首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several DNA oligonucleotides have been photochemically modified with the furocoumarin 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) such that each contained a single HMT furan side monoadduct to thymidine at a unique 5' TpA 3' sequence. When these oligonucleotides were hybridized to their respective complements, the HMT adduct could be driven to form an interstrand crosslink by irradiation of the hybrid with 360 nm light. The ability to crosslink probe-target complexes has allowed us to determine the kinetics and the extent of hybridization in solution between these oligonucleotides and their complementary sequences in single-stranded bacteriophage M13 DNA. Our data indicate that these parameters are strongly influenced by the existence of local as well as global secondary structure in the viral DNA. During hybridization, rearrangement of this secondary structure so as to expose the target sequence can be rate-limiting. Upon attainment of equilibrium, only a portion of the target sequence may be hybridized to the probe with the remainder involved in intrastrand base-pairing. Using crosslinkable oligonucleotide probes hybridized and irradiated near the melting temperature of the respective probe-target complex one can partially overcome these secondary structure effects.  相似文献   

2.
Y Shi  J E Hearst 《Biochemistry》1986,25(20):5895-5902
We have carried out a thermodynamic study on the effects of covalent additions of the psoralen derivative HMT, 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen, on the stability of double-stranded deoxyoligonucleotides. This was done with two systems. The first was a double-stranded DNA formed by two non-self-complementary oligonucleotides, 5'-GAAGCTACGAGC-3' and 5'-GCTCGTAGCTTC-3', where we site specifically placed an HMT molecule on the thymidine residue in oligonucleotide 5'-GAAGCTACGAGC-3' as either a furan-side monoadduct or a pyrone-side monoadduct. The second was a double-stranded DNA formed by a self-complementary oligonucleotide, 5'-GGGTACCC-3', where we placed an HMT molecule on the thymidine residue of each strand as a furan-side monoadduct or cross-linked the two strands with an HMT molecule linked to the two thymidines. We found that HMT cross-linking of the two strands stabilizes the double helix formed by 5'-GGGTACCC-3', as one might expect. Less predictable results were that the monoaddition of a psoralen stabilizes the double helix formed by the two non-self-complementary oligonucleotides by as much as 1.3 kcal/mol as a furan-side monoadduct and 0.7 kcal/mol as a pyrone-side monoadduct at 25 degrees C in 50 mM NaCl. In contrast, the monoaddition of a psoralen on each of the two thymidines in the double helix formed by 5'-GGGTACCC-3' destabilizes the helix by 1.8 kcal/mol at 25 degrees C in 1 M NaCl. This destabilization arises from an unfavorable enthalpy change (8.6 kcal/mol) and a favorable entropy change (23 cal/K X mol) due to the two HMT molecules at the centers of each strand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Y B Shi  J E Hearst 《Biochemistry》1987,26(13):3786-3792
We have studied the wavelength dependence for the photoreversal of a monoadducted psoralen derivative, HMT [4'-(hydroxymethyl)-4,5',8-trimethylpsoralen], in a single-stranded deoxyoligonucleotide (5'-GAAGCTACGAGC-3'). The psoralen was covalently attached to the thymidine residue in the oligonucleotide as either a furan-side monoadduct, which is formed through the cycloaddition between the 4',5' double bond of the psoralen and the 5,6 double bond of the thymidine, or a pyrone-side monoadduct, which is formed through the cycloaddition between the 3,4 double bond of the psoralen and the 5,6 double bond of the thymidine. As a comparison, we have also investigated the wavelength-dependent photoreversal of the isolated thymidine-HMT monoadducts. All photoreversal action spectra correlate with the extinction spectra of the isolated monoadducts. In the case of the pyrone-side monoadduct, two absorption bands contribute to the photoreversal with a quantum yield of 2 X 10(-2) at wavelengths below 250 nm and 7 X 10(-3) at wavelengths from 287 to 314 nm. The incorporation of the monoadduct into the DNA oligomer had little effect upon the photoreversal rate. For the furan-side monoadduct at least three absorption bands contribute to the photoreversal. The quantum yield varied from 5 X 10(-2) at wavelengths below 250 nm to 7 X 10(-4) at wavelengths between 295 and 365 nm. In contrast to the case of the pyrone-side monoadduct, the incorporation of the furan-side monoadduct into the DNA oligomer reduced the photoreversal rate constant at wavelengths above 285 nm.  相似文献   

