首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myo2 protein (Myo2p), an unconventional myosin in the budding yeast Saccharomyces cerevisiae, has been implicated in polarized growth and secretion by studies of the temperature-sensitive myo2-66 mutant. Overexpression of Smy1p, which by sequence is a kinesin-related protein, can partially compensate for defects in the myo2 mutant (Lillie, S. H. and S. S. Brown, 1992. Nature (Lond.). 356:358-361). We have now immunolocalized Smy1p and Myo2p. Both are concentrated in regions of active growth, as caps at incipient bud sites and on small buds, at the mother-bud neck just before cell separation, and in mating cells as caps on shmoo tips and at the fusion bridge of zygotes. Double labeling of cells with either Myo2p or Smy1p antibody plus phalloidin was used to compare the localization of Smy1p and Myo2p to actin, and by extrapolation, to each other. These studies confirmed that Myo2p and Smy1p colocalize, and are concentrated in the same general regions of the cell as actin spots. However, neither colocalizes with actin. We noted a correlation in the behavior of Myo2p, Smy1p, and actin, but not microtubules, under a number of circumstances. In cdc4 and cdc11 mutants, which produce multiple buds, Myo2p and Smy1p caps were found only in the subset of buds that had accumulations of actin. Mutations in actin or secretory genes perturb actin, Smy1p and Myo2p localization. The rearrangements of Myo2p and Smy1p correlate temporally with those of actin spots during the cell cycle, and upon temperature and osmotic shift. In contrast, microtubules are not grossly affected by these perturbations. Although wild-type Myo2p localization does not require Smy1p, Myo2p staining is brighter when SMY1 is overexpressed. The myo2 mutant, when shifted to restrictive temperature, shows a permanent loss in Myo2p localization and actin polarization, both of which can be restored by SMY1 overexpression. However, the lethality of MYO2 deletion is not overcome by SMY1 overexpression. We noted that the myo2 mutant can recover from osmotic shift (unlike actin mutants; Novick, P., and D. Botstein. 1985. Cell. 40:405-416). We have also determined that the myo2-66 allele encodes a Lys instead of a Glu at position 511, which lies at an actin-binding face in the motor domain.  相似文献   

2.
The coat protein complex II (COPII) is essential for vesicle formation from the endoplasmic reticulum (ER) and is composed of two heterodimeric subcomplexes, Sec23p/Sec24p and Sec13p/Sec31p, and the small guanosine triphosphatase Sar1p. In an effort to identify novel factors that may participate in COPII vesicle formation, we isolated SMY2 , a yeast gene encoding a protein of unknown function, as a multicopy suppressor of the temperature-sensitive sec24-20 mutant. We found that even a low-copy expression of SMY2 was sufficient for the suppression of the sec24-20 phenotypes, and the chromosomal deletion of SMY2 led to a severe growth defect in the sec24-20 background. In addition, SMY2 exhibited genetic interactions with several other genes involved in the ER-to-Golgi transport. Subcellular fractionation analysis showed that Smy2p was a peripheral membrane protein fractionating together with COPII components. However, Smy2p was not loaded onto COPII vesicles generated in vitro . Interestingly, coimmunoprecipitation between Smy2p and the Sec23p/Sec24p subcomplex was specifically observed in sec23-1 and sec24-20 backgrounds, suggesting that this interaction was a prerequisite for the suppression of the sec24-20 phenotypes by overexpression of SMY2 . We propose that Smy2p is located on the surface of the ER and facilitates COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex.  相似文献   

3.
The mechanisms by which molecular motors associate with specific cargo is a central problem in cell organization. The kinesin-like protein Smy1 of budding yeast was originally identified by the ability of elevated levels to suppress a conditional myosin-V mutation (myo2-66), but its function with Myo2 remained mysterious. Subsequently, Myo2 was found to provide an essential role in delivery of secretory vesicles for polarized growth and in the transport of mitochondria for segregation. By isolating and characterizing myo2 smy1 conditional mutants, we uncover the molecular function of Smy1 as a factor that enhances the association of Myo2 with its receptor, the Rab Sec4, on secretory vesicles. The tail of Smy1—which binds Myo2—its central dimerization domain, and its kinesin-like head domain are all necessary for this function. Consistent with this model, overexpression of full-length Smy1 enhances the number of Sec4 receptors and Myo2 motors per transporting secretory vesicle. Rab proteins Sec4 and Ypt11, receptors for essential transport of secretory vesicles and mitochondria, respectively, bind the same region on Myo2, yet Smy1 functions selectively in the transport of secretory vesicles. Thus a kinesin-related protein can function intimately with a myosin-V and its receptor in the transport of a specific cargo.  相似文献   

