首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As survival regulation is a key process in multiple myeloma biology, we have studied the Bcl-2 family proteins that can be regulated by three myeloma cell survival factors: interleukin-6 (IL-6), interferon-alpha (IFN-alpha) and insulin-like growth factor (IGF-1). Eleven myeloma cell lines, whose survival and proliferation are dependent on addition of IL-6, variably expressed 10 anti-apoptotic or pro-apoptotic proteins of the Bcl-2-family. When myeloma cells from four cell lines were IL-6 starved and activated with IL-6 or IFN-alpha, we observed that only Mcl-1 expression was up-regulated with myeloma cell survival induction. Nor was obvious regulation of these 10 pro-apoptotic or anti-apoptotic proteins found with IGF-1, another potent myeloma cell survival factor. Our results indicate that the myeloma cell survival activity of IL-6 linked to Bcl-xL regulation cannot be generalized and emphasize that Mcl-1 is the main target of IL-6 and IFN-alpha stimulation. However, other changes in the activity of the Bcl-2 protein family or other apoptosis regulators must be identified to elucidate the IGF-1 action mechanism. Cell Death and Differentiation (2000) 7, 1244 - 1252.  相似文献   

2.
IFN-alpha induces autocrine production of IL-6 in myeloma cell lines.   总被引:7,自引:0,他引:7  
IL-6 is a major tumor growth factor in human multiple myeloma. Myeloma cell lines, which have the same phenotypic characteristics and Ig gene rearrangements as the original fresh myeloma cells and whose growth is strictly dependent on exogenous IL-6 similar to fresh myeloma cells, have been reproducibly established. We show here that IFN-alpha stimulated the growth of five of six of these human myeloma cell lines by inducing an autocrine production of IL-6 in myeloma cells. Indeed, IFN-alpha induced IL-6 mRNA accumulation and IL-6 production in myeloma cells and the IFN-alpha-induced growth of these cells was inhibited by anti-IL-6 mAb. Moreover, IFN-alpha made possible the rapid emergence of autonomously growing myeloma cell sublines, which produced IL-6 as an autocrine growth factor. As IFN-alpha has a potential therapeutical interest for multiple myeloma, the present study opens up new directions for studying its effects on the myeloma clone in vivo.  相似文献   

3.
V M Lauta 《Cytokine》2001,16(3):79-86
Study of the network of cytokines has helped identify cell growth factors in multiple myeloma. Plasma cells themselves may produce autocrine interleukin 6 (IL-6) while IL-6 production by bone marrow stromal cells may operate a paracrine mechanism. Involvement of IL-6 in multiple myeloma is indicated by its ability to induce the differentiation of myeloma plasmablasts into mature malignant plasma cells. Differential diagnosis between multiple myeloma and monoclonal gammopathies of undetermined significance (MGUS) is generally based on clinical and laboratory parameters. Nevertheless, evaluation of the serum level of IL-6, C reactive protein, soluble IL-6 receptor, soluble IL-2 receptor together with the activity exerted by IL-3 and IL-4 on some cellular subsets constitutes an additional element in the differential diagnosis of border-line cases. Serum levels of IL-6, soluble IL-6 receptor (sIL-6R), soluble interleukin-2 receptor (sIL-2R) and the expression of membrane-bound IL-2 receptors, both on bone marrow plasma cells and on peripheral blood mononuclear cells are correlated with disease activity and disease stage. In addition, IL-6 and sIL-6R serum levels correlate with the duration of survival, as high values at the time of diagnosis correlate with short duration of survival.  相似文献   

