首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
Prolonged dry periods, and increasingly the generation of smoke and dust in partially-deforested regions, can influence the chemistry of rainfall and throughfall in moist tropical forests. We investigated rainfall and throughfall chemistry in a palm-rich open tropical rainforest in the southwestern Brazilian Amazon state of Rondônia, where precipitation averages 2300 mm year?1 with a marked seasonal pattern, and where the fragmentation of remaining forest is severe. Covering the transition from dry to wet season (TDWS) and the wet season (WS) of 2004–2005, we sampled 42 rainfall events on event basis as well as 35 events on a within-event basis, and measured concentrations of DOC, Na+, K+, Ca2+, Mg2+, NH 4 + , Cl?, SO 4 2? , NO 3 ? and pH in rainfall and throughfall. We found strong evidence of both seasonal and within-event solute rainfall concentration dynamics. Seasonal volume-weighted mean (VWMS) concentrations in rainfall of DOC, K+, Ca2+, Mg2+, NH 4 + , SO 4 2? and NO 3 ? were significantly higher in the TDWS than the WS, while VWMS concentrations in throughfall were significantly higher for all solutes except DOC. Patterns were generally similar within rain events, with solute concentrations declining sharply during the first few millimeters of rainfall. Rainfall and throughfall chemistry dynamics appeared to be strongly influenced by forest and pasture burning and a regional atmosphere rich in aerosols at the end of the dry season. These seasonal and within-event patterns of rainfall and throughfall chemistry were stronger than those recorded in central Amazônia, where the dry season is less pronounced and where regional deforestation is less severe. Fragmentation and fire in Rondônia now appear to be altering the patterns in which solutes are delivered to remaining moist tropical forests.  相似文献   

2.
Elevated nitrogen deposition has increased tree growth, the storage of soil organic matter, and nitrate leaching in many European forests, but little is known about the effect of tree species and nitrogen deposition on nitrous oxide emission. Here we report soil N2O emission from European beech, Scots pine and Norway spruce forests in two study areas of Germany with distinct climate, N deposition and soils. N2O emissions and throughfall input of nitrate and ammonium were measured biweekly during growing season and monthly during dormant season over a 28 months period. Annual N2O emission rates ranged between 0.4 and 1.3 kg N ha?1 year?1 among the stands and were higher in 1998 than in 1999 due to higher precipitation during the growing season of 1998. A 2-way-ANOVA revealed that N2O fluxes were significantly higher (p<0.001) at Solling than at Unterlüß while tree species had no effect on N2O emissions. Soil texture and the amount of throughfall explained together 94% of the variance among the stands, indicating that increasing portions of silt and clay may promote the formation of N2O in wet forest soils. Moreover, cumulative N2O fluxes were significantly correlated (r2 = 0.60, p<0.001) with cumulative NO 3 ? fluxes at 10 cm depth as an indicator of N saturation, however, the slope of the regression curve indicates a rather weak effect of NO 3 ? fluxes on N2O emissions. N input by throughfall was not correlated with N2O emissions and only 1.6–3.2% of N input was released as N2O to the atmosphere. Our results suggest that elevated N inputs have little effect on N2O emissions in beech, spruce and pine forests.  相似文献   

3.
Long-term trends in ion concentrations of bulk precipitation, throughfall, forest floor leachate (humus water) and shallow and deep soil water were assessed at two Sitka spruce (Picea sitchensis) stands—one on an Atlantic peat bog in the west of Ireland (Cloosh), the other on the east coast on a peaty podzol (Roundwood). Deposition at Cloosh was dominated by marine ions (sodium, [Na+], chloride [Cl?], and magnesium [Mg2+]), whereas bulk precipitation and throughfall at Roundwood was characterized by inputs of non-marine sulphate (nmSO4 2?), acidity and inorganic nitrogen (NH4 +, NO3 ?). Significant declines in concentrations of nmSO4 2? and acidity in bulk precipitation and throughfall were observed at both sites. The decline in throughfall nmSO4 2? was significantly related to reductions in European sulphur dioxide (SO2) emissions. At Roundwood, SO4 2? declined significantly in humus, shallow and deep soil water. In deep soil water this was accompanied by a long-term increase in pH and a reduction in total aluminum (Altot). The recovery from acidification was delayed by high concentrations of NO3 ?, which strongly influenced acidity and Altot concentrations. At Cloosh, there was a significant decline in SO4 2? in humus water but long-term trends were not evident in shallow or deep soil water; SO4 2? concentrations at these depths fluctuated in response to drought-events. Marine ions strongly influenced soil water chemistry at both sites; at Cloosh soil water acidity was strongly related to Na+ and Cl?, while at Roundwood, Na+, Cl? and Mg2+ influenced Altot concentrations. Dissolved organic carbon increased significantly in humus and soil water at Roundwood, where it was associated with declining acidity. Soil water at both sites was influenced by a combination of anthropogenic sulphur (S) and nitrogen (N) deposition, drought and sea-salt events. The study highlights the value of long-term monitoring in assessing the response of forest soils to S and N deposition against a background of climate influences on soil water through drought and sea-salt events.  相似文献   

