首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of hydroxystilbene derivatives on tyrosinase activity   总被引:6,自引:0,他引:6  
Synthesis of melanin starts from the conversion of L-tyrosine to 3,4-dihydroxyphenylalanine (L-dopa) and then the oxidation of L-dopa yields dopaquinone by tyrosinase. Therefore, tyrosinase inhibitors have been established as important constituents of depigmentation agents. Recently, polyhydroxystilbene compounds, which are trans-resveratrol (3,4('),5-trihydroxy-trans-stilbene) analogs, have been demonstrated as potent tyrosinase inhibitors. However, their detailed inhibitory mechanisms are not clearly understood. In the present study, a variety of synthesized hydroxystilbene compounds were tested for their inhibitory effects against murine tyrosinase activity. The inhibitory potencies of the hydroxy-trans-stilbene compounds were remarkably elevated by increasing number of phenolic hydroxy substituents. Methylated hydroxy-trans-stilbene lost the inhibitory activity. Furthermore, hydrogenated hydroxystilbene or hydroxy-cis-stilbene exerted little or no inhibitory effect compared with hydroxy-trans-stilbene on tyrosinase activity. The structure-activity relationships demonstrated in the present study suggest that the phenolic hydroxy groups and trans-olefin structure of the parent stilbene skeleton contribute to the inhibitory potency of hydroxystilbene for tyrosinase activity.  相似文献   

2.
Dong  Xin  Wang  Shaoyu  Xu  Lian  Lin  Juan  Xu  Xinqi 《Molecular biology reports》2020,47(2):967-975
Molecular Biology Reports - Penicillin V is a bacteriolytic β-lactam antibiotic drug. In the present work, we investigated the inhibitory effect of Penicillin V on the activity of mushroom...  相似文献   

3.
4.
5.
以银杏外种皮为材料,采用水、乙醇和乙醇-乙醚三种不同的方法分离提取其中的活性物质(分别命名为1#,2#,3#),研究它们对蘑菇酪氨酸酶催化L-多巴(L-DOPA)氧化活力的影响。结果表明,这3种提取物均对蘑菇酪氨酸酶有抑制作用,1#,2#和3#对酶抑制作用的IC50分别为2.25、1.75和0.32mg/mL。抑制作用动力学结果表明:三种提取物对酶的抑制作用均表现为混合型,相应的抑制常数KI依次为2.11、1.62和0.29mg/mL;KIS依次为2.80、2.33和0.45mg/mL。结果显示,采用乙醇-乙醚提取的银杏外种皮提取物对酪氨酸酶抑制作用最强。  相似文献   

6.
7.
A pomegranate extract (PE) from the rind containing 90% ellagic acid was tested for its skin-whitening effect. PE showed inhibitory activity against mushroom tyrosinase in vitro, and the inhibition by the extract was comparable to that of arbutin, which is a known whitening agent. PE, when administered orally, also inhibited UV-induced skin pigmentation on the back of brownish guinea pigs. The intensity of the skin-whitening effect was similar between guinea pigs fed with PE and those fed with L-ascorbic acid. PE reduced the number of DOPA-positive melanocytes in the epidermis of UV-irradiated guinea pigs, but L-ascorbic acid did not. These results suggest that the skin-whitening effect of PE was probably due to inhibition of the proliferation of melanocytes and melanin synthesis by tyrosinase in melanocytes. PE, when taken orally, may be used as an effective whitening agent for the skin.  相似文献   

8.
Tyrosinase can act on monophenols because of the mixture of met- (E(m)) and oxy-tyrosinase (E(ox)) which exists in the native form of the enzyme. The latter form is active on monophenols, while the former is not. However, the kinetics are complicated because monophenols can bind to both enzyme forms. This situation becomes even more complex since the products of the enzymatic reaction, the o-quinones, are unstable and continue evolving to generate o-diphenols in the medium. In the case of substrates such as L-tyrosine, tyrosinase generates very unstable o-quinones, in which a process of cyclation and subsequent oxidation-reduction generates o-diphenol through non-enzymatic reactions. However, the release of o-diphenol through the action of the enzyme on the monophenol contributes to the concentration of o-diphenol in the first pseudo-steady-state [D(0)](ss). Hence, the system reaches an initial pseudo-steady state when t-->0 and undergoes a transition phase (lag period) until a final steady state is reached when the concentration of o-diphenol in the medium reaches the concentration of the final steady state [D(f)](ss). These results can be explained by taking into account the kinetic and structural mechanism of the enzyme. In this, tyrosinase hydroxylates the monophenols to o-diphenols, generating an intermediate, E(m)D, which may oxidise the o-diphenol or release it directly to the medium. We surmise that the intermediate generated during the action of E(ox) on monophenols, E(m)D, has axial and equatorial bonds between the o-diphenol and copper atoms of the active site. Since the orbitals are not coplanar, the concerted oxidation-reduction reaction cannot occur. Instead, a bond, probably that of C-4, is broken to achieve coplanarity, producing a more labile intermediate that will then release the o-diphenol to the medium or reunite it diaxially, involving oxidation to o-quinone. The non-enzymatic evolution of the o-quinone would generate the o-diphenol ([D(f)](ss)) necessary for the final steady state to be reached after the lag period.  相似文献   

