首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High plasma levels of linoleic acid (18:2) may injure endothelial cells, resulting in decreased barrier function of the vascular endothelium. The effects of linoleic acid on endothelial barrier function (transendothelial movement of albumin), membrane-bound enzyme activities, and possible autooxidation of linoleic acid under experimental conditions were studied. The exposure of endothelial monolayers to 18:2 for 24 hr at 60, 90, and 120 μM. fatty acid concentrations caused a significant increase in transendothelial movement of albumin, with maximum albumin transfer at 90 μM. Fatty acid treatment resulted in the increased appearance of cytosolic lipid droplets. Activities of the membrane-bound enzymes, angiotensin-converting enzyme (ACE), and Ca2+-ATPase increased steadily with increasing time of cell exposure to 90 μM 18:2, reaching significance at 24 hr. Treatment of endothelial cultures with up to 120 μM 18:2 did not cause cytotoxicity, as evidenced by a nonsignificant change in cellular release of [3H]-adenine. Incubation of 18:2-supplemented serum-containing culture media with 1000 μM 18:2 at 37°C for up to 48 hr did not result in formation of autooxidation products. These results suggest that 18:2 itself, and not its oxidation products, plays a major role in disrupting endothelial barrier function.  相似文献   

2.
Exposure to albumin-bound linoleic acid (60 to 150 microM) for 24 h significantly increased the rate of albumin transfer across cultured endothelial monolayers. The increase was dependent on the linoleic acid (18:2) concentration to which the cultures were exposed. Linoleic acid hydroperoxide (18:2-OOH) further accelerated the rate of albumin transfer over that of 18:2. A near maximum albumin transfer was observed after a 2-h incubation with 90 microM 18:2-OOH. Cells exposed to 18:2-OOH caused a marked release of lactate dehydrogenase into the media. On the other hand, 18:2 at concentrations as high as 150 microM, did not significantly affect lactate dehydrogenase release. These results suggest that exposure to 18:2, and in particular to 18:2-OOH, reduces the ability of the endothelium to act as a selective permeability barrier to plasma components.  相似文献   

3.
Cultured murine cerebromicrovascular endothelial cells were employed to study the metabolism of 12-hydroxyeicosatetraenoic acid (12-HETE) in an in vitro model of the blood-brain barrier. These endothelial cells convert 12-HETE to at least four, more polar compounds. Analysis of the least polar and predominant metabolite by gas chromatography combined with chemical ionization and electron impact mass spectrometry of reduced and nonreduced derivatives indicate that the compound is 8-hydroxyhexadecatrienoic acid (8-HHDTrE). The uptake of 12-HETE into cell phospholipids peaks at 2 hr, and is not saturable up to the highest concentration tested, 5 microM. Seventy-five to 92% of this 12-HETE is incorporated into phosphatidylcholine, while the remainder is divided between the inositol and ethanolamine phospholipids. Incorporation into neutral lipids is slower, with radioactivity gradually accumulating in triglycerides over 24 hr. Saponification of cell lipids demonstrated that not only 12-HETE, but also its major metabolite, 8-HHDTrE, is incorporated into the cell lipids. Prostacyclin and prostaglandin E2 production by the cerebral endothelial cells is inhibited by up to 56% with 1 microM and 90% with 5 microM 12-HETE. These data demonstrate that 12-HETE is actively metabolized by cerebral endothelium and suggest at least two mechanisms through which 12-HETE may alter cerebromicrovascular function: 1) incorporation into cerebral endothelial membranes and 2) inhibition of cerebral endothelial prostaglandin production. Conversion of 12-HETE to more polar compounds, particularly 8-HHDTrE, may be interpreted as either the inactivation of 12-HETE or the production of additional, biological mediators.  相似文献   