4.
葛晓敏  唐罗忠  王瑞华  李勇  朱玲  贾志远  丁晖 《生态学报》2018,38(14):5120-5131
大气降水是森林生态系统养分输入的主要途径之一,对养分的生物地球化学循环有着重要的意义。对13年生杨树人工林林外雨、树干流、林内雨和地表径流等水文过程中的养分特征进行了调查分析,旨在了解该生态系统的养分输入与输出规律,为杨树人工林可持续经营提供依据。结果表明,从2013年11月至2014年10月,杨树人工林生态系统林外雨量为1154.1 mm,树干流量仅占大气降水量的2.3%,15.4%的大气降水被杨树人工林的冠层截留;林内雨、树干流与大气降水量(林外雨)的动态变化规律相似。各类降水年加权平均pH值表现为林内雨林外雨树干流;各类降水的离子浓度动态变化规律基本一致,即在降水量较小的11月至次年1月份,各阴阳离子的浓度普遍较高,在降水量较大的2—9月份,阴阳离子浓度普遍较低。SO_4~(2-)-S和Ca~(2+)分别是各类降水中的主要阴离子和阳离子;整体上,树干流的离子浓度林内雨大气降水;林内雨是养分输入的主要形式,通过林内雨输入林地较多的养分离子是Ca~(2+)和K~+,分别为70.83 kg hm~(-2)a~(-1)和63.31 kg hm~(-2)a~(-1);地表径流和土壤渗漏是养分输出的主要形式,输出林地较多的离子是Cl~-和Ca~(2+),分别为196.47 kg hm~(-2)a~(-1)和123.09 kg hm~(-2)a~(-1),其次为SO_4~(2-)-S、Mg~(2+)、Na~+、K~+;NH_4~+-N和NO_3~--N的输出量不足输出离子总量的1%。所以,从水文过程看,杨树人工林生态系统无机氮(NH_4~+-N和NO_3~--N)和K~+表现为净积累,净积累量分别为10.9 kg hm~(-2)a~(-1)和56.4 kg hm~(-2)a~(-1),其他离子表现为净损失,其中Cl~-的净损失量达179.8 kg hm~(-2)a~(-1)左右,其他离子损失量50 kg hm~(-2)a~(-1)。  相似文献   

5.
The volumetric quantity and biogeochemical quality of throughfall and stemflow in forested ecosystems are influenced by biological characteristics as well environmental and storm meteorological conditions. Previous attempts at connecting forest water and nutrient cycles to storm characteristics have focused on individual meteorological variables, but we propose a unified approach by examining the storm system in its entirety. In this study, we use methods from synoptic climatology to distinguish sub-canopy biogeochemical fluxes between storm events to understand the response of forest ecosystems to daily weather patterns. For solute inputs tied to atmospheric deposition (NH4 +, NO3 ?, SO4 2?, Na+, Cl?), stagnant air masses resulted in high inputs in rainfall (273.42, 81.81, 52.30, 156.99, 128.70 μmol L?1), throughfall (355.05, 130.66, 83.24, 239.55, 261.32 μmol L?1), and stemflow (338.34, 182.75, 153.74, 125.75, 272.88 μmol L?1). For inputs tied to canopy exchange (DOC, K+, Ca2+, Mg2+), a clear distinction was observed between throughfall and stemflow pathways. The largest throughfall concentrations were in the Great Lakes Low (1794.80, 352.96, 72.75, 74.37 μmol L?1) while the largest stemflow concentrations were in the Weak Upper Trough (3681.78, 497.34, 82.36, 72.46 μmol L?1). Stemflow leaching is likely derived from a larger reservoir of leachable cations in the tree canopy than throughfall, with stemflow fluxes maximized during synoptic types with greater rainfall amounts and throughfall fluxes diluted. For flux-based enrichment ratios, water volume, storm magnitude, antecedent dry period, and seasonality were important factors, further illustrating the influence of synoptic characteristics on wash-off, leaching and, ultimately, dilution processes within the canopy.  相似文献   