9.
10.
Avner Rotman 《Life sciences》1977,21(7):891-900
In 1967 Tranzer and Thoenen (1,2) recognized that 6-hydroxydopamine has the capacity for selectively destroying adrenergic nerve terminals. Two hydroxyserotonin isomers have a similar effect on the serotonin-containing neurons (3,4,5,6). Since the discoveries of these phenomena, 6-hydroxydopamine and 5,6 and 5,7-dihydroxytryptamine have become valuable pharmacological tools in the selective degeneration of noradrenergic and respectively serotonergic nerve terminals. In low doses, 6-hydroxydopamine is taken up into adrenergic nerve terminals without producing any detectable damage, acting as a false neurotransmitter. The administration of large doses of 6-hydroxydopamine results in very long-lasting sympathomimetic effects which are accompanied by a gradual deterioration of various specific functions of the neuronal membrane of the adrenergic nerve terminal (7,8,9). Repeated administration of high doses of 6-hydroxydopamine leads to an extensive destruction of adrenergic nerve terminals in all species studied so far (10). In general, the cell bodies of adrenergic neurons seem to be very resistant to the destructive effect of 6-hydroxydopamine compared to the nerve terminals. The two dihydroxylated indoleamines, 5,6-dihydroxytryptamine and 5,7-dihydroxytryptamine, produce long-lasting depletions in brain serotonin (3,11,12). Biochemical and morphological evidence suggests that these severe reductions of serotonin level are the result of degeneration of the axons and terminals of central serotonin containing neurons (13,14,15). These neurocytotoxic agents exhibit many pharmacological and biochemical properties which are beyond the scope of this short review which aims to cover only the various approaches reported in the literature dealing with the mechanism of action of above compounds.  相似文献   

11.
Inhibitory effects on mushroom tyrosinase by some alkylbenzaldehydes   总被引:1,自引:0,他引:1  
The inhibition kinetics on the diphenolase activity of mushroom tyrosinase by some alkylbenzaldehydes has been investigated. The results show that the alkylbenzaldehydes assayed can lead to reversible inhibition to the enzyme; o-tolualdehyde and m-tolualdehyde are mixed-type inhibitors and p-alkylbenzaldehydes are uncompetitive inhibitors. For the p-alkylbenzaldehydes, the inhibition potency follows the order: p-tolualdehyde < p-ethylbenzaldehyde < p-propylbenzaldehyde = p-Isopropylbenzaldehyde < p-tert-butylbenzaldehyde = p-butylbenzaldehyde < p-pentylbenzaldehyde < p-hexylbenzaldehyde > p-heptylbenzaldehyde > p-octylbenzaldehyde, indicating the hydrophobic p-alkyl group played an important role in inhibition to the enzyme. The inhibitory effects of alkylbenzaldehydes on the monophenolase activity have also been studied. The results show that o-tolualdehyde and m-tolualdehyde can lengthen the lag time and decrease the steady-state activity of the enzyme, but p-alkylbenzaldehydes only decrease the steady-state activity and do not lengthen the lag time, indicating that their inhibitory mechanisms are different.  相似文献   

12.
13.
14.
Mushroom tyrosinase (EC 1.14.18.1), a copper containing oxidase, catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the current study, the effects of 4-cyanobenzaldehyde and 4-cyanobenzoic acid on the monophenolase and diphenolase activities of mushroom tyrosinase have been studied. The results show that 4-cyanobenzaldehyde and 4-cyanobenzoic acid can inhibit both the monophenolase activity and the diphenolase activity of mushroom tyrosinase. The lag phase of tyrosine oxidation catalyzed by the enzyme was obviously lengthened, and the steady-state activity of the enzyme decreased sharply. 1.0 mM 4-cyanobenzaldehyde and 4-cyanobenzoic acid can lengthen the lag phase from 78 s to 134 and 115 s, respectively. Both 4-cyanobenzaldehyde and 4-cyanobenzoic acid can lead to reversible inhibition of the enzyme. The IC50 values of 4-cyanobenzaldehyde and 4-cyanobenzoic acid were estimated as 0.62 and 2.45 mM for monophenolase and as 0.72 and 1.40 mM for diphenolase, respectively. A kinetic analysis shows that 4-cyanobenzaldehyde and 4-cyanobenzoic acid are mixed-type inhibitors for the diphenolase. The apparent inhibition constants for 4-cyanobenzaldehyde and 4-cyanobenzoic acid binding with both the free enzyme and the enzyme-substrate complex have been determined and compared.  相似文献   

