首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maximal concentrations of substance P and methacholine induced a rapid increase in [3H]inositol trisphosphate ([3H]IP3) formation. After about 1 min, the [3H]IP3 in the substance-P-treated cells ceased to increase further, whereas in the methacholine-treated cells [3H]IP3 continued to increase. Addition of methacholine to the substance-P-treated cells caused a rapid increase in [3H]IP3, whereas a second addition of a 10-fold excess of substance P had no effect. Pretreatment of cells with substance P, followed by removal of the substance P by washing, resulted in a decreased response to a second application of substance P. A similar protocol involving pretreatment with methacholine had no effect on subsequent responsiveness to substance P. Analysis of [3H]substance P binding to substance-P-treated cells indicated that the number of receptors for substance P was decreased, but the affinity of the receptors for substance P was unaffected. After substance P pretreatment, a prolonged incubation (2 h) restored responsiveness of the cells to substance P, measured as [3H]IP3 formation, and restored the number of binding sites to control values. These findings indicate that, in the rat parotid gland, substance P induces a homologous desensitization of its receptor, which involves a slowly reversible down-regulation or sequestration of substance-P-binding sites.  相似文献   

2.
In dispersed rat parotid gland acinar cells, the beta-adrenergic agonist (-)-isoproterenol, but not its stereoisomer (+)-isoproterenol, induced a transient 1.6-fold (at maximum stimulation, 2 x 10(-4) M) increase in cytosolic free calcium ([Ca2+]i) within 9 s, which returned to resting levels (approximately 190 nM) by 60 s. This [Ca2+]i response was not altered by chelating extracellular Ca2+ with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) and could be completely blocked by the beta-adrenergic antagonists propranolol (beta 1 + beta 2) and ICI 118,551 (beta 2) but not by atenolol (beta 1). The muscarinic-cholinergic agonist carbachol (at maximum stimulation, 10(-5) M) induced a 3-4-fold elevation in [Ca2+]i within 6 s, which slowly returned to resting levels by 8-10 min. The peak carbachol [Ca2+]i response was not substantially altered by the addition of EGTA to the extracellular medium. However, if the cells were first stimulated with isoproterenol in the EGTA-containing medium, the peak carbachol response was decreased approximately 54%. When carbachol was added to cells in the presence of high extracellular calcium, at the isoproterenol-stimulated [Ca2+]i peak, the resulting [Ca2+]i level was equal to that achieved when carbachol was either added alone or added after propranolol and isoproterenol. 8-Bromo-cyclic AMP induced a [Ca2+]i response similar to that elicited by isoproterenol, which was not additive to that by carbachol. Carbachol induced a approximately 3.5-fold increase in inositol trisphosphate (IP3) production in parotid cells within 30 s. 8-Bromo-cAMP, N6,O2'-dioctanoyl-cAMP, and isoproterenol consistently induced a significant stimulation in IP3 production. The half-maximal concentration of isoproterenol required for [Ca2+]i mobilization and IP3 production was comparable (approximately 10(-5) M). Isoproterenol-induced IP3 formation was blocked by propranolol. The data show that in rat parotid acinar cells, beta-adrenergic stimulation results in IP3 formation and mobilization of a carbachol-sensitive intracellular Ca2+ pool by a mechanism involving cAMP. This demonstrates an interaction between the cAMP and phosphoinositide second messenger systems in these cells.  相似文献   

3.
The effects of supramaximal concentrations of substance P and the cholinergic agonist carbachol on the accumulation of inositol trisphosphate and the elevation of the intracellular free calcium concentration were compared in rat parotid acinar cells. Substance P was fully as effective as carbachol at initial times, but there was a rapid loss of the substance P responses while the effects of carbachol were well maintained. The loss of the substance P responses represented desensitization rather than degradation of the peptide since further additions of substance P were without effect. Desensitization to substance P did not involve long-term loss of substance P receptors as it was fully reversible in less than twenty minutes, the minimum time to extensively wash previously desensitized cells.  相似文献   