6.
Coarse woody debris (CWD) may play a role in nutrient cycling in temperate forests through the leaching of solutes, including dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), to the underlying soil. These fluxes need to be considered in element budget calculations, and have the potential to influence microbial activity, soil development, and other processes in the underlying soil, but studies on leaching from CWD are rare. In this study, we collected throughfall, litter leachate, and CWD leachate in situ at a young mixed lowland forest in NY State, USA over one year. We measured the concentrations of DOC, DON, NH4+, NO3, dissolved organic sulfur, SO42−, Cl, Al, Ca, K, Mg, Na, and P, estimated the flux of these solutes in throughfall, and measured the cover of CWD to gain some insight into possible fluxes from CWD. Concentrations of DOC were much higher in CWD leachate than in throughfall or litter leachate (15 vs. 0.7 and 1.6 mM, respectively), and greater than reported values for other leachates from within forested ecosystems. Other solutes showed a similar pattern, with inorganic N being an exception. Our results suggest that microsite scale fluxes of DOC from CWD may be An high relative to throughfall and litter leaching fluxes, but since CWD covered a relatively small fraction (2%) of the forest floor in our study, ecosystem scale fluxes from CWD may be negligible for this site. Soil directly beneath CWD may be influenced by CWD leaching, in terms of soil organic matter, microbial activity, and N availability. Concentrations of some metals showed correlations to DOC concentrations, highlighting the possibility of complexation by DOM. Several solute concentrations in throughfall, including DOC, showed positive correlations to mean air temperature, and fewer showed positive correlations in litter leachate, while negative correlations were observed to precipitation, suggesting both biological and hydrologic control of solute concentrations.  相似文献   

7.
The Gallery forests of the Cerrado biome play a critical role in controlling stream chemistry but little information about biogeochemical processes in these ecosystems is available. This work describes the fluxes of N and P in solutions along a topographic gradient in a gallery forest. Three distinct floristic communities were identified along the gradient: a wet community nearest the stream, an upland dry community adjacent to the woodland savanna and an intermediate community between the two. Transects were marked in the three communities for sampling. Fluxes of N from bulk precipitation to these forests resulted in deposition of 12.6 kg ha?1 y?1 of total N of which 8.8 kg ha?1 was as inorganic N. The throughfall flux of total N was generally <8.4 kg ha?1 year?1. Throughfall NO3?CN fluxes were higher (7?C32%) while NH4?CN and organic N fluxes were lower (54?C69% and 5?C46%) than those in bulk precipitation. The throughfall flux was slightly lower for the wet forest community compared to other communities. Litter leachate fluxes differed among floristic communities with higher NH4?CN in the wet community. The total N flux was greater in the wet forest than in the dry forest (13.5 vs. 9.4 kg ha?1 year?1, respectively). The stream water had total N flux of 0.3 kg ha?1 year?1. The flux of total P through bulk precipitation was 0.7 kg ha?1 year?1 while the mean fluxes of total P in throughfall (0.6 kg ha?1 year?1) and litter leachate (0.5 kg ha?1 year?1) declined but did not differ between communities. The low concentrations presented in soil solution and low fluxes in stream water (0.3 and 0.1 kg ha?1 year?1 for N and P, respectively) relative to other flowpaths emphasize the conservative nutrient cycling of these forests and the importance of internal recycling processes for the maintenance and conservation of riparian and stream ecosystems in the Cerrado.  相似文献   