4.
Originating from a post-switch memory B cell or plasma cell compartment in peripheral lymphoid tissues, malignant myeloma cells accumulate in the bone marrow of patients with multiple myeloma. In this favorable microenvironment their growth and survival are dependent upon both soluble factors and physical cell-to-cell and cell-to-extracellular matrix contacts. In this report we show that hyaluronan (HA), a major nonprotein glycosaminoglycan component of the extracellular matrix in mammalian bone marrow, is a survival and proliferation factor for human myeloma cells. The effect of HA is mainly mediated through a gp 80-interleukin 6 (IL-6) receptor pathway by a CD44-independent mechanism, suggesting that HA retains and concentrates IL-6 close to its site of secretion, thus favoring its autocrine activity. In addition, we show that HA-mediated survival and proliferation of myeloma cells is associated with a down-regulation in the expression of p27(kip1) cyclin-dependent kinase inhibitor and a hyperphosphorylation of the retinoblastoma protein (pRb). These data suggest that HA could be an important component in the myeloma cell physiopathology in vivo by potentiating autocrine and/or paracrine IL-6 activities.  相似文献   

5.
王建军  洪丽萍  汤立军 《生命科学》2010,(11):1192-1195
白细胞介素-6是多发性骨髓瘤(multiple myeloma,MM)瘤细胞生长和生存的关键因子,也是MM患者发病的主要因子。IL-6/IL-6R系统通过不同通路影响多发性骨髓瘤瘤细胞生长并导致患者骨损害、类风湿性关节炎等一系列并发症。针对IL-6/IL-6R系统的治疗方法将给MM的治疗带来重大的进展。  相似文献   

6.
Role of INTERLEUKIN-6 in the pathogenesis of multiple myeloma   总被引:10,自引:0,他引:10  
Multiple myeloma (MM) is a currently incurable disease caused by the proliferation of malignant plasma cells. Although the pathogenesis of the disease still remains unclear, recent research in the biology of MM has produced new insights into the factors that control the growth and survival of myeloma cells. Among the growth factors, interleukin-6 (IL-6) has an essential role. Evidence suggests that IL-6 is not only a growth factor, but also a survival factor in MM, inhibiting apoptosis in myeloma cells. IL-6 interacts with several factors which are involved in the pathogenesis of MM, such as adhesion molecules, tumour suppressor genes and oncogenes. Considering the essential role of IL-6, it could serve as a target for new therapeutic interventions. Neutralizing the effect of IL-6 may result in a regression of tumour progression.  相似文献   

7.
Myeloma cells absolutely require interleukin-6 (IL-6) for growing in vivo in patients with multiple myeloma and exogenous IL-6-dependent myeloma cell lines have been reproducibly obtained. In this study we show a dramatic up-regulation of the IL-6 receptor (gp80 chain) gene expression in myeloma cell lines following the removal of exogenous IL-6. Such a regulation was also known to occur in IL-6-deprived myeloma cells in vivo in three patients who were treated with optimal doses of anti-IL-6 monoclonal antibodies. The direct effect of IL-6 on IL-6 receptor gene expression in myeloma cells was further confirmed by adding IL-6 to an autonomously growing myeloma cell line.  相似文献   

8.
Interleukin-6 (IL-6) is a major survival factor for malignant plasma cells. In patients with multiple myeloma (MM), cell lines whose survival and proliferation are dependent upon addition of exogenous IL-6 have been obtained. We show here that tumor necrosis factor-alpha (TNF-alpha) is also a survival factor for myeloma cell lines, although less potent than IL-6. The survival activity of TNF-alpha is not affected by anti-IL-6 or anti-gp130 monoclonal antibodies (mAbs). TNF-alpha also induces myeloma cells in the cell cycle and promotes the long-term growth of malignant plasma cell lines. As TNF-alpha is produced in patients with MM and associated with a poor prognosis, these results suggest that anti-TNF-alpha therapies could be useful in this disease.  相似文献   

