首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of rubomycin (daunorubicin) and its nitroxyl derivative, ruboxyl, on respiration and oxidative phosphorylation of the rat liver mitochondria was comparatively studied. It was shown that ruboxyl had a more pronounced uncoupling effect than rubomycin, especially during respiration in the presence of the glutamate mixture with malate. Unlike rubomycin, ruboxyl in concentrations of 0.05 to 0.5 mM induced stimulation under metabolic conditions rather than respiration. When the antibiotic concentration increased ruboxyl started to inhibit the respiration as compared to the control and the inhibition level appeared to be higher than that induced by rubomycin. Possible mechanisms for decreasing rubomycin toxicity by its modification with the nitroxyl radical are discussed.  相似文献   

2.
A comparative study on the effects of antitumour antibiotics of the anthracycline group (rubomycin, carminomycin and adriamycin) on respiration and oxidative phosphorylation in liver mitochondria in various metabolic states has been carried out for the first time. It was shown that the antibiotics under study cause partial inhibition of mitochondrial state 3 respiration, which is eliminated by an uncoupler. Treatment of liver mitochondria with the antibiotics decreases the ADP/O and respiratory control values and stimulates state 4 respiration. The latter is partly inhibited by oligomycin. The uncoupled respiration is decelerated in the presence of the antibiotics. Under these conditions the oxidation of succinate is inhibited by lower concentrations of the antibiotics than that of NAD+-dependent substrates. It was shown that the maximal activity is exerted by the most polar agent carminomycin, while the hydrophobic rubomycin is the least active. The experimental results are discussed in terms of the toxic effect of antitumour antibiotics.  相似文献   

3.
The cytosolic factors that influence mitochondrial oxidative phosphorylation rates are relatively unknown. In this report, we examine the effects of phosphoenolpyruvate (PEP), a glycolytic intermediate, on mitochondrial function. It is reported here that in rat heart mitochondria, PEP delays the onset of state 3 respiration in mitochondria supplied with either NADH-linked substrates or succinate. However, the maximal rate of state 3 respiration is only inhibited when oxidative phosphorylation is supported by NADH-linked substrates. The capacity of PEP to delay and/or inhibit state 3 respiration is dependent upon the presence or absence of ATP. Inhibition of state 3 is exacerbated in uncoupled mitochondria, with a 40% decrease in respiration seen with 0.1mM PEP. In contrast, ATP added exogenously or produced by oxidative phosphorylation completely prevents PEP-mediated inhibition. Mechanistically, the results support the conclusion that the main effects of PEP are to impede ADP uptake and inhibit NADH oxidation. By altering the NADH/NAD(+) status of mitochondria, it is demonstrated that PEP enhances succinate dehydrogenase activity and increase free radical production. The results of this study indicate PEP may be an important modulator of mitochondrial function under conditions of decreased ATP.  相似文献   

4.
Inhibition of DNA synthesis in the liver, kidneys, spleen and heart of mice after intravenous administration of 0.1 and 0.3 LD50 of semisynthetic derivatives of rubomycin (daunorubicin) and carminomycin was studied. The level of DNA synthesis inhibition was estimated by a decrease in incorporation of (methyl-3H) thymidine. Under the action of 13-trebutoxycarbonyl hydrazone and 14-salicyloiloxy derivatives of rubomycin and carminomycin maximum inhibition of DNA synthesis was reached later while its recovery started earlier as compared to the initial antibiotics.  相似文献   

5.
The inhibition of succinate oxidation in both heart and liver mitochondria by the cardiotoxic anticancer antibiotic adriamycin in vitro was reversed to a large extent by exogenous ubiquinone-45. Inhibition of the oxidation of NAD+-linked substrates in heart and liver mitochondria responded differently to ubiquinone, the inhibition being reversed only in liver organelles. Administration of adriamycin inhibited oxidative phosphorylation in rat heart, kidney and liver mitochondria, the inhibition being highest in the heart organelles (about 50% for both NAD+-linked substrates and succinate). Exogenous addition of ubiquinone to mitochondria isolated from drug-treated animals did not reverse the inhibition. Administration of ubiquinone along with adriamycin did not change effectively the pattern of drug-mediated decrease in oxidative activity of the organelles, particularly in the heart.  相似文献   