8.
In a pristine evergreen rainforest of Nothofagus betuloides, located at the Cordillera de los Andes in southern Chile (41?°S), concentrations and fluxes of nutrients in bulk precipitation, cloud water, throughfall water, stemflow water, soil infiltration and percolation water and runoff water were measured. The main objectives of this study were to investigate canopy–soil–atmosphere interactions and to calculate input–output budgets. From May 1999 till April 2000, the experimental watershed received 8121?mm water (86% incident precipitation, 14% cloud water), of which the canopy intercepted 16%. Runoff water volume amounted 9527?mm. Bulk deposition of inorganic (DIN) and organic (DON) nitrogen amounted 3.6?kg?ha?1?year?1 and 8.2?kg?ha?1?year?1 respectively. Occult deposition (clouds?+?fog) contributes for 40% to the atmospheric nitrogen input (bulk?+?occult deposition) of the forest. An important part of the atmospheric ammonium deposition is retained within the canopy or converted to nitrate or organic nitrogen by epiphytic bacteria or lichens. Also the export of inorganic (0.9?kg?ha?1?year?1) and organic (5.2?kg?ha?1?year?1) nitrogen via runoff is lower than the input to the forest floor via throughfall and stemflow water (3.2?kg?DIN?ha?1?year?1 and 5.6?kg?DON?ha?1?year?1). The low concentrations of NO-3 and NH+4 under the rooting depth suggest an effective biological immobilization by vegetation and soil microflora. Dry deposition and foliar leaching of base cations (K+, Ca2+, Mg2+) was estimated using a canopy budget model. Bulk deposition accounted for about 50% of the total atmospheric input. Calculated dry and occult deposition are both of equal value (about 25%). Foliar leaching of K+, Ca2+, and Mg2+ accounted for 45%, 38% and 6% of throughfall deposition respectively. On an annual basis, the experimental watershed was a net source for Na+, Ca2+ and Mg2+.  相似文献   

9.
In this study we investigated the spatial and temporal variation in soil solution chemistry and of water and ion fluxes through the soil in a forest ecosystem. Our aim was to evaluate the relevance of these variations for the accuracy of average areal soil solution concentrations and ion fluxes with seepage at 90 cm depth.Twenty spatially distinct subcompartments of approximately 1 m2 were established within a mature stand of Norway spruce and ceramic suction lysimeters were installed at depths of 20, 35 and 90 cm. A tensiometer was placed close to each suction lysimeter, and one throughfall sampler was established for each subcompartment.Soil solution samples were analysed for major ions (H+, Na+, K+, Ca2+, Mg2+, Mn2+, Fe3+, Al3+, Cl-, NO 3 - , SO 4 2- . We calculated water fluxes for each subcompartment separately by a numeric simulation of the soil water flux close to the lysimeters. The ion fluxes at each lysimeter were calculated by multiplying the simulated water fluxes with the ion concentrations on a fortnightly base. Averaging these 20 independent ion fluxes gave the areal average flux and an estimate of its statistical accuracy. The spatial variation of ion concentrations in the soil solution was high with coefficients of variance ranging from 5% to 128%. Part of the spatial variation was related to stem distance. Temporal variation of the concentrations was less than spatial for most ions. The spatial variation of water and ion fluxes with seepage was also substantial; for example the fluxes of SO 4 2- -S calculated for each subcompartment ranged from 21 to 119 kg ha-1 yr-1, with an arithmetic average of 47 kg ha-1 yr-1. For H2O, Mg2+, Cl-, and SO 4 2- , the spatial heterogeneity of seepage fluxes was largely explained by the heterogeneity of throughfall fluxes. No such relationship was found for nitrogen.Despite using 20 replicates, the 95% confidence intervals of the average annual areal fluxes with seepage were found to be 20–30% for most ions.  相似文献   

10.
Seasonal dynamics of S, Ca and N were examined at the Huntington Forest, a northern hardwood ecosystem in the central Adirondacks of New York for a period of 34 months (1985–1988). Solute concentrations and fluxes in bulk precipitation, throughfall (TF) and leachates from the forest floor, E horizon and B horizon were quantified. Both above and below-ground elemental fluxes mediated by vegetation (e.g. uptake, litter inputs, and fine roots production) were also determined. The roles of abiotic and biotic processes were ascertained based on both changes in solute concentrations through the strata of the ecosystem as well as differences between dormant and growing seasons. Concentrations of SO4 2−, NO3 , NH4 + and Ca2+ were greater in TF than precipitation. Forest floor leachates had greater concentrations of SO4 2−, NO3 + NH4 + and Ca2+ (9, 6 and 77 μeq L−1, respectively) than TF. There were differences in concentrations of ions in leachates from the forest floor between the dormant and growing seasons presumably due to vegetation uptake and microbial immobilization. Concentrations and fluxes of NO3 and NH; were greatest in early spring followed by a rapid decline which coincided with a demand for N by vegetation in late spring. Vegetation uptake (44.7 kg N ha−1 yr−1 ) could account for the low leaching rates of N03 . Within the mineral soil, changes with soil depth and the absence of seasonal patterns suggest that cation exchange (Ca+) or anion sorption (SO4 2−) are primarily responsible for regulating solute concentrations. The increase in SO4 2− concentration after leachates passed through the mineral soil may be attributed to desorption of sulfate that was adsorbed during an earlier period when SO4 2− concentrations would have been greater due to elevated S inputs.  相似文献   