9.
Previously we described a cell line OCI-LY3 derived from a patient with non-Hodgkin's lymphoma. The cell line produced interleukin-6 (IL-6) mRNA and protein and demonstrated an autocrine pattern of growth for IL-6. Southern blot analysis of the IL-6 gene did not reveal any rearrangement. To determine whether the production of IL-6 by OCI-LY3 was due to subtle changes in the promoter of IL-6 or due to the expression of trans-acting factors chloramphenicol acetyltransferase (CAT) reporter constructs containing from -1,180 to +13 to -112 to +13 of a normal IL-6 gene were electroporated into the cell line. When these constructs are transferred into unstimulated fibroblasts, no CAT activity is seen; however, CAT activity is induced when the cells are stimulated with either IL-1 alpha, lipopolysaccharide (LPS), or cyclic adenosine monophosphate (cAMP) analogues. When the cell line OCI-LY3 was transfected with these constructs, CAT activity was observed; it was not necessary to stimulate the cells with exogenous factors to observe this activity. No CAT activity was observed in a second lymphoma cell line, OCI-LY13.1, that does not produce IL-6. These results suggest that the constitutive production of IL-6 by the cell line OCI-LY3 is due to the presence of trans-acting factors that stimulate the expression of IL-6 and not due to a cis-acting mutation of the IL-6 promoter.  相似文献   

10.
IL-6 is a growth and survival factor for myeloma cells, although the mechanism by which it induces myeloma cell proliferation through gene expression is largely unknown. Microarray analysis showed that some B-cell lymphoma-associated oncogenes such as Bcl6, which is absent in normal plasma cells, were upregulated by IL-6 in IL-6-dependent myeloma cell lines. We found that Bcl6 variant 2 was upregulated by STAT3. ChIP assay and EMSA showed that STAT3 bound to the upstream region of variant 2 DNA. Expression of p53, a direct target gene of Bcl6, was downregulated in the IL-6-stimulated cells, and this process was impaired by an HDAC inhibitor. Bcl6 was knocked down by introducing small hairpin RNA, resulting in decreased proliferation and increased sensitivity to a DNA damaging agent. Thus, STAT3-inducible Bcl6 variant 2 appears to generate an important IL-6 signal that supports proliferation and survival of IL-6-dependent myeloma cells.  相似文献   

11.
IL-6 is a multifunctional cytokine involved in differentiation and proliferation of immune cells. Moreover, it has diverse effects on the proliferation of tumor cells in vivo and in vitro. Although stimulating cell growth of multiple myeloma cells, it inhibits the proliferation of B16 melanoma cells and lung cancer cells. B9.55 cells, B-cell lymphoma, are IL-6-dependent cells, definitely requiring exogenous IL-6 for growth. When the cDNA for IL-6 was transfected into B9.55 cells, they began growing in an autocrine pattern without exogenous IL-6. To investigate the effects of IL-6 on B9.55 lymphoma in vivo, IL-6-transfected B9.55 cells (B9.G7) or neotransfected B9.55 cells (B9.vec) were injected subcutaneously into syngeneic mice. Initially, B9.G7 outgrew B9.vec, but after 3 weeks, B9.G7 grew slower than B9.vec. In addition, 5 µg of recombinant human IL-6 was injected daily into the tumor site. Reduced tumor sizes of IL-6-treated rats, similar to those observed in mice which received B9.G7, indicated that IL-6 itself is the mediator of tumor regression. When B9.G7 cells were injected into the irradiated normal mice, tumor regression was released compared with the untreated normal control, suggesting that radiosensitive host components were involved in the regression of B9.G7 cell growth. However, the tumor regression of B9.G7 cells was not released in SCID mice. Histologically, B9.G7 tumor demonstrated severe necrosis and apoptotic cells with infiltration of host inflammatory cells. Above data indicate that IL-6 functions as an autocrine growth factor for B9.G7 cells in vitro, but behaves as an autocrine inhibiting factor in vivo. These contrasting effects of IL-6 on tumor cells in vitro and in vivo will be facilitative in understanding the interaction of cytokines and host immune systems.They have contributed equally to this work.  相似文献   