4.
Y B Shi  J E Hearst 《Biochemistry》1987,26(13):3792-3798
The photoreactions of HMT [4'-(hydroxymethyl)-4,5',8-trimethylpsoralen] monoadducts in double-stranded DNA have been studied with complementary oligonucleotides. The HMT was first attached to the thymidine residue in the oligonucleotide 5'-GAAGCTACGAGC-3' as either a furan-side monoadduct or a pyrone-side monoadduct. The HMT-monoadducted oligonucleotide was then hybridized to the complementary oligonucleotide 5'-GCTCGTAGCTTC-3' and irradiated with monochromatic light. In the case of the pyrone-side monoadducted oligonucleotide, photoreversal was the predominant reaction, and very little cross-link was formed at all wavelengths. The course of the photoreaction of the double-stranded furan-side monoadducted oligonucleotide was dependent on the irradiation wavelength. At wavelengths below 313 nm, both photoreversal and photo-cross-linking occurred. At wavelengths above 313 nm, photoreversal of the monoadduct could not be detected, and photo-cross-linking occurred efficiently with a quantum yield of 2.4 X 10(-2).  相似文献   

5.
6.
Closed circular double stranded M13mp19 DNA containing a site-specifically placed HMT (4'-hydroxymethyl-4-5'-8-trimethylpsoralen) monoadduct or crosslink was synthesized in vitro. The damaged DNA were scored for loss of infectivity by transfection into repair proficient or deficient E. coli and into SOS induced E. coli. Mutant phages were detected by the loss of alpha-complementation between the viral and the host Lac Z genes or by the acquisition of resistance to kpn I digestion. Our results indicate that HMT mutagenesis is targeted and that deletion or transversion of the modified thymidine is the predominant sequence change elicited by a monoadduct or a crosslink. Transfection of the monoadducted DNA into a Uvr A deficient strain did not change the mutation pattern but did increase the respective mutation frequencies. Transfection of the crosslinked DNA into a SOS induced host resulted in the appearence of other types of mutations attributable to an increase in both targeted and untargeted mutations.  相似文献   

7.
Double-stranded bacteriophage M13 DNA molecules were constructed containing a single specifically placed 2-(acetylamino)fluorene adduct or a single 4'-hydroxymethyl-4,5',8-trimethylpsoralen monoadduct. These circular DNA molecules were used to analyze in vitro DNA repair synthesis by cell extracts from normal human lymphoid cell lines. Both types of lesions stimulate DNA repair synthesis at the site of the adduct. DNA repair synthesis induced by the 2-(acetyl-amino)fluorene adduct took place in the damaged strand and was confined to a region within a 31-base pair restriction fragment around the adduct.  相似文献   

8.
Murine monoclonal antibodies (MAbs) specific for DNA-RNA hybrids were successfully produced with two different heteropolymers as antigens, cDNA-mRNA and phi X174 DNA-RNA heteroduplexes. The former was simpler to prepare. Both had shown similar immunogenicities. Two different immunoglobulin M MAbs were isolated. The 20D3 MAb, generated with the phi X174 DNA-RNA hybrid, showed association constants of 1.05 x 10(12), 2.12 x 10(10), and 1.68 x 10(7) for the antigens phi X174 DNA-RNA, cDNA-mRNA, and poly(rA)-poly(dT), respectively. The 6B5 MAb, obtained with the cDNA-mRNA hybrid, showed association constants of 1.59 x 10(5), 5 x 10(12), and 7.1 x 10(8) for the above-described antigens, respectively. With the 20D3 MAb, an immunoassay was developed for the detection of Listeria DNA-RNA hybrids. In brief, a biotinylated rRNA gene probe specific for the genus Listeria was hybridized with rRNA in the solution phase. The hybrids thus formed were then captured in microtiter plate wells precoated with the purified 20D3 MAb, and the probe-target hybrids were detected with a streptavidin-alkaline phosphatase conjugate. This assay was shown to be specific for the genus Listeria and highly sensitive, allowing the detection of as little as 2.5 pg of target rRNA.  相似文献   

9.
10.
Photoreactivities and thermal properties of psoralen cross-links   总被引:4,自引:0,他引:4  
A T Yeung  B K Jones  C T Chu 《Biochemistry》1988,27(9):3204-3210
We have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. We have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. We found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-link isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link.  相似文献   