4.
We have discovered evidence for a physical interaction between a class V myosin, Myo2p, and a kinesin-related protein, Smy1p, in budding yeast. These proteins had previously been linked by genetic and colocalization studies, but we had been unable to determine the nature of their association. We now show by two-hybrid analysis that a 69-amino acid region of the Smy1p tail interacts with the globular portion of the Myo2p tail. Deletion of this myosin-binding region of Smy1p eliminates its ability to colocalize with Myo2p and to overcome the myo2-66 mutant defects, suggesting that the interaction is necessary for these functions. Further insights about the Smy1p-Myo2p interaction have come from studies of a new mutant allele, myo2-2, which causes a loss of Myo2p localization. We report that Smy1p localization is also lost in the myo2-2 mutant, demonstrating that Smy1p localization is dependent on Myo2p. We also found that overexpression of Smy1p partially restores myo2-2p localization in a myosin-binding region-dependent manner. Thus, overexpression of Smy1p can overcome defects in both the head and tail domains of Myo2p (caused by the myo2-66 and myo2-2 alleles, respectively). We propose that Smy1p enhances some aspect of Myo2p function, perhaps delivery or docking of vesicles at the bud tip.  相似文献   

5.
Organelle inheritance occurs during cell division. In Saccharomyces cerevisiae, inheritance of the vacuole, and the distribution of mitochondria and cortical endoplasmic reticulum are regulated by Ptc1p, a type 2C protein phosphatase. Here we show that PTC1/VAC10 controls the distribution of additional cargoes moved by a myosin-V motor. These include peroxisomes, secretory vesicles, cargoes of Myo2p, and ASH1 mRNA, a cargo of Myo4p. We find that Ptc1p is required for the proper distribution of both Myo2p and Myo4p. Surprisingly, PTC1 is also required to maintain the steady-state levels of organelle-specific receptors, including Vac17p, Inp2p, and Mmr1p, which attach Myo2p to the vacuole, peroxisomes, and mitochondria, respectively. Furthermore, Vac17p fused to the cargo-binding domain of Myo2p suppressed the vacuole inheritance defect in ptc1Δ cells. These findings suggest that PTC1 promotes the association of myosin-V with its organelle-specific adaptor proteins. Moreover, these observations suggest that despite the existence of organelle-specific receptors, there is a higher order regulation that coordinates the movement of diverse cellular components.  相似文献   

6.
MYO2 encodes a type V myosin heavy chain needed for the targeting of vacuoles and secretory vesicles to the growing bud of yeast. Here we describe new myo2 alleles containing conditional lethal mutations in the COOH-terminal tail domain. Within 5 min of shifting to the restrictive temperature, the polarized distribution of secretory vesicles is abolished without affecting the distribution of actin or the mutant Myo2p, showing that the tail has a direct role in vesicle targeting. We also show that the actin cable-dependent translocation of Myo2p to growth sites does not require secretory vesicle cargo. Although a fusion protein containing the Myo2p tail also concentrates at growth sites, this accumulation depends on the polarized delivery of secretory vesicles, implying that the Myo2p tail binds to secretory vesicles. Most of the new mutations alter a region of the Myo2p tail conserved with vertebrate myosin Vs but divergent from Myo4p, the myosin V involved in mRNA transport, and genetic data suggest that the tail interacts with Smy1p, a kinesin homologue, and Sec4p, a vesicle-associated Rab protein. The data support a model in which the Myo2p tail tethers secretory vesicles, and the motor transports them down polarized actin cables to the site of exocytosis.  相似文献   