4.
5.
Lipolytic products of triglyceride-rich lipoproteins, i.e., free fatty acids, may cause activation and dysfunction of the vascular endothelium. Mechanisms of these effects may include lipid peroxidation. One of the major and biologically active products of peroxidation of n-6 fatty acids, such as linoleic acid or arachidonic acid, is the aldehyde 4-hydroxynonenal (HNE). To study the hypothesis that HNE may be a critical factor in endothelial cell dysfunction caused by free fatty acids, human umbilical endothelial cells (HUVEC) were treated with up to160 microM of linoleic or arachidonic acid. HNE formation was detected by immunocytochemistry in cells treated for 24 h with either fatty acid, but more markedly with arachidonic acid. To study the cellulareffects of HNE, HUVEC were treated with different concentrations of this aldehyde, and several markers of endothelial cell dysfunction were determined. Exposure to HNE for 6 and 9 h resulted in increased cellular oxidative stress. However, short time treatment with HNE did not cause activation of nuclear factor-kappaB (NF-kappaB). In addition, HUVEC exposure to HNE caused a dose-dependent decrease in production of both interleukin-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1). On the other hand, HNE exerted prominent cytotoxic effects in cultured HUVEC, manifested by morphological changes, diminished cellular viability, and impaired endothelial barrier function. Furthermore, HNE treatment induced apoptosis of HUVEC. These data provide evidence that HNE does not contribute to NF-kappaB-related mechanisms of the inflammatory response in HUVEC, but rather to endothelial dysfunction, cytotoxicity, and apoptotic cell death.  相似文献   

6.
The effect of hydroxyperoxyoctadecadienoic acid, e.g. 13-hydroperoxy-cis,9,trans-11-octadecadienoic acid, on the autooxidation of linoleic acid induced by superoxide radical was examined in a system containing xanthine oxidase, acetaldehyde, and diethylenetriaminepentaacetic acid dissolved in an aqueous phosphate buffer containing 10% ethanol. The superoxide radical is required for autooxidation, as shown by essentially complete inhibition on the addition of superoxide dismutase. Pure linoleic acid was not readily oxidized, but the addition of lipid hydroperoxide markedly stimulated the autooxidation. Addition of 2.8 microM FeCl3 did not produce an increase in the rate of xanthine oxidase-induced autooxidation. Spontaneous autooxidation, a process slower than xanthine oxidase-induced autooxidation, was detectable on the time scale of these observations but was slower than the xanthine oxidase-induced autooxidation. Initiation of linoleic acid autooxidation is postulated to result from a reaction between superoxide and lipid hydroperoxide. The nature of this reaction is uncertain, but it does not appear to depend on iron catalysis.  相似文献   

7.
Fatty acids are known as modulators of the vasoactive properties of the vessel wall and can influence the physical and functional properties of cell membrane. The membrane-bound enzyme Na,K-ATPase plays a central role in endothelial function such as vasoconstriction. In a previous study, we have shown that omega3 fatty acids inhibited Na,K-ATPase activity in human endothelial cells. As Mediterranean diet is known to protect from cardiovascular diseases, we have investigated the effects of Omegacoeur, a Mediterranean nutritional complement consisting of omega3, omega6, omega9 fatty acids, garlic and basil, on Na,K-ATPase activity in human endothelial cells (HUVECs). Cells were incubated for 18 hr with pure lecithin liposomes or Omegacoeur-enriched emulsions (4 mg lecithin/ml). Na,K-ATPase and 5'-nucleotidase activities were determined using coupled assay methods on microsomal fractions obtained from HUVECs. Cell fatty acid composition was evaluated by gas chromatography after extraction of lipids and fatty acids methylation. The results showed that Omegacoeur (0.1 mM) increased Na,K-ATPase activity by 40% without changes in 5'-nucleotidase activity. Cells incubated with Omegacoeur preferentially incorporated linoleic acid. Therefore, linoleic acid or others constituents of Omegacoeur could be responsible of the stimulation of the Na,K-ATPase activity that might be related to changes in endothelial membrane fluidity.  相似文献   