6.
Effect of methotrexate (MTX) on mitochondrial oxygen uptake, oxidative phosphorylation and on the activity of several enzymes linked to respiratory chain was studied. MTX was able to inhibit state III respiration activated by ADP and to decrease the respiratory coefficient with the substrates alpha-ketoglutarate and glutamate; these effects became pronounced when mitochondria were pre-incubated with MTX for 10 min. No effect was observed on ATPase activity of undamaged or broken mitochondria; the same was true for NADH-oxidase, NADH-dehydrogenase, NADH-cytochrome c reductase, succinate oxidase, and cytochrome c oxidase activity. The effect on the steady-state of cytochrome b, as well as, the inhibitory effect on state III of respiration with NAD+-linked substrates, offers a reasonable possibility to suggesting that the inhibition site of MTX could be in a place anterior to cytochrome b region, and not linked to respiratory chain.  相似文献   

7.
E J Harris  R Booth  M B Cooper 《FEBS letters》1982,146(2):267-272
When heart or liver mitochondria are exposed to superoxide radicals generated from xanthine + xanthine oxidase their ability to take up and to retain Ca2+ is impaired. The rate of oxidation of pyruvate + malate as substrates is diminished and the appearance of thiol groups when the mitochondria are supplied with these substrates is abolished. These inhibitory effects are offset if respiration is supported by succinate in presence of rotenone provided that a substrate (beta-hydroxybutyrate) is provided to maintain the reduction of NADH. The data agree with the thesis that a generation of thiol groups is essential to maintain membrane integrity and that the generation depends on provision of reduced NAD(P)H.  相似文献   

8.
Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+ phosphate). ATP + Mg2+ together, but not singly, prevents the inhibitory action of Ca2+. Neither AMP, GTP, GDP, nor any other nucleoside 5'-triphosphate or 5'-diphosphate could replace ATP in this effect. Phosphorylating respiration on NAD(NADP)-linked substrates was much more susceptible to the inhibitory effect of intramitochondrial Ca2+ than succinate-linked respiration. Significant inhibition of oxidative phosphorylation is given by the endogenous Ca2+ present in freshly isolated tumor mitochondria. The phosphorylating respiration of permeabilized Ehrlich ascites tumor cells is also inhibited by Ca2+ accumulated by the mitochondria in situ. Possible causes of the Ca2+-induced inhibition of oxidative phosphorylation are considered.  相似文献   

9.
The action of the anthracycline antibiotics rubomycin and its nitroxyl analogue ehoxyl(ruboxyl) at the concentration 100 mg/l was studied in the experiments, have been carried out with the isolated bundles of frog atrium using simultaneous registration of the ionic currents (or the active potentials) and the contraction. It has been shown, that rubomycin caused an action of potential shortening, membrane depolarization, increasing of the background outward current IKI, slowing of the muscle relaxation and the growth of the ionic contraction, associated with the Na/Ca exchange. Nitroxyl derivative of the rubomycin ruboxyl, exhibited small toxicity, did not change the ionic currents and the parameters of the mechanical activity. It is assumed, that cardiotoxicity of anthracyclines is in the great degree due to their ability to block the elimination of the Ca++ from the cell via the Na/Ca exchange, that results in the disturbance of the Ca-homeostasis of the cardiomyocyte and its calcium overload.  相似文献   