7.
Myo4p, a single-headed and nonprocessive class V myosin in budding yeast, transports >20 different mRNAs asymmetrically to the bud. Here, we determine the features of the Myo4p motor that are necessary for correct localization of ASH1 mRNA to the daughter cell, a process that also requires the adapter protein She3p and the dimeric mRNA-binding protein She2p. The rod region of Myo4p, but not the globular tail, is essential for correct localization of ASH1 mRNA, confirming that the rod contains the primary binding site for She3p. The requirement for both the rod region and She3p can be bypassed by directly coupling the mRNA-binding protein She2p to Myo4p. ASH1 mRNA was also correctly localized when one motor was bound per dimeric She2p, or when two motors were joined together by a leucine zipper. Because multiple mRNAs are cotransported to the bud, it is likely that this process involves multiple motor transport regardless of the number of motors per zip code. Our results show that the most important feature for correct localization is the retention of coupling between all the members of the complex (Myo4p–She3p–She2p–ASH1 mRNA), which is aided by She3p being a tightly bound subunit of Myo4p.  相似文献   

8.
In Saccharomyces cerevisiae, Kar9p, one player in spindle alignment, guides the bud-ward spindle pole by linking astral microtubule plus ends to Myo2p-based transport along actin cables generated by the formins Bni1p and Bnr1p and the polarity determinant Bud6p. Initially, Kar9p labels both poles but progressively singles out the bud-ward pole. Here, we show that this polarization requires cell polarity determinants, actin cables, and microtubules. Indeed, in a bud6Δ bni1Δ mutant or upon direct depolymerization of actin cables Kar9p symmetry increased. Furthermore, symmetry was selectively induced by myo2 alleles, preventing Kar9p binding to the Myo2p cargo domain. Kar9p polarity was rebuilt after transient disruption of microtubules, dependent on cell polarity and actin cables. Symmetry breaking also occurred after transient depolymerization of actin cables, with Kar9p increasing at the spindle pole engaging in repeated cycles of Kar9p-mediated transport. Kar9p returning to the spindle pole on shrinking astral microtubules may contribute toward this bias. Thus, Myo2p transport along actin cables may support a feedback loop by which delivery of astral microtubule plus ends sustains Kar9p polarized recruitment to the bud-ward spindle pole. Our findings also explain the link between Kar9p polarity and the choice setting aside the old spindle pole for daughter-bound fate.  相似文献   

9.
《FEBS letters》1997,400(2-3):161-166
We cloned the myo3+ gene of Schizosaccharomyces pombe which encodes a type-II myosin heavy chain. myo3 null cells showed a defect in cytokinesis under certain conditions. Overproduction of Myo3 also showed a defect in cytokinesis. Double mutant analysis indicated that Myo3 genetically interacts with Cdc8 tropomyosin and actin. Myo3 may be implicated in cytokinesis and stabilization of F-actin cables. Moreover, the function of Myo2 can be replaced by overexpressed Myo3. We observed a modest synthetic interaction between Myo2 and Myo3. Thus, Myo2 and Myo3 seem to cooperate in the formation of the F-actin ring in S. pombe.  相似文献   

10.
The budding yeast contains two type I myosins, Myo3p and Myo5p, with redundant functions. Deletion of both myosins results in growth defects, loss of actin polarity and polarized cell surface growth, and accumulation of intracellular membranes. Expression of myc-tagged Myo5p in myo3Δ myo5Δ cells fully restores wild-type characteristics. Myo5p is localized as punctate, cortical structures enriched at sites of polarized cell growth. We find that latrunculin-A–induced depolymerization of F-actin results in loss of Myo5p patches. Moreover, incubation of yeast cells at 37°C results in transient depolarization of both Myo5p patches and the actin cytoskeleton. Mutant Myo5 proteins with deletions in nonmotor domains were expressed in myo3Δ myo5Δ cells and the resulting strains were analyzed for Myo5p function. Deletion of the tail homology 2 (TH2) domain, previously implicated in ATP-insensitive actin binding, has no detectable effect on Myo5p function. In contrast, myo3Δ myo5Δ cells expressing mutant Myo5 proteins with deletions of the src homology domain 3 (SH3) or both TH2 and SH3 domains display defects including Myo5p patch depolarization, actin disorganization, and phenotypes associated with actin dysfunction. These findings support a role for the SH3 domain in Myo5p localization and function in budding yeast. The proline-rich protein verprolin (Vrp1p) binds to the SH3 domain of Myo3p or Myo5p in two-hybrid tests, coimmunoprecipitates with Myo5p, and colocalizes with Myo5p. Immunolocalization of the myc-tagged SH3 domain of Myo5p reveals diffuse cytoplasmic staining. Thus, the SH3 domain of Myo5p contributes to but is not sufficient for localization of Myo5p either to patches or to sites of polarized cell growth. Consistent with this, Myo5p patches assemble but do not localize to sites of polarized cell surface growth in a VRP1 deletion mutant. Our studies support a multistep model for Myo5p targeting in yeast. The first step, assembly of Myo5p patches, is dependent upon F-actin, and the second step, polarization of actin patches, requiresVrp1p and the SH3 domain of Myo5p.  相似文献   