8.
We have investigated whether the presence of other fatty acids in physiologic amounts will influence the effects of eicosapentaenoic acid on cellular lipid metabolism and prostaglandin production. Eicosapentaenoic acid uptake by cultured bovine aortic endothelial cells was time and concentration dependent. At concentrations between 1 and 25 microM, most of the eicosapentaenoic acid was incorporated into phospholipids and of this, 60-90% was present in choline phosphoglycerides. Eicosapentaenoic acid inhibited arachidonic acid uptake and conversion to prostacyclin (prostaglandin I2) but was not itself converted to eicosanoids. Only small effects on the uptake of 10 microM eicosapentaenoic acid occurred when palmitic, stearic or oleic acids were added to the medium in concentrations up to 75 microM. In contrast, eicosapentaenoic acid uptake was reduced considerably by the presence of linoleic, n-6 eicosatrienoic, arachidonic or docosahexaenoic acids. Although a 100 microM mixture of palmitic, stearic, oleic and linoleic acid (25:10:50:15) had little effect on the uptake of 10 or 20 microM eicosapentaenoic acid, less of this acid was channeled into endothelial phospholipids. However, the fatty acid mixture did not prevent the inhibitory effect of eicosapentaenoic acid on prostaglandin I2 formation in response to either arachidonic acid or ionophore A23187. An 8 h exposure to eicosapentaenoic acid was required for the inhibition to become appreciable and, after 16 h, prostaglandin I2 production was reduced by as much as 60%. These findings indicate that the capacity of aortic endothelial cells to produce prostaglandin I2 is decreased by continuous exposure to eicosapentaenoic acid. Even if the eicosapentaenoic acid is present as a small percentage of a physiologic fatty acid mixture, it is still readily incorporated into endothelial phospholipids and retains its inhibitory effect against endothelial prostaglandin I2 formation. Therefore, these actions may be representative of the in vivo effects of eicosapentaenoic acid on the endothelium.  相似文献   

9.
Morris 7777 rat hepatoma cells in culture possess high delta 6 and delta 5 desaturase activities over linolenic acid added to the medium as albumin or alpha-fetoprotein complexes. After 2 hours incubation with [1-14C] linolenic acid (7 microM), around 40% of the radioactivity was recovered in other polyene fatty acids, mainly pentaenes. After 24 hours incubation with this substrate the polyene derivatives raised to more than 60%. However, [1-14C] linoleic acid was poorly converted to other polyene fatty acids. Linoleic acid up to 58 microM concentration in the medium do not inhibited linolenic acid desaturation. Long-term supplementation with 50 microM linoleic or linolenic acid, which modified the fatty acid profile of hepatoma lipids, enhanced the desaturase activities against linoleic acid. Desaturase activities were not affected by the fatty acid protein carrier, alpha-fetoprotein or albumin.  相似文献   

10.
Thrombospondin-1 (TSP) induces endothelial cell (EC) actin reorganization and focal adhesion disassembly and influences multiple EC functions. To determine whether TSP might regulate EC-EC interactions, we studied the effect of exogenous TSP on the movement of albumin across postconfluent EC monolayers. TSP increased transendothelial albumin flux in a dose-dependent manner at concentrations >/=1 microg/ml (2.2 nM). Increases in albumin flux were observed as early as 1 h after exposure to 30 microg/ml (71 nM) TSP. Inhibition of tyrosine kinases with herbimycin A or genistein protected against the TSP-induced barrier dysfunction by >80% and >50%, respectively. TSP-exposed monolayers exhibited actin reorganization and intercellular gap formation, whereas pretreatment with herbimycin A protected against this effect. Increased staining of phosphotyrosine-containing proteins was observed in plaque-like structures and at the intercellular boundaries of TSP-treated cells. In the presence of protein tyrosine phosphatase inhibition, TSP induced dose- and time-dependent increments in levels of phosphotyrosine-containing proteins; these TSP dose and time requirements were compatible with those defined for EC barrier dysfunction. Phosphoproteins that were identified include the adherens junction proteins focal adhesion kinase, paxillin, gamma-catenin, and p120(Cas). These combined data indicate that TSP can modulate endothelial barrier function, in part, through tyrosine phosphorylation of EC proteins.  相似文献   

