首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Adiponectin is a fat-derived hormone with insulin-sensitizing properties. In patients with type 2 diabetes plasma adiponectin levels are decreased. Since these patients are characterized by high plasma insulin and glucose concentrations, hyperinsulinemia and hyperglycemia could be responsible for the downregulation of adiponectin. Insulin decreases adiponectin levels in humans. The effect of hyperglycemia is unknown. To determine the selective effects of insulin, glucose, or their combination on plasma adiponectin, clamps were performed in six healthy males on four occasions in a crossover design: 1) lower insulinemic-euglycemic clamp (100 pmol/l insulin, 5 mmol/l glucose) (reference clamp); 2) hyperinsulinemic-euglycemic clamp (400 pmol/l insulin, 5 mmol/l glucose); 3) lower insulinemic-hyperglycemic clamp (100 pmol/l insulin, 12 mmol/l glucose); and 4) hyperinsulinemic-hyperglycemic clamp (400 pmol/l insulin, 12 mmol/l glucose). Adiponectin concentrations and high-molecular-weight (HMW)-to-total adiponectin ratio were measured at the start and end of the 6-h clamps. After the 6-h study period, total plasma adiponectin levels were significantly (P = 0.045) decreased by 0.63 microg/ml in the lower insulinemic-euglycemic clamp (clamp 1). In both euglycemic groups (clamps 1 and 2) adiponectin concentrations significantly declined (P = 0.016) over time by 0.56 microg/ml, whereas there was no change in both hyperglycemic groups (clamps 3 and 4) (P = 0.420). In none of the clamps did the ratio of HMW to total adiponectin change. We conclude that insulin suppresses plasma adiponectin levels already at a plasma insulin concentration of 100 pmol/l. Hyperglycemia prevents the suppressive effect of insulin. This suggests that, in contrast to glucose, insulin could be involved in the downregulation of plasma adiponectin in insulin-resistant patients.  相似文献   

2.
目的:探讨运动对老年肥胖大鼠内脏脂肪组织脂联素mRNA和蛋白质表达、血浆脂联素浓度及胰岛素抵抗的影响。方法:取雄性SD大鼠,鼠龄21 d,分青春期、壮年期和老年期三个阶段喂养高脂饲料(脂肪率为36.3%~40.0%),建立老年肥胖模型。鼠龄达到60周后,取自然生长老年大鼠随机分为对照组(C)和老年运动组(AE),n=6;取老年肥胖大鼠随机分为肥胖对照组(OC)和肥胖运动组(OE),n=6。动物跑台坡度0°,运动速度及时间为(15 m/min×15 min),4组/次,组间休息5 min,每次共运动60 min,5次/周,持续运动8周。8周后,检测内脏脂肪组织脂联素mRNA和蛋白质表达,测定血糖、血浆脂联素浓度和胰岛素浓度,计算胰岛素抵抗。结果:运动干预后,与对照组比较,肥胖对照组大鼠脂联素mRNA和蛋白质表达显著减低,血糖浓度和胰岛素抵抗明显增高;而老年运动组大鼠脂联素mRNA和蛋白质表达显著增高。与肥胖对照组大鼠比较,肥胖运动组大鼠脂联素mRNA和蛋白质表达显著增高、血浆脂联素水平增高,血糖浓度和胰岛素抵抗明显减低。结论:老年肥胖大鼠内脏脂肪组织脂联素mRNA和蛋白质表达均降低,伴随胰岛素抵抗、血糖升高。运动能显著增加其内脏脂肪组织脂联素mRNA和蛋白质表达,升高血浆脂联素水平,改善胰岛素抵抗,降低血糖。  相似文献   

3.
Several amide constituents (piperlonguminine and retrofractamides A, B, and C) from the fruit of Piper chaba promoted adipogenesis of 3T3-L1 cells. Among them, retrofractamide A was the most active and significantly increased the amount of adiponectin released into the medium and the uptake of 2-deoxyglucose into the cells. Retrofractamide A also increased mRNA levels of adiponectin, peroxisome proliferator-activated receptor gamma2 (PPARgamma2), glucose transporter 4 (GLUT4), and insulin receptor substrate 1 (IRS-1), but did not act as a PPARgamma agonist different from troglitazone.  相似文献   

4.
5.
A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1), tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT) was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs) and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1) and glucose transporter 4 (GLUT4) in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results indicate that irbesartan improves stress-induced adipose tissue inflammation and insulin resistance. Our results suggests that irbesartan treatment exerts additive benefits for glucose metabolism in hypertensive patients with mental stress.  相似文献   