10.
The opening of the mitochondrial permeability transition pore (PTP) has been suggested to play a key role in various forms of cell death, but direct evidence in intact tissues is still lacking. We found that in the rat heart, 92% of NAD(+) glycohydrolase activity is associated with mitochondria. This activity was not modified by the addition of Triton X-100, although it was abolished by mild treatment with the protease Nagarse, a condition that did not affect the energy-linked properties of mitochondria. The addition of Ca(2+) to isolated rat heart mitochondria resulted in a profound decrease in their NAD(+) content, which followed mitochondrial swelling. Cyclosporin A(CsA), a PTP inhibitor, completely prevented NAD(+) depletion but had no effect on the glycohydrolase activity. Thus, in isolated mitochondria PTP opening makes NAD(+) available for its enzymatic hydrolysis. Perfused rat hearts subjected to global ischemia for 30 min displayed a 30% decrease in tissue NAD(+) content, which was not modified by extending the duration of ischemia. Reperfusion resulted in a more severe reduction of both total and mitochondrial contents of NAD(+), which could be measured in the coronary effluent together with lactate dehydrogenase. The addition of 0.2 microm CsA or of its analogue MeVal-4-Cs (which does not inhibit calcineurin) maintained higher NAD(+) contents, especially in mitochondria, and significantly protected the heart from reperfusion damage, as shown by the reduction in lactate dehydrogenase release. Thus, upon reperfusion after prolonged ischemia, PTP opening in the heart can be documented as a CsA-sensitive release of NAD(+), which is then partly degraded by glycohydrolase and partly released when sarcolemmal integrity is compromised. These results demonstrate that PTP opening is a causative event in reperfusion damage of the heart.  相似文献   

11.
The effect of different phenolic antioxidants on mitochondrial Ca2+ capacity (maximum amount of Ca2+ mitochondria can accumulate) was studied. Butylated hydroxytoluene substantially enhanced the Ca2+ capacity in mitochondria oxidizing succinate, butylated hydroxyanisole had a moderate effect while 2,5-di-(t-butyl)- 1,4 benzohydroquinone did not affect Ca2+ capacity at all. The analysis of Ca2+ accumulation in mitochondria oxidizing succinate in the presence of 2,5-di-(t-butyl)-1,4 benzohydroquinone revealed inhibition of the rate of Ca2+ accumulation. This effect was absent when ATP hydrolysis or NAD+-dependent substrate oxidation supported Ca2+ transport. Direct measurements of oxygen consumption revealed the concentration-dependent inhibition of succinate oxidation by increasing concentrations of 2,5-di-(t-butyl)- 1,4 benzohydroquinone. When succinate was substituted by NAD+-dependent respiratory substrates, the Ca2+ capacity of mitochondria with 2,5-di-(t-butyl)-1,4 benzohydroquinone was even higher than in the presence of butylated hydroxytoluene.  相似文献   

12.
1. DL-8-Methyldihydrolipoate was shown to be a potent inhibitor of mitochondrial oxidative phosphorylation and ATP-driven energy-linked reactions. 2. ADP-stimulated respiration utilizing pyruvate + malate and succinate in both ox heart and rat liver mitochondria is inhibited; oxidative phosphorylation using pyruvate + malate, succinate and ascorbate + NNN'N'-tetramethyl-p-phenylenediamine as substrates is also inhibited; uncoupler-stimulated respiration is unaffected regardless of the substrate used. 3. Mitochondrial oligomycin-sensitive adenosine triphosphatase is inhibited in both the membrane-bound form and the purified detergent-dispersed preparation. 4. ATP-driven transhydrogenase and the ATP-driven energy-linked reduction of NAD+ by succinate in ox heart submitochondrial particles are inhibited, whereas the respiratory-chain-driven transhydrogenase is unaffected. 5. DL-8-Methyl-lipoate has no immediate effect on the above reactions, demonstrating the requirement for the reduced form for inhibition. 6. The inhibitory properties of DL-8-methyldihydrolipoate are analogous to those of oligomycin and provide further evidence of a role for lipoic acid in oxidative phosphorylation.  相似文献   