11.
We determined concentrations and fluxes of dissolved organic carbon (DOC) in precipitation, throughfall, forest floor and mineral soil leachates from June 2004 to May 2006 across an age-sequence (2-, 15-, 30-, and 65-year-old) of white pine (Pinus strobus L.) forests in southern Ontario, Canada. Mean DOC concentration in precipitation, throughfall, leachates of forest floor, Ah-horizon, and of mineral soil at 1 m depth ranged from ∼2 to 7, 9 to 18, 32 to 88, 20 to 66, and 2 to 3 mg DOC L−1, respectively, for all four stands from April (after snowmelt) through December. DOC concentration in forest floor leachates was highest in early summer and positively correlated to stand age, aboveground biomass and forest floor carbon pools. DOC fluxes via precipitation, throughfall, and leaching through forest floor and Ah-horizon between were in the range of ∼1 to 2, 2 to 4, 0.5 to 3.5, and 0.1 to 2 g DOC m−2, respectively. DOC export from the forest ecosystem during that period through infiltration and groundwater discharge was estimated as ∼7, 4, 3, and 2 g DOC m−2 for the 2-, 15-, 30-, and 65-year-old sites, respectively, indicating a decrease with increasing stand age. Laboratory DOC sorption studies showed that the null-point DOC concentration fell from values of 15 to 60 mg DOC L−1 at 0 to 5 cm to <15 mg DOC L−1 at 50 cm. Specific ultraviolet light absorption at 254 nm (SUVA254) increased from precipitation and throughfall to a maximum in forest floor and decreased with mineral soil depth. No age-related pattern was observed for SUVA254 values. DOC concentration in forest floor soil solutions showed a positive exponential relationship with soil temperature, and a negative exponential relationship with soil moisture at all four sites. Understanding the changes and controls of DOC concentrations, chemistry, and fluxes at various stages of forest stand development is necessary to estimate and predict DOC dynamics on a regional landscape level and to evaluate the effect of land-use change.  相似文献   

12.
Schowalter TD  Fonte SJ  Geaghan J  Wang J 《Oecologia》2011,167(4):1141-1149
Forest canopy herbivores are known to increase rates of nutrient fluxes to the forest floor in a number of temperate and boreal forests, but few studies have measured effects of herbivore-enhanced nutrient fluxes in tropical forests. We simulated herbivore-induced fluxes in a tropical rainforest in Puerto Rico by augmenting greenfall (fresh foliage fragments), frassfall (insect feces), and throughfall (precipitation enriched with foliar leachates) in replicated experimental plots on the forest floor. Background rates of greenfall and frassfall were measured monthly using litterfall collectors and augmented by adding 10× greenfall or 10× frassfall to designated plots. Throughfall fluxes of NH4, NO3 and PO4 (but not water) were doubled in treatment plots, based on published rates of fluxes of these nutrients in throughfall. Control plots received only background flux rates for these compounds but the same minimum amount of distilled water. We evaluated treatment effects as changes in flux rates for NO3, NH4 and PO4, measured as decomposition rate of leaf litter in litterbags and as adsorption in ion-exchange resin bags at the litter–soil interface. Frass addition significantly increased NO3 and NH4 fluxes, and frass and throughfall additions significantly reduced decay rate, compared to controls. Reduced decay rate suggests that nitrogen flux was sufficient to inhibit microbial decomposition activity. Our treatments represented fluxes expected from low–moderate herbivore outbreaks and demonstrated that herbivores, at these outbreak levels, increase ecosystem-level N and P fluxes by >30% in this tropical rainforest.  相似文献   