4.
The relationship between bulk cellular myo-inositol content and phosphatidylinositol metabolism was evaluated in a human mesangial cell line under euglycemic and hyperglycemic conditions. Mesangial cells maintained in high glucose medium displayed a concentration-dependent fall in myo-inositol as measured by gas-liquid chromatography. Measurements of phosphatidylinositol, phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate mass revealed slight but statistically insignificant increases in cells exposed to high glucose containing medium. CDP-diacylglycerol: myo-inositol 3-phosphatidylinositol transferase activity, measured in plasma membranes from mesangial cells grown under control and hyperglycemic conditions, was kinetically similar with Michaelis constants (Km values) for myo-inositol of 2.9 and 2.1 mM, respectively. Finally, hormone-stimulated intracellular calcium mobilization and myo-inositol 1,4,5-trisphosphate mass was measured from mesangial cells grown under normal and hyperglycemic conditions. Both intracellular calcium and inositol trisphosphate formation were unchanged in cells previously exposed to high glucose conditions (400 mg/dl) compared to cells grown under normal glucose concentration (100 mg/dl). These data indicate that bulk changes in myo-inositol induced by hyperglycemia are neither associated with alterations in basal levels of inositol containing glycerolipids nor with changes in hormone-stimulated calcium mobilization and inositol trisphosphate formation under conditions of short term changes in extracellular glucose.  相似文献   

5.
H Sugiya  S Furuyama 《Cell calcium》1990,11(7):469-475
In rat parotid acinar cells prelabelled with [3H]-inositol, sphingosine stimulated the accumulation of [3H]-inositol polyphosphates. When the cells were exposed to sphingosine, [3H]-inositol trisphosphate (InsP3) was accumulated in a time- and dose-dependent manner. When the extracellular Ca2+ was chelated by 1 mM EGTA, the effect of sphingosine on InsP3 accumulation was completely inhibited. Ionophores, A23187 and ionomycin, had no significant effect on InsP3 accumulation. An inhibitor of protein kinase C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), failed to stimulate InsP3 accumulation. In the homogenate of parotid acinar cells, InsP3 3-kinase and 5-phosphomonoesterase activities were not affected by sphingosine. These results suggest that sphingosine activates phosphoinositide turnover by a mechanism dependent upon extracellular Ca2+, but different from that of an ionophore, and independent of protein kinase C.  相似文献   

6.
The modulatory role of endogenous cellular glycosphingolipids in bradykinin-stimulated myo-inositol 1,4,5-trisphosphate (InsP3) formation by MDCK cells was evaluated utilizing the glucosylceramide synthase inhibitor, threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). Bradykinin-stimulated InsP3 formation in intact cells and in isolated plasma membranes was significantly enhanced when cells were first depleted of their glucosphingolipids. The effect of glucosphingolipid depletion on phospholipase C activity was dependent on the duration of exposure to the inhibitor and the cellular level of glucosylceramide. Inclusion of glucosylceramide in the culture medium prevented the stimulatory effect of PDMP on InsP3 formation. It is concluded that membrane glucosphingolipids may regulate phospholipase C activity.  相似文献   

7.
The mechanisms of agonist-induced Ca(2+) spikes have been investigated using a caged inositol 1,4,5-trisphosphate (IP(3)) and a low-affinity Ca(2+) indicator, BTC, in pancreatic acinar cells. Rapid photolysis of caged IP(3) was able to reproduce acetylcholine (ACh)-induced three forms of Ca(2+) spikes: local Ca(2+) spikes and submicromolar (<1 microM) and micromolar (1-15 microM) global Ca(2+) spikes (Ca(2+) waves). These observations indicate that subcellular gradients of IP(3) sensitivity underlie all forms of ACh-induced Ca(2+) spikes, and that the amplitude and extent of Ca(2+) spikes are determined by the concentration of IP(3). IP(3)-induced local Ca(2+) spikes exhibited similar time courses to those generated by ACh, supporting a role for Ca(2+)-induced Ca(2+) release in local Ca(2+) spikes. In contrast, IP(3)- induced global Ca(2+) spikes were consistently faster than those evoked with ACh at all concentrations of IP(3) and ACh, suggesting that production of IP(3) via phospholipase C was slow and limited the spread of the Ca(2+) spikes. Indeed, gradual photolysis of caged IP(3) reproduced ACh-induced slow Ca(2+) spikes. Thus, local and global Ca(2+) spikes involve distinct mechanisms, and the kinetics of global Ca(2+) spikes depends on that of IP(3) production particularly in those cells such as acinar cells where heterogeneity in IP(3) sensitivity plays critical role.  相似文献   