13.
The stimulation of 2-oxoglutarate and NAD(+)-isocitrate dehydrogenase by Ca2+ in mitochondria from normal tissues has been proposed to mediate partially the activation of oxidative energy metabolism elicited by physiological elevations in cytosolic Ca2+. This mode of regulation may also occur in tumor cells in which several aspects of mitochondrial metabolism are known to be altered. This study provides a comparison of the stimulation by submicromolar concentrations of Ca2+ on the rates of ATP-generating (state 3) respiration under physiologically realistic conditions by mitochondria isolated from normal rat liver and from highly malignant rat AS-30D ascites hepatoma cells. The K0.5 for activation of glutamate-dependent state 3 respiration by Ca2+ in the presence of ATP at 37 degrees C was determined to be 0.70 +/- 0.05 (S.E.) microM for hepatoma mitochondria and 0.90 +/- 0.03 microM for rat liver mitochondria. This activation was also reflected by a Ca2(+)-induced shift in the oxidation-reduction state of hepatoma mitochondrial pyridine nucleotides to a more reduced level and Ca2+ stimulation of 14CO2 production from [1-14C]glutamate. Whereas the Ca2+ sensitivity of state 3 respiration by hepatoma mitochondria can be explained by the activation of 2-oxoglutarate and possibly NAD(+)-isocitrate dehydrogenases, the Ca2+ sensitivity of liver mitochondrial respiration appears to be predominantly mediated by activation of electron flow through ubiquinone and Complex III of the electron transport chain, as indicated by the specificity of the effects of Ca2+ on respiration with different oxidizable substrates. Although rat liver and hepatoma mitochondria employ different modes of Ca2(+)-activated ATP generation, these results support the hypothesis that changes in cytosolic Ca2+ play a significant role in the potentiation of energy production in tumor, as well as normal tissue.  相似文献   

14.
The effect of anthracycline antibiotics such as carminomycin, daunomycin (rubomycin) and adriamycin on respiration and synthesis of nucleic acids and protein was studied comparatively. The anthracyclines inhibited the processes. By their efficacy in that respect they could be arranged in the following order: carminomycin greater than rubomycin greater than adriamycin. Thus, 50 per cent inhibition of nucleic acid synthesis in the thymocytes required 0.027, 0.044 and 0,173 mM of carminomycin, rubomycin and adriamycin respectively. Protein synthesis and respiration in the thymocytes were less sensitive to the effect of the anthracyclines than synthesis of nucleic acids. The study results were compared with the literature data on the effect of the compounds on respiration and synthesis of nucleic acids and protein in tumour and bacterial cells.  相似文献   

15.
The P388rm and P388rx cell lines resistant to antracycline antibiotics were obtained as a result of chemotherapy of mice bearing P388 leukemia, by means of increasing dosages of rubomycin and ruboxyl, respectively. These cell lines possessed cross-resistance to vinblastine, vincristine, colchicine, actinomycin D and some other drugs. Multidrug resistance (MDR) of P388rm and P388rx is due to decreased uptake of different cytotoxic compounds by the cells. Development of resistance to rubomycin and ruboxyl was accompanied by the appearance of additional chromosomal structures--long homogeneously staining regions (HSRs), double minute chromosomes and others usually containing amplified DNA sequences. Southern blot-hybridization with cloned DNA fragments amplified in Djungarian and Chinese hamster cell lines having MDR has revealed in P388rm and P388rx cells approximately 50-fold amplification of mdr and pC52 genes. Thus, in mouse leukemia cells which acquired MDR in vivo, as a result of chemotherapy, amplification is observed of the same genes that undergo amplification during selection of cell cultures for MDR in vitro.  相似文献   

16.
A series of 2,6-disubstituted aminoalkoxypyrimidine carboxamides (AAPCs) with potent inhibition of bacterial NAD(+)-dependent DNA ligase was discovered through the use of structure-guided design. Two subsites in the NAD(+)-binding pocket were explored to modulate enzyme inhibitory potency: a hydrophobic selectivity region was explored through a series of 2-alkoxy substituents while the sugar (ribose) binding region of NAD(+) was explored via 6-alkoxy substituents.  相似文献   

17.
Liver mitochondria isolated from vanadate-administered rats showed increased (20-25%) rates of oxidation of both NAD(+)-linked substrates and succinate. Respiratory control index and ADP/O were unaffected by the treatment. Dormant and uncoupler-stimulated ATPase activity also was not affected by vanadate administration. Membrane-bound, electron-transport-linked dehydrogenase activities (both NAD(+)- and succinate-dependent) increased by 15-20% on vanadate treatment. Mitochondrial alpha-glycerophosphate dehydrogenase activity increased by 50% on vanadate administration. The above effects of vanadate on oxidoreductase activities could be prevented by the prior administration of antagonists to alpha-adrenergic receptors. Substrate-dependent H2O2 generation by mitochondria also showed an increase on vanadate administration.  相似文献   