6.
To search for a new class of antidiabetic compounds, effects of 44 flavonoids on the adipogenesis of 3T3-L1 cells were examined. Among them, 3,4',7-trimethylkaempferol, tetramethylkaempferol, and pentamethylquercetin concentration-dependently enhanced the accumulation of triglyceride, a marker of adipogenesis. With regard to structural requirements of flavonoids for the activity, it was fond that: (1) most flavonoids having hydroxy groups lacked the effect; (2) flavonols with methoxy groups showed stronger effects particularly those with a methoxy group at the 3-position; and (3) a methoxy group of flavonols at the B ring was also important. 3,4',7-Trimethylkaempferol, tetramethylkaempferol, and pentamethylquercetin significantly increased the amount of adiponectin released into the medium and the uptake of 2-deoxyglucose into the cells. Furthermore, tetramethylkaempferol and pentamethylquercetin also increased mRNA levels of adiponectin, glucose transporter 4 (GLUT4), and fatty acid-binding protein (aP2). Both compounds also increased the mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ2 and CCAAT/enhancer-binding protein (C/EBP)α, β, and/or δ, although, different from troglitazone, they did not activate PPARγ directly in a nuclear receptor cofactor assay.  相似文献   

7.
Most rodent models of insulin resistance are accompanied by decreased circulating adiponectin levels. Adiponectin treatment improves the metabolic phenotype by increasing fatty acid oxidation in skeletal muscle and suppressing hepatic glucose production. Muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mice expressing dominant-negative mutant IGF-IRs in skeletal muscle are diabetic with insulin resistance in muscle, liver, and adipose tissue. Adiponectin levels are elevated in MKR mice, suggesting an unusual discordance between insulin resistance and adiponectin responsiveness. Therefore, we investigated the metabolic actions of adiponectin in MKR mice. MKR and ob/ob mice were treated both acutely (28 microg/g) and chronically (for 2 wk) with full-length adiponectin. Acute hypoglycemic effects of adiponectin were evident only in ob/ob mice but not in MKR mice. Chronic adiponectin treatment significantly improved both insulin sensitivity and glucose tolerance in ob/ob but not in MKR mice. Adiponectin receptor mRNA levels and adiponectin-stimulated phosphorylation of AMPK in skeletal muscle and liver were similar among MKR, wild-type, and ob/ob mice. Thus MKR mice are adiponectin resistant despite normal expression of adiponectin receptors and normal AMPK phosphorylation in muscle and liver. MKR mice may be a useful model for dissecting relationships between insulin resistance and adiponectin action in regulation of glucose homeostasis.  相似文献   

8.
Ultraviolet (UV) B irradiation decreases blood adiponectin levels, but the mechanism is not well understood. This study investigated how UVB irradiation reduces adiponectin expression in ovarial adipose tissues. Female Hos:HR-1 hairless mice were exposed to UVB (1.6 J/cm2) irradiation and were killed 24 h later. UVB irradiation decreased the adiponectin protein level in the serum and the adiponectin mRNA level in ovarial adipose tissues. UVB irradiation also decreased the mRNA levels of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (C/EBP) α, C/EBPβ, and fatty acid binding protein 4 (aP2) in ovarial adipose tissues. In contrast, UVB irradiation increased the mRNA levels of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 in ovarial adipose tissues. In the serum and liver, the levels of serum amyloid A (SAA), involved in PPARγ, C/EBPα, C/EBPβ, aP2, IL-6, and MCP-1 regulation, increased after UVB irradiation. The SAA gene is regulated by IL-1β, IL-6, and tumor necrosis factor-α, but only IL-6 expression increased in the liver after UVB irradiation. Additionally, in the liver, hypothalamus, and epidermis, UVB irradiation increased the expression of calcitonin gene-related peptide (CGRP), which upregulates SAA in the liver. Collectively, our results suggest that the CGRP signal induced by skin exposure to UVB transfers to the liver, possibly through the brain, and increases SAA production via IL-6 in the liver. In turn, serum SAA acts in an endocrine manner to decreases the serum adiponectin level by downregulating factors that regulate adiponectin expression in adipose tissues.  相似文献   