13.
Lead compounds, especially ionic organolead compounds (OLC), are highly toxic and mobile pollutants strongly affecting many ecosystems. Soil pools and fluxes with precipitation, litterfall and runoff of trimethyllead (TML), one of the dominant ionic OLC in the environment, and Pbtotal were investigated in a forested ecosystem in NE-Bavaria, Germany. In addition, ad/desorption of TML to soils was studied in batch experiments and its degradation in soils was investigated using long term incubations. Total soil storage in the catchment was 11.56?mg Pb?ha?1 for TML and 222?kg Pb?ha?1 for Pbtotal. More than 90% of the soil storage of TML was found in the wetland soils of the catchment representing only 30% of the area. Most Pbtotal (>90%) was found in the upland soils. In upland soils, TML was only detectable in the forest floor. The annual total deposition from the atmosphere, estimated as throughfall?+?litterfall fluxes, amounted to 3.7?mg Pb?ha?1 year?1 for TML and 52?g Pb?ha?1 year?1 for Pbtotal. The contribution of litterfall was 1.5 and 32%, respectively. The concentrations of TML and Pbtotal in wet precipitation were: fog?>?throughfall?>?bulk precipitation. The annual fluxes with runoff from the catchment was 0.5?mg Pb?ha?1 year?1 for TML and 2.8?g Pb?ha?1 year?1 for Pbtotal. TML degraded rapidly in the forest floor (Oa horizon) with a half-life (t) of 33.5 days. The degradation of TML in Fen (t?=?421 days) and in the mineral soil (Bw-C horizon, t?=?612 days) was much slower. Emission of tetramethyllead from wetland soils was not observed during the 1 year incubation. The adsorption affinity of TML to different soils was Fen?>?Oa?>?A?≥?Bw-C. The ratio of total soil storages to the present annual input were 3.6 years for TML. TML and Pbtotal are still deposited in remote areas even after the use of tetraalkyllead as additives has been terminated for years. The rates of deposition are, however, much lower than in the past. Forest soils act as a sink for deposited TML and Pbtotal. TML is accumulated mostly in wetland soils and seems to be stable under anoxic conditions for a long time. In upland soils, TML decomposes rapidly. Only small amounts of TML are transferred from soils into runoff.  相似文献   

14.
Bulk precipitation and throughfall were collected in a wet lowland rainforest in SW Costa Rica on an event basis to allow modelling the contributions of dry deposition and canopy exchange to nutrient inputs and internal cycling of nutrients. Estimates based on bulk precipitation underestimated total atmospheric deposition to tropical rainforests by up to 10-fold ignoring the contributions of dry deposition. Canopy exchange contributed most of the aboveground inputs to the forest soil of Na+, about half for K+, 10% for P and Mg2+ and negligible for N, C and other elements. Tree species composition did not account for the differences found in net throughfall between forest sites, and vegetation structure (plant area index) had only a small effect on net throughfall. Forest regrowth affected net throughfall through reduced soil fertility and differences in leaf traits. Topography most significantly affected net throughfall via increased dry deposition at sites of higher elevation and via soil fertility and increased canopy exchange at down slope sites.  相似文献   

15.
The Na+/Mg2+ exchanger represents the main Mg2+ extrusion mechanism operating in mammalian cells including hepatocytes. We have previously reported that this exchanger, located in the basolateral domain of the hepatocyte, promotes the extrusion of intravesicular trapped Mg2+ for extravesicular Na+ with ratio 1. This electrogenic exchange is supported by the accumulation of tetraphenyl-phosphonium within the vesicles at the time when Mg2+ efflux occurs. In this present study, the role of extra- and intra-vesicular Cl? on the Na+/Mg2+ exchange ratio was investigated. The results reported here suggest that Cl? ions are not required for the Na+ to Mg2+ exchange to occur, but the stoichiometry ratio of the exchanger switches from electrogenic (1Na in + :1 Mg out 2+ ) in the presence of intravesicular Cl? to electroneutral (2Na in + :1 Mg out 2+ ) in their absence. In basolateral liver plasma membrane vesicles loaded with MgCl2 labeled with 36Cl?, a small but significant Cl? efflux (~30 nmol Cl?/mg protein/1 min) is observed following addition of NaCl or Na-isethionate to the extravesicular medium. Both Cl? and Mg2+ effluxes are inhibited by imipramine but not by amiloride, DIDS, niflumic acid, bumetanide, or furosemide. In vesicles loaded with Mg-gluconate and stimulated by Na-isethionate, an electroneutral Mg2+ extrusion is observed. Taken together, these results suggest that the Na+/Mg2+ exchanger can operate irrespective of the absence or the presence of Cl? in the extracellular or intracellular environment. Changes in trans-cellular Cl? content, however, can affect the modus operandi of the Na+/Mg2+ exchanger, and consequently impact "cellular" Na+ and Mg2+ homeostasis as well as the hepatocyte membrane potential.  相似文献   