12.
In multiple myeloma, which commonly depends on interleukin 6, IL-6, survival signaling induced by this cytokine is largely mediated by activation of STAT3. Interferon alpha (IFNalpha) treatment of cell lines derived from multiple myeloma or of myeloma tumor cells ex vivo leads to apoptosis. In this study we demonstrate that IFNalpha treatment of the two myeloma cell lines, U266-1984 and U-1958, results in the decrease of STAT3 activity as demonstrated by a diminished STAT3/3 DNA-binding activity and the shift from STAT3/3 towards STAT1/1 and STAT3/1 complexes in EMSA, leading to the down-regulation of known STAT3 target genes such as Bcl-X(L), Mcl-1 and survivin. Ectopic expression of a form of STAT3, STAT3C, rescued U266-1984 cells from IFNalpha-induced apoptosis. IFNalpha promoted sustained accumulation of tyrosine phosphorylated STAT3C in the nucleus and a prolonged DNA binding of the STAT3/3 homodimers in EMSA. The shift towards a sustained STAT3 response in IFNalpha-treated STAT3C-transfected cells led to a hyper-induction of Bcl-2 and Mcl-1 proteins. Thus our data demonstrated that IFNalpha is able to interfere with IL-6 signaling by inhibiting STAT3 activity and that the abrogation of STAT3 activity accounts for the ability of IFNalpha to induce apoptosis in myeloma cells.  相似文献   

13.
14.
15.
16.
Barton BE  Murphy TF 《Cytokine》2000,12(10):1537-1545
Myeloma is a neoplasm thought to "home" to bone marrow. However, evidence for bone-marrow-specific receptors or adhesion molecules expressed on myeloma cells is scanty. Initial myeloma expansion is thought to be due to IL-6 and/or related cytokines. Previous determinations of cytokine expression in bone marrow were performed on bone marrow stromal lines; these findings may not reflect the constitutive pattern of expression in situ. Intracytoplasmic staining for IL-6-like cytokines revealed constitutive expression of some factors in the bone marrow of normal mice, but not spleens. Spleens of myeloma-transplanted SCID mice expressed IL-6-like cytokines, indicative of induction of expression by myeloma. Some cytokines expressed in bone marrow induced myeloma proliferation in the presence of dexamethasone, demonstrating dependence of the myeloma on these cytokines. Our data imply that, rather than "homing" to bone marrow, myeloma cells proliferated within marrow cavities more than in other organs because of growth factors constitutively expressed by bone marrow cells. As myeloma progressed, we observed the induction of growth factor expression in spleen cells. Furthermore, because cytokines other than IL-6 may induce myeloma cell proliferation, therapy aimed at neutralizing IL-6 may not be the most effective method to treat this disease. These findings have implications for both the pathophysiology and therapy of multiple myeloma.  相似文献   