11.
To evaluate the regulation of endothelial cell Cu,Zn-SOD, we have exposed bovine pulmonary artery endothelial cells in culture to hyperoxia and hypoxia, second messengers or related agonists, hormones, free radical generating systems, endotoxin, and cytokines and have measured Cu,Zn-SOD protein of these cells by an ELISA developed in our laboratory. Control preconfluent and confluent cells in room air contained 196 +/- 18 ng Cu,Zn-SOD/10(6) cells. A23187 (0.33 microM), forskolin (10 microM), isobutylmethylxanthine (0.1 mM), dexamethasone (1 microM), triiodothyronine (1 microM) and retinoic acid (1 microM) failed to alter this level of Cu,Zn-SOD. Exposure to anoxia and hyperoxia both elevated the level approximately 1.5-2.0-fold over 20% oxygen-exposed controls at 48-72 hr. Similarly, exposures to glucose oxidase (0.0075 units/ml), menadione (12.5 microM), xanthine-xanthine oxidase (10 microM, 0.03 units/ml) and H2O2 (0.0005%) increased the level up to two-threefold over controls at 24-48 hr. Lipopolysaccharide, TGF beta 1, TNF alpha, and Il-1 also increased levels of cellular Cu,Zn-SOD, but only in proliferating cells. Il-2, Il-4, interferon-gamma, and GM-CSF had no effect on Cu,Zn-SOD. All treatments that elevated SOD resulted in inhibition of cellular growth, but decreased growth of cells at confluence alone was not associated with increased Cu,Zn-SOD. We propose from these studies that Cu,Zn-SOD of endothelial cells is not under conventional second messenger or hormonal regulation, but that up-regulation of the enzyme is associated with (and perhaps stimulated by) free-radical or oxidant production that also may be influenced by availability of certain cytokines under replicating conditions.  相似文献   

12.
A spectrum of cholesterol oxidation derivatives (oxysterols) is generated in food products exposed to heat or radiation in the presence of oxygen. One of these derivatives (cholestan-3 beta,5 alpha,6 beta-triol) was shown to compromise the selective barrier function of cultured vascular endothelial cell monolayers, an action that may initiate atherosclerotic lesion formation. This study sought to investigate the relationship of cholesterol synthesis inhibition by several naturally occurring oxysterols to depression of vascular endothelial cell monolayer barrier function, determined as an increase in albumin transfer across cultured endothelial monolayers. All oxysterols tested caused a variable time- and dose-dependent elevation in trans-endothelial albumin transfer, and they were also able to inhibit cholesterol biosynthesis to varying degrees. Pure cholesterol was without effect on both counts. The correlation between the increase in albumin transfer related to oxysterol exposure and the ability of oxysterols to suppress cholesterol biosynthesis was, however, poor. Moreover, mevinolin, a water-soluble competitive inhibitor of cholesterol synthesis, reduced the rate of cholesterol synthesis to 0.9% of control but did not significantly increase albumin transfer. Cholestan-3 beta,5 alpha,6 beta-triol caused a 660% elevation in albumin transfer while cholesterol synthesis remained at 11% of control. We conclude that changes in endothelial barrier function caused by exposure to the oxysterols examined, but not pure cholesterol, are probably related to factors other than the well-known action of cholesterol biosynthesis inhibition. These findings may have implications in the development of atherosclerosis.  相似文献   

13.
The physiological function of alkaline phosphatase (ALP) remains controversial. It was recently suggested that this membrane-bound enzyme has a role in the modulation of transmembranar transport systems into hepatocytes and Caco-2 cells. ALP activity expressed on the apical surface of blood-brain barrier cells, and its relationship with (125)I-insulin internalization were investigated under physiological conditions using p-nitrophenylphosphate (p-NPP) as substrate. For this, an immortalized cell line of rat capillary cerebral endothelial cells (RBE4 cells) was used. ALP activity and (125)I-insulin internalization were evaluated in these cells. The results showed that RBE4 cells expressed ALP, characterized by an ecto-oriented active site which was functional at physiological pH. Orthovanadate (100 microM), an inhibitor of phosphatase activities, decreased both RBE4-ALP activity and (125)I-insulin internalization. In the presence of L-arginine (1 mM) or adenosine (100 microM) RBE4-ALP activity and (125)I-insulin, internalization were significantly reduced. However, D-arginine (1 mM) had no significant effect. Additionally, RBE4-ALP activity and (125)I-insulin internalization significantly increased in the presence of the bioflavonoid kaempferol (100 microM), of the phorbol ester PMA (80 nM), IBMX (1 mM), progesterone (200 microM and 100 microM), beta-estradiol (100 microM), iron (100 microM) or in the presence of all-trans retinoic acid (RA) (10 microM). The ALP inhibitor levamisole (500 microM) was able to reduce (125)I-insulin internalization to 69.1 +/- 7.1% of control. Our data showed a positive correlation between ecto-ALP activity and (125)I-insulin incorporation (r = 0.82; P < 0.0001) in cultured rat brain endothelial cells, suggesting that insulin entry into the blood-brain barrier may be modulated through ALP.  相似文献   