8.
The kinetics of [3H]inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of [3H]inositol monophosphates and [3H]inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the [3H]inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of [3H]inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of [3H]inositol phosphates. The sum of the rates of accumulation of D-myo-inositol 1-monophosphate and D-myo-inositol 4-monophosphate did not exceed the rate of breakdown of D-myo-inositol 1,4,5-trisphosphate or the sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate. These kinetic analyses suggest that agonist-stimulated [3H]inositol bis- and monophosphate formation in intact rat parotid acinar cells can be accounted for by the metabolism of D-myo-[3H]inositol 1,4,5-trisphosphate rather than by phospholipase C-catalyzed hydrolysis of phosphatidylinositol or phosphatidylinositol 4-phosphate.  相似文献   

9.
Recent work has demonstrated the enhancement of hormone-stimulated inositol trisphosphate formation in renal epithelial cells under conditions of glucosylceramide depletion. The role of glucosylceramide metabolism was explored further by exposing Madin-Darby canine kidney (MDCK) cells to the beta-glucosidase inhibitor conduritol B epoxide, which produced time-dependent and concentration-dependent increases in glucosylceramide levels and decreased bradykinin-stimulated inositol trisphosphate formation from isolated MDCK cell membranes. These data provide further support for an association between glucosylceramide levels and hormone-stimulated inositol trisphosphate formation.  相似文献   

10.
Capacitative calcium entry in parotid acinar cells.   总被引:13,自引:0,他引:13       下载免费PDF全文
The intracellular Ca2+ indicator, fura-2, was used to monitor changes in cytosolic [Ca2+] in parotid acinar cells. When parotid cells were incubated in a medium containing low [Ca2+], and [Ca2+] was restored to the physiological range, there was a small increase in cytosolic [Ca2+]. If, however, the cells were first activated by a muscarinic agonist, and receptor activation was terminated before the addition of Ca2+ by the addition of a pharmacological excess of the muscarinic-receptor antagonist atropine, the initial increase in cytosolic [Ca2+] was faster and transiently larger than in the control cells which had not been previously stimulated. This suggested that a stimulation of Ca2+ entry occurred owing to the prior emptying of the agonist-regulated intracellular Ca2+ pool. This extra Ca2+ influx seen in pool-depleted cells persisted even when the interval between the addition of atropine and Ca2+ was increased from 1 to 20 min. Also, when the pool was allowed to refill by adding atropine in the presence of extracellular Ca2+, and Ca2+ was then sequentially removed and restored, the rise in cytosolic [Ca2+] after the addition of extracellular Ca2+ was not rapid, and resembled the increase seen in unstimulated cells. These results indicate that, when the agonist-sensitive Ca2+ pool is emptied by an agonist, Ca2+ influx across the plasma membrane is increased. This influx of Ca2+ occurs independently of the concentrations of inositol phosphates and probably of any second messengers linked directly to receptor activation. It appears rather to be a consequence of the empty state of the Ca2+ pool. Further, we suggest that, whenever the agonist-sensitive Ca2+ pool is emptied by agonist activation, the plasma-membrane permeability to Ca2+ will be increased, and this may account, at least in part, for the phenomenon of receptor-activated Ca2+ entry.  相似文献   

11.
The effects of bombesin and insulin, separately and in combination, have been studied in Swiss mouse 3T3 cells. Bombesin caused a rapid transfer of 3H from the lipid inositol pool of prelabeled cells into inositol phosphates. Label in inositol tetrakisphosphate (InsP4) and in Ins1,4,5P3 and Ins1,3,4P3 rose within 10 sec of stimulation and that in Ins1,4P2, another InsP2 and InsP1, more slowly. Insulin, which had little effect on its own, increased the turnover of inositol lipids due to acute bombesin stimulation and also enhanced the DNA synthesis evoked by prolonged bombesin treatment. The results suggest that bombesin acting as a growth factor, uses inositol lipids as part of its transduction mechanism and that insulin acts synergistically to enhance both inositol phosphate formation and DNA synthesis.  相似文献   