9.
10.
Effects of exercise on adiponectin and adiponectin receptor levels in rats   总被引:4,自引:0,他引:4  
Adiponectin reportedly reduces insulin-resistance. Exercise has also been shown to lessen insulin-resistance, though it is not known whether exercise increases levels of adiponectin and/or its receptors or whether its effects are dependent on exercise intensity and/or frequency. Catecholamine levels have been shown to increase during exercise and to fluctuate based on exercise intensity and duration. In light of this information, we examined the effects of exercise on catecholamine, adiponectin, and adiponectin receptor levels in rats. Our data showed that blood adiponectin levels increased by 150% in animals that exercised at a rate of 30 m/min for 60 min 2 days per week, but not 5 days, per week; no such increase was observed in rats that exercised at a rate of 25 m/min for 30 min. The effects of exercise on adiponectin receptor mRNA were variable, with adiponectin receptor 1 (AdipoR1) levels in muscle increasing up to 4 times while adiponectin receptor 2 (AdipoR2) levels in liver fell to below half in response to exercise at a rate of 25 m/min for 30 min 5 days per week. We also observed that urinary epinephrine levels and plasma lipids were elevated by exercise at a rate of 25 m/min for 30 min 2 days per week. Exercise frequency at a rate of 25 m/min for 30 min correlated with AdipoR1 and AdipoR2 mRNA expression in the muscle and liver, respectively (r=0.640, p<0.05 and r=-0.808, p<0.0005, respectively). Urinary epinephrine levels correlated with AdipoR2 mRNA expression in liver tissues (r=-0.664, p<0.05) in rats that exercised at a rate of 25 m/min for 30 min. Thus, exercise may regulate adiponectin receptor mRNA expression in tissues, which might cause increases in glucose uptake and fatty acid oxidation in the muscle. The effect of exercise on adiponectin levels depends on the specific conditions of the exercise.  相似文献   

11.
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30   总被引:116,自引:0,他引:116  
Here we investigated the biological functions of adiponectin/ACRP30, a fat-derived hormone, by disrupting the gene that encodes it in mice. Adiponectin/ACRP30-knockout (KO) mice showed delayed clearance of free fatty acid in plasma, low levels of fatty-acid transport protein 1 (FATP-1) mRNA in muscle, high levels of tumor necrosis factor-alpha (TNF-alpha) mRNA in adipose tissue and high plasma TNF-alpha concentrations. The KO mice exhibited severe diet-induced insulin resistance with reduced insulin-receptor substrate 1 (IRS-1)-associated phosphatidylinositol 3 kinase (PI3-kinase) activity in muscle. Viral mediated adiponectin/ACRP30 expression in KO mice reversed the reduction of FATP-1 mRNA, the increase of adipose TNF-alpha mRNA and the diet-induced insulin resistance. In cultured myocytes, TNF-alpha decreased FATP-1 mRNA, IRS-1-associated PI3-kinase activity and glucose uptake, whereas adiponectin increased these parameters. Our results indicate that adiponectin/ACRP30 deficiency and high TNF-alpha levels in KO mice reduced muscle FATP-1 mRNA and IRS-1-mediated insulin signaling, resulting in severe diet-induced insulin resistance.  相似文献   

12.
In a previous study, retrofractamide A from the fruit of Piper chaba was shown to promote adipogenesis in 3T3-L1 cells. In the present study, retrofractamide A and its derivatives were synthesized, and their adipogenetic effects in 3T3-L1 cells were examined. Among the tested compounds, an amide composed of 9-(3′,4′-methylenedioxyphenyl)-nona-2E,4E,8E-trienoic acid and an n-butyl or n-pentyl amine showed strongest activity. Moreover, the amide with the n-pentyl amine moiety significantly increased the uptake of 2-deoxyglucose into the cells, and also increased the mRNA levels of adiponectin, peroxisome proliferator-activated receptor γ2 (PPARγ2), glucose transporter 4 (GLUT4), fatty acid-binding protein (aP2), and CCAAT/enhancer-binding protein (C/EBP) α and β in a similar manner as the PPARγ agonist troglitazone, although it had less agonistic activity against PPARγ.  相似文献   