17.
When bone-marrow cells from patients with multiple myeloma (MM) were seeded in short-term cultures, a spontaneous proliferation of the myeloma cells occurred for most of the patients with active disease and proliferating myeloma cells in vivo. In all cases, this spontaneous proliferation was inhibited by anti-IL-6 monoclonal antibodies (mabs). Moreover, myeloma cell lines, completely dependent upon exogenous IL-6 for their growth, could be reproducibly established by initially stimulating the myeloma cells with both IL-6 and GM-CSF. These results demonstrate that IL-6 is a major paracrine myeloma-cell growth factor in vitro. High serum IL-6 levels were observed in MM patients with active disease, especially patients with terminal disease. High IL-6 mRNA levels were found in bone-marrow cells of MM patients, mainly in myeloid and monocytic cells, in vivo. The myeloma cells did not express IL-6 mRNA. Injection of anti-IL-6 mabs to MM patients with terminal disease and extramedullary proliferation, completely blocked the myeloma-cell proliferation in vivo and completely inhibited the serum IL-6 bioactivity and the serum CRP levels. One patient with plasma cell leukemia and hypercalcemia was treated for two months with anti-IL-6 mabs and maintain in remission for 2 months without major side effects. Interestingly, the serum calcium levels also decreased in these patients. All these results show that IL-6 is the main cytokine responsible not only for the myeloma-cell proliferation in vivo, but presumably also for the large bone resorption processes observed in human MM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A chemically defined, protein-free, and animal-component-free medium, designated RITM01, has been developed for NS0 myeloma cells. The basal medium used was a commercial serum-free and protein-free hybridoma medium, which was supplemented with phosphatidylcholine, cholesterol, beta-cyclodextrin, and ferric citrate. Increasing the amino acid concentration significantly improved cell growth. An NS0 cell line, constitutively producing a human IgG1 antibody, reached a peak cell density of 3 x 10(6) cells mL(-1) in this medium. The antibody yield was 195 mg L(-1) in batch culture, which is a 3-fold increase compared to that of a standard serum-supplemented medium, even though the cell yield was the same. The increase in antibody yield was a consequence of a longer growth phase and a slight increase in specific antibody production rate at low specific proliferation rates. Adaptation of the NS0 myeloma cell line to the protein-free conditions required about 3 weeks before viability and cell densities were stabilized. Most probably, changes in gene expression and phenotypic behavior necessary for cell survival and proliferation occurred. We hypothesize that mitogenic factors produced by the cells themselves are involved in autocrine control of proliferation. To investigate the presence of such factors, the effect of conditioned (spent) medium (CM) on cell growth and proliferation was studied. Ten-fold concentrated CM, harvested at a cell density of 2 x 10(6) cells mL(-1), had a clear positive effect on proliferation even if supplied at only 2.5% (v/v). CM was found to contain significant amounts of extracellular proteins other than the antibody. Fractionation of CM on a gel filtration column and subsequent supplementation of new NS0 cultures with the individual fractions showed that factors eluting at 20-25 kDa decreased the lag phase and increased the peak cell density as compared to control cultures. Identification of autocrine factors involved in regulation of proliferation may lead to completely new strategies for control of growth and product formation in animal cell processes.  相似文献   

19.
20.
Multiple myeloma (MM) is an incurable plasma B cell malignancy. Despite recent advancements in anti-MM therapies, development of drug resistance remains a major clinical hurdle. DJ-1, a Parkinson’s disease-associated protein, is upregulated in many cancers and its knockdown suppresses tumor growth and overcomes chemoresistance. However, the role of DJ-1 in MM remains unknown. Using gene expression databases we found increased DJ-1 expression in MM patient cells, which correlated with shorter overall survival and poor prognosis in MM patients. Targeted DJ-1 knockdown using siRNAs induced necroptosis in myeloma cells. We found that Krüppel-like factor 6 (KLF6) is expressed at lower levels in myeloma cells compared to PBMCs, and DJ-1 knockdown increased KLF6 expression in myeloma cells. Targeted knockdown of KLF6 expression in DJ-1 knockdown myeloma cells rescued these cells from undergoing cell death. Higher DJ-1 levels were observed in bortezomib-resistant myeloma cells compared to parent cells, and siRNA-mediated DJ-1 knockdown reversed bortezomib resistance. DJ-1 knockdown increased KLF6 expression in bortezomib-resistant myeloma cells, and subsequent siRNA-mediated KLF6 knockdown rescued bortezomib-resistant myeloma cells from undergoing cell death. We also demonstrated that specific siRNA-mediated DJ-1 knockdown reduced myeloma cell growth under a hypoxic microenvironment. DJ-1 knockdown reduced the expression of HIF-1α and its target genes in hypoxic-myeloma cells, and overcame hypoxia-induced bortezomib resistance. Our findings demonstrate that elevated DJ-1 levels correlate with myeloma cell survival and acquisition of bortezomib resistance. Thus, we propose that inhibiting DJ-1 may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号