12.
The inhibitory effects of caffeine on receptor-activated cytosolic Ca2+ signal generation in isolated mouse pancreatic acinar cells were investigated. Using the ability of caffeine to quench Indo-1 fluorescence we measured simultaneously the free intracellular Ca2+ concentration ([Ca2+]i) and the intracellular caffeine concentration ([caffeine]i). We also measured inositol 1,4,5-trisphosphate (InsP3) production with a radioreceptor assay. When caffeine was added to the extracellular solution during a sustained receptor-activated increase in [Ca2+]i, [caffeine]i rose to its steady level within a few seconds. This was accompanied by a decrease of [Ca2+]i, which started only after [caffeine]i had reached an apparent threshold concentration (about 2 mM in the case of 0.5 microM acetylcholine (ACh) stimulation). Above this [caffeine]i level there was a linear relationship between [caffeine]i and [Ca2+]i. Throughout the caffeine exposure [Ca2+]i remained at a steady low level. Following removal of caffeine from the bath, [caffeine]i decreased to zero within seconds. There was no significant increase in [Ca2+]i until [caffeine]i had been reduced to the threshold level (about 2 mM at 0.5 microM ACh). Caffeine inhibited Ca2+ signals evoked by ACh, cholecystokinin, and ATP and also inhibited signals generated in the absence of external Ca2+. Caffeine application had the same effect as removal of agonist allowing recovery from apparent desensitization. Caffeine inhibited the agonist-evoked production of InsP3 in a dose-dependent manner. Our results demonstrate the acute and reversible dose-dependent inhibition of agonist-evoked cytosolic Ca2+ signal generation due to rapid intracellular caffeine accumulation and washout. The inhibition can be explained by the reduction of agonist-evoked InsP3 production.  相似文献   

13.
Summary The localization of complex carbohydrates in the Golgi apparatus, secretory granules and plasmalemma of mouse parotid acinar cells was studied using the fracture-labelling method. The hexose residues of glycoconjugates were identified using ferritin conjugated with Wheat Germ Agglutinin (WGA-), Ricinnus Communis Agglutinin II (RCA-II-), Phaseolus Vulgaris Agglutinin (PHA-) and Limulus Polyphemus Agglutinin (LPA-). We found that the tracture-labelling method allows not only the labelling of membrane faces but also analysis of the compartment's content that is exposed during the fracturing of the tissue. Our results revealed differences in the hexose residues located in the Golgi apparatus, secretory granules and the apical and lateral plasmalemma. Numerous binding sites for WGA-, PHA-and RCA-II-ferritin were demonstrable in the Golgi apparatus. In secretory granules, the WGA-and RCA-II-ferritin binding sites were most numerous, while LPA-ferritin binding sites were very rate. The density of the binding sites for PHA-ferritin showed considerable variation in secretory granules. The apical plasmalemma exhibited a high density of binding sites for all of the lectins used. In the lateral plasmalemma, LPA-ferritin was not bound, and there were fewer binding sites for WGA-, RCA-H-and PHA-ferritin.  相似文献   