18.
Rat liver mitochondria undergo extensive swelling when they are incubated in hypotonic sucrose medium containing 5 mm Pi. After 30 min of swelling at 25 °C, a three- to fourfold increase in volume has occurred, accompanied by gross disorganization of the matrix as observed by electron microscopy. Succinate-supported respiration was unchanged, but the respiration of NAD-linked substrates was reduced and there was a complete and irreversible loss of phosphorylation in both cases. β-Hydroxybutyrate-supported respiration was regained completely on addition of NAD to the swollen mitochondria. α-Ketoglutarate- and malate + pyruvate-supported respiration was only partially restored by the addition of NAD. This inhibition of respiration in swollen mitochondria may be due to a disorganization of a putative complex of Krebs cycle enzymes on the inner surface of the inner membrane.  相似文献   

19.
Regulation of mitochondrial functions in vivo by catecholamines was examined indirectly by depleting the catecholamines stores by reserpine treatments of the experimental animals. Reserpine treatment resulted in decreased respiratory activity in liver and brain mitochondria with the two NAD+-linked substrates: glutamate and pyruvate + malate with succinate ATP synthesis rate decreased in liver mitochondria only. With ascorbate + TMPD system, the ADP/O ratio and ADP phosphorylation rate decreased in brain mitochondria. For the heart mitochondria, state 3 respiration rates decreased for all substrates. In the liver mitochondria basal ATPase activity decreased by 51%, but in the presence of Mg2+ and/or DNP increased significantly. In the brain and heart mitochondria ATPase activities were unchanged. The energy of activation in high temperature range increased liver mitochondrial ATPase while in brain mitochondria reserpine treatment resulted in abolishment in phase transition. Total phospholipid (TPL) content of the brain mitochondria increased by 22%. For the heart mitochondria TPL content decreased by 19% and CHL content decreased by 34%. Tissue specific differential effects were observed for the mitochondrial phospholipid composition. Liver mitochondrial membranes were more fluidized in the reserpine-treated group. The epinephrine and norepinephrine contents in the adrenals decreased by 68 and 77% after reserpine treatment.  相似文献   

20.
Oxidation of pyruvate and palmitoylcarnitine in mitochondria is accompanied by the formation of acetyl-CoA, with its possible participation in the acetylation of various proteins and enzymes that may lead to the inhibition of their functions. This paper studies the effect of the excess of these substrates on respiration and induction of mitochondrial permeability transition pore (MPTP) in mitochondria and liver homogenates of healthy, obese, and type 2 diabetic (T2D) rats and mice. Both substrates produced a reversible inhibition of respiration and induced the opening of MPTP sensitive to cyclosporin A. Induction of MPTP in mitochondria was further activated by calcium ions and inhibited by the NO donor SNAP and NAD–a coenzyme and activator of deacetylation reactions. In obese and T2D animals, the opening of MPTP was stimulated by lower concentrations of L-palmitoylcarnitine than in healthy animals. In these pathologies, an activation effect on the MPTP induction was produced by ammonium ions, in the presence of which the concentration of L-palmitoylcarnitine required for the pore opening was reduced more than twofold. In liver homogenates, an added arginine reduced the probability of the MPTP formation. Analysis of mathematical models has shown that, due to the inhibition of pyruvate dehydrogenase kinase (PDK) by pyruvate, phosphorylation of pyruvate dehydrogenase (PDH) is strongly reduced, and this makes it possible to produce acetyl CoA in a wide range of pyruvate concentrations. The data obtained show that excess substrates that produce acetyl-CoA increase the probability of the MPTP opening, especially in pathologies associated with obesity and T2D. The ability of NO and NAD to inhibit MPTP indicates the participation of phosphorylation and acetylation/deacetylation reactions in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号