13.
目的:探讨心理应激对小鼠脂肪组织黄嘌呤氧化酶表达、活性及相关指标的作用。方法:雄性无特定病原体(SPF)级20只昆明小鼠随机分2组(每组10只),即慢性束缚应激(Stress)组和正常对照(Control)组。Stress组小鼠每天在自制式束缚器中限制活动2 h,其余时间两组小鼠在相同环境中自由饮水摄食,实验持续14 d,取血和白色脂肪组织(WAT);观察脂肪组织病理学改变,检测WAT中黄嘌呤氧化酶(XO)和烟酰胺腺嘌呤二核苷酸磷酸氧化酶4(Nox-4)的蛋白水平,检测WAT组织中XO、Nox-4、超氧化物歧化酶(Mn SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)、脂联素(ADPN)、单核细胞趋化蛋白1(MCP-1)、白介素6(IL-6)、肿瘤坏死因子α(TNF-α)、胰岛素受体底物1(IRS-1)、葡萄糖转运蛋白4(GLUT-4)、组织因子(TF)、纤溶酶原激活物抑制物1(PAI-1)的mRNA表达,检测血清和WAT组织中XO酶活性以及血清甘油三酯(TG)、总胆固醇(T-Cho)、游离脂肪酸(FFA)、尿酸(UA)的含量。结果:与control组比较,stress小鼠腹股沟WAT组织中XO免疫染色阳性着色细胞黄褐色沉淀深且丰富,WAT中出现大量的单核细胞、中性粒细胞、嗜酸性粒细胞及浆细胞浸润反应和炎症性的改变;血清XO浓度、WAT组织中XO mRNA水平和XO的酶活性显著升高(P<0.01),血清游离脂肪酸(FFA)和尿酸(UA)的含量显著增高(P<0.01),WAT组织中Nox-4蛋白、MCP-1、IL-6、TNF-α、TF、PAI-1mRNA的表达水平显著增高(P<0.01),而Mn-SOD、GSH-Px、CAT、ADPN、IRS-1和GLUT-4的mRNA水平则显著降低(P<0.01)。结论:心理应激可诱发脂肪XO过量表达及其活性增高,进而引起脂肪炎症、糖代谢及凝血酶原异常等反应。  相似文献   

14.
Nicotinic acid (NA) and nicotinamide (NAM) are major forms of niacin and exert their physiological functions as precursors of nicotinamide adenine dinucleotide (NAD). Sirtuins, which are NAD-dependent deacetylases, regulate glucose and lipid metabolism and are implicated in the pathophysiology of aging, diabetes, and hepatic steatosis. The aim of this study was to investigate the effects of two NAD donors, NA and NAM, on glucose metabolism and the hepatic NAD-sirtuin pathway. The effects were investigated in OLETF rats, a rodent model of obesity and type 2 diabetes. OLETF rats were divided into five groups: (1) high fat (HF) diet, (2) HF diet and 10 mg NA/kg body weight (BW)/day (NA 10), (3) HF diet and 100 mg NA/kg BW/day (NA 100), (4) HF diet and 10 mg NAM/kg BW/day (NAM 10), and (5) HF diet and 100 mg NAM/kg BW/day (NAM 100). NA and NAM were delivered via drinking water for four weeks. NAM 100 treatment affected glucose control significantly, as shown by lower levels of accumulative area under the curve during oral glucose tolerance test, serum fasting glucose, serum fasting insulin, and homeostasis model assessment of insulin resistance, and higher levels of serum adiponectin. With regard to NAD-sirtuin pathway, intracellular nicotinamide phosphoribosyltransferase, NAD, the NAD/NADH ratio, Sirt1, 2, 3, and 6 mRNA expressions, and Sirt1 activity all increased in livers of NAM 100-treated rats. These alterations were accompanied by the increased levels of proliferator-activated receptor gamma, coactivator 1 alpha and mitochondrial DNA. The effect of NA treatment was less evident than that of NAM 100. These results demonstrate that NAM is more effective than NA on the regulation of glucose metabolism and the NAD-sirtuin pathway, which may relate to the altered mitochondrial biogenesis.  相似文献   

15.
16.
Adiponectin is an adipose tissue-specific protein that is abundantly present in the circulation and suggested to be involved in insulin sensitivity and development of atherosclerosis. Because cytokines are suggested to regulate adiponectin, the aim of the present study was to investigate the interaction between adiponectin and three adipose tissue-derived cytokines (IL-6, IL-8, and TNF-alpha). The study was divided into three substudies as follows: 1) plasma adiponectin and mRNA levels in adipose tissue biopsies from obese subjects [mean body mass index (BMI): 39.7 kg/m2, n = 6] before and after weight loss; 2) plasma adiponectin in obese men (mean BMI: 38.7 kg/m2, n = 19) compared with lean men (mean BMI: 23.4 kg/m2, n = 10) before and after weight loss; and 3) in vitro direct effects of IL-6, IL-8, and TNF-alpha on adiponectin mRNA levels in adipose tissue cultures. The results were that 1) weight loss resulted in a 51% (P < 0.05) increase in plasma adiponectin and a 45% (P < 0.05) increase in adipose tissue mRNA levels; 2) plasma adiponectin was 53% (P < 0.01) higher in lean compared with obese men, and plasma adiponectin was inversely correlated with adiposity, insulin sensitivity, and IL-6; and 3) TNF-alpha (P < 0.01) and IL-6 plus its soluble receptor (P < 0.05) decreased adiponectin mRNA levels in vitro. The inverse relationship between plasma adiponectin and cytokines in vivo and the cytokine-induced reduction in adiponectin mRNA in vitro suggests that endogenous cytokines may inhibit adiponectin. This could be of importance for the association between cytokines (e.g., IL-6) and insulin resistance and atherosclerosis.  相似文献   