16.
The chemical composition of rainwater is altered upon its passage through tree canopies. In order to investigate how rainwater chemistry is affected by canopy-dependent processes in characteristic forest types of Northwest German sandy lowland regions – oak–birch-forests, Betula pubescens Ehrh. swamp forests, and stands of Pinus sylvestris L. – comparative studies on the chemical composition of throughfall were carried out at seven forest sites, situated in close proximity within a nature reserve. Additionally, rainwater was sampled at three heathland sites for analysis of open-field precipitation and at three sites along an oak–birch-forest edge. Throughfall concentrations of most of the parameters analysed were significantly higher than open-field concentrations, especially with regard to electric conductivity, NH4-N, K+, and KMnO4-index. Ion concentrations in throughfall were the lowest in a 10-year-old stand of Betula pendula Roth. and Pinus sylvestris and in a Betula pubescens swamp forest and were highest beneath a stand of Pinus sylvestris. Except for Na+, Cl, and NO3, ion concentrations in both throughfall and open-field precipitation increased during the growing season (May–October). In throughfall, Ca2+, Mg2+, K+, and Mn2+ were strongly correlated. Enrichment ratios between throughfall and open-field deposition varied among sites and elements and were the highest for K‰+, Mg2‰+, and Mn2‰+. Estimates of canopy leaching indicated high leaching rates of K‰+ and Mn2‰+ and moderate leaching of Mg2‰+. The contribution of foliar leaching to throughfall deposition was higher at the deciduous than at the coniferous stands.  相似文献   

17.
Shrub canopies are expected to funnel substantial amounts of intercepted rainwater with enriched nutrients as stemflow to shrub base in the desert ecosystems characterized by limited water and nutrients. However, lacking are quantitative studies on the water and nutrient enrichment of stemflow at the shrub basal area. In this study, stemflow were quantified for two xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) in a revegetated desert ecosystem of Shapotou area in northwestern China. We also measured the ion concentrations of total nitrogen (TN), total phosphors (TP), NH4 +–N, NO3 ?–N, Na+, K+, Ca2+, Mg2+, Cl?, SO4 2? and the pH and electric conductivity (EC) in stemflow, throughfall and bulk precipitation. Results indicated that stemflow accounted for 8.8 and 2.8 % of the gross rainfall for C. korshinskii and A. ordosica, respectively. Individual stemflow linearly increased with increasing rainfall depth. Stemflow increased with rainfall intensity when rainfall intensity was less than 2 mm h?1 but showed decreased tendency thereafter. An antecedent precipitation of 1.3 and 1.6 mm was necessary for stemflow initiation for C. korshinskii and A. ordosica, respectively. The mean (confidence intervals, α = 0.05) funneling ratio was 82 (17) for C. korshinskii and 26 (7) for A. ordosica. Ion concentrations in stemflow were higher than in throughfall, and the concentration of most of the ions measured were significantly higher (p < 0.05) in stemflow than in bulk precipitation, with a nutrient enrichment ratio ranged 122.8–1677.0 for C. korshinskii and 12.6–1306.0 for A. ordosica among measured ions, respectively. Overall, the larger funneling ratios and enrichment ratios for the two shrubs suggest that stemflow plays a significant positive role in soil water replenishment and nutrient enrichment at deeper soil profile of root zone in the revegetated ecosystems under arid desert conditions.  相似文献   