11.
Organic synthesis and recombinant DNA techniques have been used to situate a single 1,N6-ethenoadenine (epsilon Ade) DNA adduct at an amber codon in the genome of an M13mp19 phage derivative. The deoxyhexanucleotide d[GCT(epsilon A)GC] was chemically synthesized by the phosphotriester method. Mild nonaqueous conditions were employed for deprotection because of the unstable nature of the epsilon Ade adduct in aqueous basic milieu. Physical studies involving fluorescence, circular dichroism, and 1H NMR indicated epsilon Ade to be very efficiently stacked in the hexamer, especially with the 5'-thymine. Melting profile and circular dichroism studies provided evidence of the loss of base-pairing capabilities attendant with formation of the etheno ring. The modified hexanucleotide was incorporated into a six-base gap formed in the genome of an M13mp19 insertion mutant; the latter was constructed by blunt-end ligation of d(GCTAGC) in the center of the unique SmaI site of M13mp19. Phage of the insertion mutant, M13mp19-NheI, produced light blue plaques on SupE strains because of the introduced amber codon. Formation of a hybrid between the single-strand DNA (plus strand) of M13mp19-NheI with SmaI-linearized M13mp19 replicative form produced a heteroduplex with a six-base gap in the minus strand. The modified hexamer [5'-32P]d-[GCT(epsilon A)GC], after 5'-phosphorylation, was ligated into this gap by using bacteriophage T4 DNA ligase to generate a singly adducted genome with epsilon Ade at minus strand position 6274. Introduction of the radiolabel provided a useful marker for characterization of the singly adducted genome, and indeed the label appeared in the anticipated fragments when digested by several restriction endonucleases. Evidence that ligation occurred on both 5' and 3' sides of the oligonucleotide also was obtained. The adduct was introduced into a unique NheI site, and it was observed that this restriction endonuclease was able to cleave the adducted genome, albeit at a lower rate compared to unmodified DNA. The M13mp19-NheI genome containing epsilon Ade will be used as a probe for studying mutagenesis and repair of this DNA adduct in Escherichia coli.  相似文献   

12.
The repair patch of E. coli (A)BC excinuclease.   总被引:3,自引:1,他引:2       下载免费PDF全文
The size of repair patch made by E. coli DNA polymerase I (Poll) following the removal of a thymine-psoralen monoadduct by E. coli (A)BC excinuclease was determined by using an M13mp19 DNA with a single psoralen monoadduct at the polylinker region. Incubation of this substrate with (A)BC excinuclease, Poll and a combination of 3 dnTP plus 1 dNTP(alpha S) for each nucleotide, and DNA ligase resulted in a repair patch with phosphorothioate linkages. The preferential hydrolysis of phosphorothioate bonds by heating in iodoethanol revealed a patch size--with minimal nick translation--equal in length to the 12 nucleotide gap generated by this excision nuclease.  相似文献   

13.
We have studied the photochemical reactions of 8-methoxypsoralen (8-MOP) with calf thymus DNA. Analysis of the photoproducts formed was carried out by enzymatic digestion of the 8-MOP-modified DNA, followed by HPLC separation of photoadducts by high-pressure liquid chromatography (HPLC). The 4',5' (furan-side) monoadduct of 8-MOP bound to thymidine is converted to cross-linked thymidine-8-MOP-thymidine diadduct by 341.5 nm light with a quantum yield of 0.028 +/- 0.004. This is 4 times greater than the quantum yield for initial adduct formation (0.0065 +/- 0.0004). When low levels of 8-MOP are covalently bound to DNA by using 397.9 nm light, less than 10% of the adducts formed are diadducts yet nearly 70% are in 5'-TpA cross-linkable sites. The furan-side monoadducts in these sites can subsequently be converted to diadduct or to a lesser extent 3,4 (pyrone-side) monoadduct.  相似文献   

14.
T Kodadek  H Gamper 《Biochemistry》1988,27(9):3210-3215
We report a simple method for the in vitro synthesis of large quantities of site specifically modified DNA. The protocol involves extension of an oligonucleotide primer annealed to M13 single-stranded DNA using part of the T4 DNA polymerase holoenzyme. The resulting nicked double-stranded circles are ligated and supercoiled in the same tube, producing good yields of form I DNA. When the oligonucleotide primer is chemically modified, the resultant product contains a site-specific lesion. In this study, we report the synthesis of an M13 mp19 form I DNA which contains a psoralen monoadduct or cross-link at the KpnI site. We demonstrate the utility of these modified substrates by assessing the ability of the bacteriophage T4 DNA replication complex to bypass the damage and show that the psoralen monoadduct poses a severe block to the holoenzyme when attached to the template strand.  相似文献   