14.
Fibroblasts derived from a rat carrageenin granuloma were cultured in the presence of radioactive arachidonic acid, palmitic acid and linoleic acid. More than 90% of each labeled fatty acid was incorporated into a phospholipid fraction by the cells in 18 hrs. Arachidonic acid was evenly incorporated into phosphatidylcholine and phosphatidylethanolamine, while both palmitic acid and linoleic acid were almost entirely incorporated into phosphatidylcholine. The position of phosphatidylcholine where the fatty acids were incorporated was different for each fatty acid. The ratio of the amount of fatty acid incorporated into the 2-position to the amount incorporated into the 1-position of phosphatidylcholine for each fatty acid was greater than 90% for arachidonic acid, 2:1 for palmitic acid and 5:1 for linoleic acid. In the case of phosphatidylethanolamine, most arachidonic acid (greater than 90%) was incorporated into the 2-position. PGF2alpha caused the stimulation of arachidonic acid release but not of palmitic acid and linoleic acid from pre-labeled fibroblasts. The serum in the medium was completely replaceable by bovine serum albumin. The effect of PGF2Alpha increased with an increasing concentration of bovine serum albumin, suggesting that serum only acts as a "trap" for released arachidonic acid. The effect of PGF2Alpha was greater than bradykinin, and no synergistic effect was seen, although an additive effect was observed. The effect of PGF2Alpha depended on the concentration of calcium ions under magnesium-supplemented conditions.  相似文献   

15.
Calcium-translocating activity of linoleic acid and its lipoxygenase (linoleate: oxygen oxidoreductase; EC 1.13.11.12) metabolites or autoxidation products was determined in vitro by estimation of 45Ca transport from a bulk aqueous to a bulk organic phase. Fresh commercial linoleic acid, tested immediately after removal from a sealed vial, stimulated calcium translocation only at concentrations greater than 1 mM. In contrast, 45Ca translocation by linoleic acid exposed to air was detectable at 10 microM. Oxidation products of linoleic acid obtained either by incubation with lipoxygenase or by autoxidation were much less potent than the calcium ionophore A23187. The products obtained by enzymic oxidation of linoleic acid enhanced contractility in the Langendorff-perfused guinea pig heart up to 45% over control (at 3 X 10(-8) M). The inotropic response was transient with rapid onset and not affected by the beta-adrenergic antagonist, propranolol. The autoxidation products of linoleic acid increased cardiac contractility up to 43% at 10(-6) M. In contrast, fresh linoleic acid caused only a negative inotropic effect at 10(-8) to 3 X 10(-7) M, progressing to contracture at 10(-6) M. These findings suggest that conflicting reports on the cardiostimulant effect of linoleic acid may be due to varying levels of the autoxidation products. Linoleic acid metabolites in vivo may have a physiological role in myocardial function related to their Ca2+-ionophoric activity.  相似文献   

16.
A membrane-bound enzyme, which catalyses the cleavage of fatty acid hydroperoxides to carbonyl fragments, has been partially purified from cucumber fruit. The isomeric 9- and 13-hydroperoxydienes (but not the hydroxydienes) derived from both linoleic and linolenic acids are cleaved by the enzyme but a mixture of 9- and 10-hydroperoxymonoenoic derivatives of oleic acid was not attacked. No evidence was obtained for free intermediates between fatty acid hydroperoxides and the cleavage products. Major volatile products were: cis-3-nonenal and hexanal (from 9- and 13-hydroperoxides of linoleic acid respectively) or cis-3,cis-6-nonadienal and cis-3-hexenal (from 9- and 13-hydroperoxides of linolenic acid). The increase in the ratio of cis-3- to trans-2-enal products with enzyme purification indicated that cis-3-enals are the immediate cleavage products and that the trans-2- forms are produced by subsequent isomerization.  相似文献   

