic lakes were less effective. All lakes were also Fe sinks. While there was no pattern relative to the lakes' pH's, there was a trend towards increasing Fe retention with increasing water replenishment time. The most acidic lake was actually a source of Mn, while the others were sinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号