14.
High performance liquid chromatography analysis of supernatants from acid-quenched [3H]inositol-labeled parotid acinar cells revealed an inositol pentakisphosphate and three inositol tetrakisphosphates. Two of the latter were identified as the 1,3,4,5 and 1,3,4,6 isomers, whereas the third was probably a mixture of unknown proportions of the 3,4,5,6/1,4,5,6 enantiomeric pair. Methacholine (100 microM) produced a 40-50-fold increase in the levels of inositol trisphosphate (mainly the 1,3,4 isomer) and inositol 1,3,4,5-tetrakisphosphate, but inositol 1,3,4,6-tetrakisphosphate only increased 5-fold. Levels of inositol 3,4,5,6/1,4,5,6-tetrakisphosphate and inositol pentakisphosphate were unaffected by agonist stimulation. Thus, in parotid cells, an agonist-induced increase in both inositol trisphosphate and inositol 1,3,4,6-tetrakisphosphate formation does not result in an increase in the rate of formation of inositol pentakisphosphate. Following the addition of 100 microM atropine to methacholine-stimulated parotid cells, the levels of [3H]inositol 1,3,4,5-tetrakisphosphate fell rapidly, returning to basal levels within 5 min. Inositol trisphosphate was metabolized more slowly and was still elevated 20-fold above basal 5 min after the addition of atropine. Inositol 1,3,4,6-tetrakisphosphate was metabolized much more slowly (t1/2 approximately 15 min). Inositol 1,3,4-trisphosphate metabolism was examined in parotid homogenates as well as in 100,000 x g cytosolic and particulate fractions. Inositol 1,3,4-trisphosphate was both dephosphorylated and phosphorylated. Two inositol tetrakisphosphate products were formed, namely the 1,3,4,6 and 1,3,4,5 isomers. Over 90% of both kinase and phosphatase activities were found in the cytosolic fractions. The ratio of activities of kinase to phosphatase decreased as the levels of inositol 1,3,4-trisphosphate substrate were increased from 1 nM to 10 microM. These data led to the conclusion that the kinetic parameters of the inositol 1,3,4-trisphosphate kinases and phosphatases are such that in stimulated cells, dephosphorylation of inositol 1,3,4-trisphosphate is greatly favored. Inositol 1,3,4-trisphosphate kinase activity was potently inhibited by inositol 3,4,5,6-tetrakisphosphate (IC50 = 0.1-0.2 microM), which leads us to propose that inositol 3,4,5,6-tetrakisphosphate is an endogenous inhibitor of the kinase.  相似文献   

15.
There are no reports of the effect of stretch on inositol phosphates in smooth muscle. Phosphoinositide and inositol phosphate metabolism was studied in cultured rat vascular smooth muscle cells subjected to stretching. The masses of inositol trisphosphate and tetrakisphosphate increased (+34 +/- 7% and +58 +/- 12%, respectively; p less than 0.001) after 25 s of a single 20% stretch and had returned to control levels by 45 s; phosphatidylinositol, phosphatidylinositol phosphate and bisphosphate did not change. Repetitive stretch did not alter the masses of any of the compounds. A single stretch also increased 45Ca2+ efflux (+52 +/- 5%, p less than 0.01). These data suggest that stretch of cultured vascular smooth muscle can elicit a rapid, short-lived increase in inositol phosphates, which may subsequently affect Ca2+.  相似文献   

16.
Stimulation of rat parotid acinar cells by the muscarinic cholinergic receptor agonist methacholine results in the formation of inositol 1,4,5-trisphosphate [1,4,5)IP3) and inositol cyclic 1:2,4,5-trisphosphate [c1:2,4,5)IP3) which, after 40 min, accumulate to a ratio of 1:0.57. The turnover rates of these inositol trisphosphates have been determined in cholinergically stimulated rat parotid cells by measuring the degradation of the 3H-labeled compounds following receptor blockade. (1,4,5)IP3 is rapidly metabolized, with a half-time of 7.6 s; (c1:2,4,5)IP3 declines much more slowly with a half-time of almost 10 min. Because the formation and metabolism of (c1:2,4,5)IP3 are so slow, (c1:2,4,5)IP3 gradually accumulates upon prolonged receptor activation. Inositol trisphosphate turnover was compared to the receptor-mediated changes in cytoplasmic Ca2+ concentration, as measured by the fluorescent Ca2+ indicator, fura-2. The Ca2+ signal decays upon termination of inositol phosphate formation and returns to base line within 30 s. Thus, while (c1:2,4,5)IP3 may have some yet unknown biological effects on Ca2+ homeostasis, its metabolism seems far too slow to be the primary regulator of cytosolic Ca2+ levels under long term stimulatory conditions. The rate at which the Ca2+ signal decays is, however, somewhat slowed after prolonged agonist stimulation. Furthermore, the capacity of the cells to mobilize intracellular Ca2+ in response to a second agonist stimulation is slightly delayed when the duration of the first stimulus is prolonged. The results suggest that the regulation of cytoplasmic Ca2+ levels may be more complicated than initially realized and could depend on the combined actions of more than one inositol polyphosphate.  相似文献   