17.
Faslodex (FAS, ICI 182, 780), a novel steroidal estrogen antagonist decreased high-dose methotrexate (MTX) cytotoxicity in MCF-7 breast cancer cells. When FAS is given at least 24 hr prior to MTX, the resultant interaction is antagonistic. However, when breast cancer cells are exposed to FAS 24 hr after MTX, the interaction between FAS and MTX is not antagonistic. The proliferation of cells exposed to 0.1 microM FAS and 10 microM MTX alone or in combination with FAS 24 hr prior to MTX was in the following order: FAS>FAS 24 hr prior to MTX>MTX. MTX administration 24 hr prior to FAS had the following inhibitory effects on the growth of cells: MTX 24 hr prior to FAS >MTX>FAS 24 hr prior to MTX>FAS>control (no drug exposure). To determine if the antagonistic interaction between FAS and MTX was a function of sequence and time, cells were exposed to FAS 24 hr and 36 hr prior to MTX exposure. The percentages of control rates were 42.70 +/- 4.60% and 57.89 +/- 0.55%, respectively, from a 24 hr and 36 hr exposure of FAS prior to MTX. The growth rates after 24 and 36 hr exposures to MTX alone were 30.30 +/- 0.61% and 33.11 +/- 2.57% of control rates, respectively. These studies suggest that: a) the interactions between FAS and MTX are sequence-dependent; b) FAS antagonizes the effect of MTX when FAS administration precedes MTX, and c) FAS antagonism to MTX is a function of time.  相似文献   

18.
Elongated, more highly polyunsaturated derivatives of linoleic acid (18:2 omega-6) and linolenic acid (18:3 omega-3) accumulate in brain, but their sites of synthesis and mechanism of entry are not well characterized. To investigate the role of the blood-brain barrier in this process, cultured murine cerebromicrovascular endothelia were incubated with [1-14C]18:2 omega-6 or [1-14C]18:3 omega-3 and their elongation/desaturation products determined. The major metabolite of 18:2 omega-6 was 20:4 omega-6, whereas the primary product from 18:3 omega-3 was 20:5 omega-3. Although these products were found primarily in cell lipids, they were also released from the cells and gradually accumulated in the extracellular fluid. Eicosanoid production was observed from the 20:4 omega-6 and 20:5 omega-3 that were formed. No 22:5 omega-6 or 22:6 omega-3 fatty acids were detected, suggesting that these endothelial cells are not the site of the final desaturation step. Although the uptake of 18:3 omega-3 and 18:2 omega-6 was nearly identical, 18:3 omega-3 was more extensively elongated and desaturated. Competition experiments demonstrated a preference for 18:3 omega-3 by the elongation/desaturation pathway. These findings suggest that the blood-brain barrier can play an important role in the elongation and desaturation of omega-3 and omega-6 essential fatty acids during their transfer from the circulation into the brain.  相似文献   

19.
The Δ12 desaturase represents a diverse gene family in plants and is responsible for conversion of oleic acid (18:1) to linoleic acid (18:2). Several members of this family are known from plants like Arabidopsis and Soybean. Using primers from conserved C- and N-terminal regions, we have cloned a novel Δ12 desaturase gene amplified from flax genomic DNA, denoted as LuFAD2-2. This intron-less gene is 1,149-base pair long encoding 382 amino acids—putative membrane-bound Δ12 desaturase protein. Sequence comparisons show that the novel sequence has 85% similarity with previously reported flax Δ12 desaturase at amino acid level and shows typical features of membrane-bound desaturase such as three conserved histidine boxes along with four membrane-spanning regions that are universally present among plant desaturases. The signature amino acid sequence ‘YNNKL’ was also found to be present at the N terminus of the protein, which is necessary and sufficient for ER localization of enzyme. Neighbor-Joining tree generated from the sequence alignment grouped LuFAD2-2 among the other FAD2 sequences from Ricinus, Hevea, Jatropha, and Vernicia. When LuFAD2-2 and LuFAD2 were expressed in Saccharomyces cerevisiae, they could convert the oleic acid to linoleic acid, with an average conversion rate of 5.25 and 8.85%, respectively. However, exogenously supplied linoleic acid was feebly converted to linolenic acid suggesting that LuFAD2-2 encodes a functional FAD2 enzyme and has substrate specificity similar to LuFAD2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号