15.
Antipsychotic drugs are widely used to alleviate a number of psychic disorders and have been found to modulate some immune parameters, but the molecular mechanism of their action on the proliferative activity has been poorly recognized. In the present study, we investigated effects of various antipsychotics on the proliferative activity of lymphocytes stimulated by concanavalin A (Con A) and lipopolysaccharide (LPS). Chlorpromazine (3 x 10(-6)-10(-4) M) showed the most potent effect in inhibiting 3H-thymidine incorporation into C57BL/6 mouse spleen cells stimulated by Con A and LPS. Treatment of the cells with thioridazine (10(-5)-10(-4) M), promazine (10(-5)-10(-4) M), haloperidol (10(-5)-10(-4) M), risperidone (10(-5)-10(-4) M), raclopride (3 x 10(-5) - 10(-4) M), remoxipride (3 x 10(-5)-10(-4) M) and clozapine ( 3 x 10(-5)-10(-4) M), but not with sulpiride (10(-7)-10(-4) M), suppressed proliferative activity of splenocytes after Con A stimulation. On the other hand, LPS-induced proliferation of splenocytes was inhibited by clozapine, promazine, thioridazine and haloperidol, but not by risperidone, remoxipride, sulpiride and raclopride. In the next part of the study, the influence of some kinase modulators on chlorpromazine- and clozapine-evoked inhibition of the proliferative activity of splenocytes was determined. Wortmannin, a selective phosphatidylinositol 3-kinase (PI3-K) inhibitor, blocked chlorpromazine and clozapine inhibitory effect on the mitogen-stimulated splenocyte proliferation. The involvement of PI 3-K /protein kinase B (PKB, Akt) pathway was confirmed by the results of the Western blot study, which showed that both drugs increased the level of active phospho-Ser-473 Akt, without changing the total Akt level, and decreased the level of active, nonphosphorylated glycogen synthase kinase-3 (GSK-3beta). Additionally, we have found that chlorpromazine action was also attenuated by a selective p-38-MAPK inhibitor, while clozapine effect was suppressed by a protein kinase C (PKC) activator. The obtained results indicated that atypical antipsychotic drugs markedly inhibited the proliferative activity of splenocytes only after ConA stimulation. Inhibition of the proliferative capability of splenocytes by chlorpromazine and clozapine resulted mainly from the activation of PI3-K/Akt pathway.  相似文献   

16.
17.
18.
The possible effect of melatonin, 5-methoxytryptamine, 5-methoxytryptophol, 6-chloromelatonin and 2-iodomelatonin on testosterone production by Leydig cells in vitro was investigated. The ability of individual indoles to inhibit testosterone production was found to depend on the concentration used. The relative inhibitory potency of the compounds tested was: 6-chloromelatonin greater than 2-iodomelatonin greater than melatonin greater than 5-methoxytryptamine greater than 5-methoxytryptophol. The results revealed that natural indoles which are synthesized in the pineal gland and their halogenized derivatives are capable of influencing directly testosterone production by Leydig cells. Also, these results demonstrated that melatonin exerts its remarkable antigonadotrophic effects, at least in part, through the direct decrease of testosterone production. Moreover, 6-chloromelatonin and 2-iodomelatonin, which are reported to inhibit melatonin binding to target tissues, possess properties of biological melatonin analogues under the conditions of the model system used.  相似文献   

19.
Radical mechanism of action of the artemisinin-type compounds   总被引:4,自引:0,他引:4  
  相似文献   

20.
Tyrosinase shows kinetic cooperativity in its action on o-diphenols, but not when it acts on monophenols, confirming that the slow step is the hydroxylation of monophenols to o-diphenols. This model can be generalised to a wide range of substrates; for example, type S(A) substrates, which give rise to a stable product as the o-quinone evolves by means of a first or pseudo first order reaction (α-methyl dopa, dopa methyl ester, dopamine, 3,4-dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid, α-methyl-tyrosine, tyrosine methyl ester, tyramine, 4-hydroxyphenylpropionic acid and 4-hydroxyphenylacetic acid), type S(B) substrates, which include those whose o-quinone evolves with no clear stoichiometry (catechol, 4-methylcatechol, phenol and p-cresol) and, lastly, type S(C) substrates, which give rise to stable o-quinones (4-tert-butylcatechol/4-tert-butylphenol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号