17.
18.
Resveratrol (Res) has attracted great interest regarding its effects related to metabolic syndrome, especially for lipid metabolic disorder or insulin resistance; however, the underlying mechanisms remain elusive. To explore the effects of Res on insulin sensitivity and the underlying mechanism, insulin-resistant KKA(y) mice were treated with 2?and 4?g/kg diets of Res for 12?weeks. After the treatment, blood glucose, serum insulin, glucose tolerance, and insulin tolerance, as well as other indices such as adiponectin mRNA in epididymal adipose tissues, silent information regulator 1 (Sirt1), AMP-activated protein kinase (AMPK), insulin receptor substrate 1 (IRS1), and phosphorylated protein kinase B (PKB/AKT) proteins in liver and soleus muscles, were investigated. The results indicate that Res intervention reduces blood glucose and serum insulin levels, improves insulin and glucose tolerance, increases serum adiponectin and adiponectin mRNA levels in epididymal adipose tissues, and more importantly, elevates Sirt1, p-AMPK, p-IRS1, and p-AKT levels in liver and soleus muscles. In conclusion, Res could improve insulin sensitivity and ameliorate insulin resistance in KKA(y) mice, which may be associated with the upregulation of Sirt1 protein in liver and soleus muscles and consequent AMPK activation, as well as insulin-signaling related proteins.  相似文献   

19.
The phosphatidylinositol 3-kinase signaling pathway in vascular endothelial cells is important for systemic angiogenesis and glucose metabolism. In this study, we addressed the precise role of the 3-phosphoinositide-dependent protein kinase 1 (PDK1)-regulated signaling network in endothelial cells in vivo, using vascular endothelial PDK1 knockout (VEPDK1KO) mice. Surprisingly, VEPDK1KO mice manifested enhanced glucose tolerance and whole-body insulin sensitivity due to suppression of their hepatic glucose production with no change in either peripheral glucose disposal or even impaired vascular endothelial function at 6 months of age. When mice were fed a standard diet at 6 months of age and a high-fat diet at 3 months of age, hypertrophy of epididymal adipose tissues was inhibited, adiponectin mRNA was significantly increased, and mRNA of MCP1, leptin, and TNFα was decreased in the white adipose tissue of VEPDK1KO mice in comparison with controls. Consequently, both the circulating adiponectin levels and the activity of hepatic AMP-activated protein kinase were significantly increased, subsequently enhancing whole-body insulin sensitivity and energy expenditure with increased hepatic fatty acid oxidation in VEPDK1KO mice. These results provide the first in vivo evidence that lowered angiogenesis through the deletion of PDK1 signaling not only interferes with the growth of adipose tissue but also induces increased energy expenditure due to amelioration of the adipocytokine profile. This demonstrates an unexpected role of PDK1 signaling in endothelial cells on the maintenance of proper glucose homeostasis through the regulation of adipocyte development.  相似文献   

20.
Adipose tissue-derived cytokines (adipokines) are associated with the development of inflammation and insulin resistance. However, which adipokine(s) mediate this linkage and the mechanisms involved during obesity is poorly understood. Through proteomics and microarray screening, we recently identified lipocalin 2 (LCN 2) as an adipokine that potentially connects obesity and its related adipose inflammation. Herein we show that the levels of LCN2 mRNA are dramatically increased in adipose tissue and liver of ob/ob mice and primary adipose cells isolated from Zucker obese rats, and thiazolidinedione administration reduces LCN2 expression. Interestingly, addition of LCN2 induces mRNA levels of peroxisome proliferator-activated receptor-gamma (PPARgamma) and adiponectin. Reducing LCN2 gene expression causes decreased expression of PPARgamma and adiponectin, slightly reducing insulin-stimulated Akt2 phosphorylation at Serine 473 in 3T3-L1 adipocytes. LCN2 administration to 3T3-L1 cells attenuated TNFalpha-effect on glucose uptake, expression of PPARgamma, insulin receptor substrate-1, and glucose transporter 4, and secretion of adiponectin and leptin. When added to macrophages, LCN2 suppressed lipopolysaccharide-induced cytokine production. Our data suggest that LCN2, as a novel autocrine and paracrine adipokine, acts as an antagonist to the effect of inflammatory molecules on inflammation and secretion of adipokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号