18.
Heterococcoliths are micron‐scale calcite platelets produced by coccolithophores. They have been the most abundant and continuous fossil record over the last 215 million years (Myr), offering great potential for geochemical studies, although the heterococcolith fossil record remains underutilised in this domain. We have mapped heterococcoliths' composition using X‐ray fluorescence (XRF) with a 100‐nm resolution beam to decipher element distributions in heterococcoliths and to investigate the potential development of geochemical proxies for palaeoceanography. The study presents two Middle Jurassic Watznaueria britannica heterococcoliths from Cabo Mondego, Portugal. XRF analysis was performed with a 17 keV incident energy beam at the European Synchrotron Radiation Facility ID22NI beamline to study elements from Sr down to S. Ca, Sr and Mn are distributed following the heterococcolith crystalline arrangement. Cl, Br and S display an homogeneous distribution, whereas K, Fe, Cu, Zn and Rb are concentrated at the edges and in the central area of the heterococcoliths. Distributions of K, Fe, Ti, Fe, Cu, Zn, Rb and to a lesser extent V and Cr are highly influenced by clay contamination and peripheral diagenetic overgrowth. Mn is related to diagenetic Mn‐rich CaCO3 overgrowth on top of or between heterococcoliths shields. Cl and Br are likely to be present in heterococcoliths inside interstitial nano‐domains. We assume that the cytoplasm [Cl?] and [Br?] are mediated and constant during heterococcolithogenesis. Assuming a linear correlation between cytoplasm [Cl?] and sea water [Cl?], heterococcolith Cl may have potential as a salinity proxy. As S is incorporated into heterococcoliths by sulphated polysaccharides, our study suggests a role for such polysaccharides in heterococcolithogenesis for at least 170 Myr. The low Sr/Ca in the W. britannica specimens studied here may either highlight an unusual cellular physiology of Mesozoic coccolithophores or result from low growth rates in oligotrophic environments.  相似文献   

19.
Fluxes of major ions and nutrients were measured in the watershed-lake ecosystem of a strongly acidified lake, ?ertovo jezero (?ertovo Lake), in the 2001 through 2005 hydrological years. Water balance was estimated from precipitation and throughfall amounts, and measured outflow from the lake. The average water input into and outflow from the watershed-lake ecosystem was 1461 mm and 1271 mm (40 L km?2 s?1), respectively, and the water residence time in the lake averaged 662 days. The ecosystem has been recovering from acidification since the late 1980s. Still, however, ?ertovo watershed was an average net source of 23 mmol m?2 yr?1 of SO 4 2? . Nitrogen saturation of the watershed caused low retention of the deposited inorganic N (23% on average). After a dry summer in 2003 and a cold winter in 2004, the watershed became a net source of inorganic N (19 mmol m?2 yr?1). Nitrogen transformations and SO 4 2? release were the dominant terrestrial sources of H+ (81 and 47 mmol m?2 yr?1, respectively) and the watershed was a net source of 42 mmol H+ m?2 yr?1. Ionic composition of tributaries showed seasonal variations with the most pronounced changes in NO 3 ? , base cations, DOC, and ionic Al (Ali) concentrations. The in-lake biogeochemical processes reduced the incoming H+ by ~50% (i.e., neutralized on average 222 mmol H+ m?2 yr?1, on a lake-area basis). Denitrification, SO 4 2? reduction, and photochemical and microbial decomposition of allochthonous organic matter were the most important in-lake H+ consuming processes (215, 85, and 122 mmol H+ m?2 yr?1, respectively), while hydrolysis of Ali was the dominant H+ generating process (96 mmol H+ m?2 yr?1) in ?ertovo Lake. Photochemical liberation from organic complexes was an additional in-lake source of Ali. The net in-lake retention or removal of nutrients (carbon, phosphorus, nitrogen, and silica) varied between 18% and 34% of their inputs.  相似文献   

20.
A major aim of this investigation was to determine whether, in steady-state ascites cells, Cl? transport can be partitioned into a furosemide-sensitive cotransport with K+ and a separate 4,4′-isothiocyanostilbene-2,2′-disulfonic acid (DIDS) sensitive self-exchange. Both Cl? and K+ fluxes were studied. The furosemide- and Cl? sensitive K+ fluxes were equivalent, both in normal ionic media and when the external K+ concentration, [K+]o, was varied from 4 to 30 mM. The stoichiometry of the furosemide-sensitive Cl? and K+ fluxes was 2 Cl?: 1 K+ at 0.1 and 0.5 mM drug levels but increased to 3 Cl? : 1 K+ at 1.0 mM furosemide. DIDS at 0.1 mM had no effect on the K+ exchange rate but inhibited Cl? exchange by 39% ± 2 (S.E.). The effects of DIDS and 0.5 mM furosemide on Cl? transport were additive but 1.0 mM furosemide and DIDS had overlapping inhibitory actions. Thus furosemide acts on components of K+ and Cl? transport which are linked to each other, but the drug also inhibits an additional DIDS-sensitive Cl? pathway, when present at higher concentrations. The dependence of the furosemide-sensitive K+ and Cl? transport on [K+]o was also studied; both fluxes fell as the [K+]o increased. The latter results recall those in an earlier study by Hempling (Hempling, H.G. (1962) J. Cell. Comp. Physiol. 60, 181–198).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号