15.
Phased psoralen cross-links do not bend the DNA double helix   总被引:1,自引:0,他引:1  
T E Haran  D M Crothers 《Biochemistry》1988,27(18):6967-6971
Although the chemical reaction of psoralens with nucleic acids is well understood, the structure of psoralen-DNA cross-linked products is still not clear. Model building studies base on the crystal structure of the psoralen-thymine monoadduct suggest that each cross-link bends the DNA double helix by 46.5 degrees [Pearlman, D. A., Holbrook, S. R., Pirkle, D. H., & Kim, S.-H. (1985) Science (Washington, D.C.) 227, 1304-1308]. On the other hand, Sinden and Hagerman [Sinden, R. R., & Hagerman, P. J. (1984) Biochemistry 23, 6299-6303] find that, in solution, psoralen cross-linked DNA is not bent. Here we use gel electrophoresis to test the validity of the current models. We have synthesized a series of DNA fragments (21-24 base pairs in length), each containing one unique T-A site for 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) cross-linking. Because of an estimated 28 degrees unwinding of the helix by HMT [Wiesehahn, G., & Hearst, J. E. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2703-2707], one expects that the 22-bp cross-linked fragment will be repeated nearly in phase with the average helical screw when multimerized. In that sequence ligation will maximally amplify any deformation to the double helix. We find that the ligated multimers of cross-linked DNA migrate close to the multimers of non-cross-linked DNA on polyacrylamide gels. Our observations place an upper limit of 10 degrees on DNA bending induced by psoralen cross-linking and indicate unwinding by about 1 bp, as well as stiffening of the double helix. These properties are not unexpected for classical intercalators.  相似文献   

16.
A real-time PCR method using a fluorogenic 5' nuclease assay and a PE Applied Biosystems GeneAmp 5700 sequence detector was developed to detect infectious hypodermal and hematopoietic necrosis virus (IHHNV) in penaeid shrimp. A pair of PCR primers to amplify an 81 bp DNA fragment and a fluorogenic probe (TaqMan probe) were selected from ORF1 (open reading frame 1) of the IHHNV genome. The primers and TaqMan probe used in this assay were shown to be specific for IHHNV and did not react with either hepatopancreatic parvovirus (HPV), white-spot syndrome virus (WSSV), or shrimp DNA. A plasmid, pIHHNV-P4, containing the target IHHNV sequence was constructed and used as a positive control. The concentration of pIHHNV-P4 was determined through spectrophotometric analysis and the plasmid was used for quantitative studies. This real-time PCR assay had a detection limit of 10 copies and a log-linear range up to 5 x 10(7) copies of IHHNV DNA. The assay was then used to quantify IHHNV in infected shrimp collected from 5 locations: Hawaii, Panama, Mexico, Guam, and the Philippines. The quantitative analysis showed that wild-caught, large juvenile Penaeus stylirostris collected from the Gulf of California (Mexico) in 1996 were naturally infected with IHHNV and contained up to 10(9) copies of IHHNV microg(-1) of DNA. Similar quantities of IHHNV were detected in hatchery-raised, small juvenile P. stylirostris collected from Guam in 1995 and in farm-raised, post-larval P. monodon from the Philippines in 1996. Laboratory-infected P. stylirostris contained approximately 10(8) copies of IHHNV 31 d after being fed with IHHNV-infected shrimp tissue. In contrast, individuals of Super Shrimp, a line of P. stylirostris selected for IHHNV resistance, showed no signs of infection 32 d after ingesting IHHNV-infected shrimp tissue. Laboratory-infected P. vannamei also contained approximately 10(8) copies of IHHNV 30 d after being fed infected shrimp tissue. A time-course study of IHHNV replication in juvenile P. vannamei showed that the doubling time in the exponential growth phase was approximately 22 h.  相似文献   