17.
Bradykinin-induced changes in inositol trisphosphate mass in MDCK cells   总被引:1,自引:0,他引:1  
Bradykinin produces increases in cytosolic calcium in MDCK cells. We have extracted and separated Inositol 1,4,5 trisphosphate by HPLC and after-acid hydrolysis and conversion to the hexatrifluoro-acetyl derivative quantitated by negative ion chemical ionization mass spectrometry the mass of inositol trisphosphate in MDCK cells. Bradykinin causes an increase in the mass of Inositol trisphosphate from basal levels of 152 pmoles/mg cell protein to 537 pmoles/mg cell protein by 10 secs of stimulation. We conclude that bradykinin stimulates PLC hydrolysis of PIP2 with rapid release of IP3 in sufficient amount to account for the increase in cytosolic Ca++.  相似文献   

18.
The formation of inositol phosphates in response to secretagogues was studied in rat pancreatic acini preincubated with [3H]inositol. Carbachol caused rapid increases in radioactive inositol phosphate, inositol bisphosphate and inositol trisphosphate . This effect was blocked by atropine, and also elicited by caerulein, but not by ionomycin or phorbol dibutyrate. Thus phospholipase C-mediated breakdown of polyphosphoinositides, with the resulting formation of inositol phosphates, may be an early step in the stimulus-secretion coupling pathway in exocrine pancreas. Inositol trisphosphate may function as a second messenger in the exocrine pancreas, coupling receptor activation to internal Ca2+ release.  相似文献   

19.
The effects of veratridine, an agent known to increase Na permeability in excitable tissues, were determined on a dispersed cell preparation from the rat parotid gland. The uptake of 22Na by these parotid cells was increased in the presence of veratridine but not to as great an extent as with carbachol. The veratridine effect was blocked by both tetrodotoxin (TTX) and a combination of receptor blockers, atropine and phentolamine. TTX had no effect on the increase in 22Na uptake due to carbachol. Electron microscopic examination revealed the presence of nerve terminals in the dispersed cell preparation, often in very close apposition to individual cells. It is likely that these nerve terminals are the primary sites of actions of veratridine and TTX and not the parotid acinar cells. The possibility of the presence of unmyelinated nerve fibers should be taken into account in the analyses of experimental data obtained with dispersed cell preparations.  相似文献   

20.
Stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by a phospholipase C to produce inositol trisphosphate (InsP3) and 1,2-diacylglycerol appears to be the initial step in signal transduction for a number of cell-surface interacting stimuli, including thyrotropin-releasing hormone (TRH). In suspensions of membranes isolated from rat pituitary (GH3) cells that were prelabeled to isotopic steady state with [3H]inositol and incubated with ATP, [3H] PtdIns(4,5)P2, and [3H]phosphatidylinositol 4-phosphate, the polyphosphoinositides, and [3H]InsP3 and [3H]inositol bisphosphate, the inositol polyphosphates, accumulated. TRH and GTP stimulated the accumulation of [3H]inositol polyphosphates in time- and concentration-dependent manners; half-maximal effects occurred with 10-30 nM TRH and with 3 microM GTP. A nonhydrolyzable analog of GTP also stimulated [3H] inositol polyphosphate accumulation. Moreover, when TRH and GTP were added together their effects were more than additive. Fixing the free Ca2+ concentration in the incubation buffer at 20 nM, a value below that present in the cytoplasm in vivo did not inhibit stimulation by TRH and GTP of [3H]inositol polyphosphate accumulation. ATP was necessary for basal and stimulated accumulation of [3H]inositol polyphosphates, and a nonhydrolyzable analog of ATP could not substitute for ATP. These data demonstrate that TRH and GTP act synergistically to stimulate the accumulation of InsP3 in suspensions of pituitary membranes and that ATP, most likely acting as substrate for polyphosphoinositide synthesis, was necessary for this effect. These findings suggest that a guanine nucleotide-binding regulatory protein is involved in coupling the TRH receptor to a phospholipase C that hydrolyzes PtdIns(4,5)P2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号