17.
One major very highly repeated (VHR) DNA (approximately 7 X 10(6) copies/genome; repeat unit = 156 base pairs (bp)), a family of three minor VHR DNAs (approximately 2.8 X 10(6) copies/genome; repeat units = 71-74 bp), and a number of trace components account for almost 30% of the genome of a hermit crab. The repeat units of the three minor variants are defined by identical 14-bp G + C-rich inverted repeats that might form cruciforms. Two copies of the repeat unit (CCTA) of one of two patent satellites of this crab (Skinner, D. M., and Beattie, W. G. (1974) Biochemistry 13, 3922-3929; Skinner, D. M., Beattie, W. G., Blattner, F. R., Stark, B. P., and Dahlberg, J. E. (1974) Biochemistry 13, 3930-3937) occur at the center of one in seven of the G + C-rich inverted repeats; copies of the other patent satellite (Chambers, C. A., Schell, M. P., and Skinner, D. M. (1978) Cell 13, 97-110) are found in main component DNA. The sequences of both the major and minor VHR DNAs are characterized by short tracts of An and/or Tn (n = 4-7) residues whose presence would permit the formation of perfectly matched stems separated by loops of 8-16 bp. The An and/or Tn tracts are interspersed with segments of G + C-rich DNA and are arranged differently in the major and minor VHR DNAs. Although the repeat units of the major and the three minor VHR DNAs are arranged in tandem, the composition and sequence of their bases are such that they do not form distinct bands in CsCl gradients; they are cryptic satellites.  相似文献   

18.
A panel of monoclonal antibodies have been developed which specifically recognize DNA modified by 8-methoxypsoralen (8-MOP) and ultraviolet A light (320-400 nm) (UVA). These antibodies have been characterized as to sensitivity and specificity by an enzyme linked immunosorbent assay (ELISA). In a competitive ELISA with the most sensitive antibody, 50% inhibition of antibody binding occurred at 17 fmole 8-MOP-DNA photo adducts. One adduct per 10(7) bases could be reliably detected. There was also some antibody cross-reactivity with DNAs modified by 4' aminomethyl-4, 5, 8-trimethylpsoralen and 4', 5-dimethylangelicin as well as DNA isolated from cells treated with 8-MOP and UVA. The primary specificity of one of the antibodies was shown to be the 4', 5' thymine monoadduct by competitive inhibition studies using HPLC fractions of an enzymatic digest of 8-MOP poly(dA-dT) . poly(dA-dT). These antibodies should allow the quantitation of adduct levels in various in vitro systems as well as humans exposed clinically to 8-MOP and UVA.  相似文献   

19.
We have used a DNA crosslinking assay to measure intercalation of the psoralen derivative HMT (4'-hydroxymethyl-4,5',8-trimethylpsoralen) into barley (Hordeum vulgare) plastid chromosomal DNA during chloroplast and etioplast development. Intercalation into DNA in intact plastids in vivo and in plastid lysates in vitro shows that chromosomal DNA in the most mature chloroplasts intercalates HMT less efficiently than DNA in younger chloroplasts. In contrast, there is no change in HMT intercalation during etioplast differentiation in the dark. Our results also show that DNA in higher plant plastid chromosomes is under superhelical tension in vivo. The lower susceptibility to HMT intercalation of DNA in the most mature chloroplasts indicates that late during chloroplast development the superhelical tension or the binding of proteins to the DNA or both change.  相似文献   

20.
In this work, we studied the fluorescence and hybridization of multiply-labeled DNA probes which have the hydrophilic fluorophore 1-(straightepsilon-carboxypentynyl)-1'-ethyl- 3,3,3', 3'-tetramethylindocarbocyanine-5,5'-disulfonate (Cy3) attached via either a short or long linker at the C-5 position of deoxyuridine. We describe the effects of labeling density, fluorophore charge and linker length upon five properties of the probe: fluorescence intensity, the change in fluorescence upon duplex formation, the quantum yield of fluorescence (Phif), probe-target stability and specificity. For the hydrophilic dye Cy3, we have demonstrated that the fluorescence intensity andPhifare maximized when labeling every 6th base using the long linker. With a less hydrophilic dye, a labeling density this high could not be achieved without serious quenching of the fluorescence. The target specificity of multiply-labeled DNA probes was just as high as compared to the unmodified control probe, however, a less stable probe-target duplex is formed that exhibits a lower melting temperature. A mechanism that accounts for this destabilization is proposed which is consistent with our data. It involves dye-dye and dye-nucleotide interactions which appear to stabilize a single-stranded conformation of the probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号