11.
Myo2p is a yeast class V myosin that functions in membrane trafficking. To investigate the function of the carboxyl-terminal-tail domain of Myo2p, we have overexpressed this domain behind the regulatable GAL1 promoter (MYO2DN). Overexpression of the tail domain of Myo2p results in a dominant-negative phenotype that is phenotypically similar to a temperature-sensitive allele of myo2, myo2-66. The tail domain of Myo2p is sufficient for localization at low- expression levels and causes mislocalization of the endogenous Myo2p from sites of polarized cell growth. Subcellular fractionation of polarized, mechanically lysed yeast cells reveals that Myo2p is present predominantly in a 100,000 x g pellet. The Myo2p in this pellet is not solubilized by Mg++-ATP or Triton X-100, but is solubilized by high salt. Tail overexpression does not disrupt this fractionation pattern, nor do mutations in sec4, sec3, sec9, cdc42, or myo2. These results show that overexpression of the tail domain of Myo2p does not compete with the endogenous Myo2p for assembly into a pelletable structure, but does compete with the endogenous Myo2p for a factor that is necessary for localization to the bud tip.  相似文献   

12.
Myosin 1b (Myo1b), a class I myosin, is a widely expressed, single-headed, actin-associated molecular motor. Transient kinetic and single-molecule studies indicate that it is kinetically slow and responds to tension. Localization and subcellular fractionation studies indicate that Myo1b associates with the plasma membrane and certain subcellular organelles such as endosomes and lysosomes. Whether Myo1b directly associates with membranes is unknown. We demonstrate here that full-length rat Myo1b binds specifically and with high affinity to phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-triphosphate (PIP3), two phosphoinositides that play important roles in cell signaling. Binding is not Ca2+-dependent and does not involve the calmodulin-binding IQ region in the neck domain of Myo1b. Furthermore, the binding site is contained entirely within the C-terminal tail region, which contains a putative pleckstrin homology domain. Single mutations in the putative pleckstrin homology domain abolish binding of the tail domain of Myo1b to PIP2 and PIP3 in vitro. These same mutations alter the distribution of Myc-tagged Myo1b at membrane protrusions in HeLa cells where PIP2 localizes. In addition, we found that motor activity is required for Myo1b localization in filopodia. These results suggest that binding of Myo1b to phosphoinositides plays an important role in vivo by regulating localization to actin-enriched membrane projections.  相似文献   

13.
UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.  相似文献   

14.
We cloned the myo2 gene of Schizosaccharomyces pombe, which encodes a type II myosin heavy chain, by virtue of its ability to promote diploidization in fission yeast cells. The myo2 gene encodes 1,526 amino acids in a single open reading frame. Myo2p shows homology to the head domains and the coiledcoil tail of the conventional type II myosin heavy chain and carries putative binding sites for ATP and actin. It also carries the IQ motif, which is a presumed binding site for the myosin light chain. However, Myo2p apparently carries only one IQ motif, while its counterparts in other species have two. There are nine proline residues, which should break α-helix, in the COOH-terminal coiled-coil region of Myo2p. Thus, Myo2p is rather unusual as a type II myosin heavy chain. Disruption of myo2 inhibited cell proliferation. myo2Δ cells showed normal punctate distribution of interphase actin, but they produced irregular actin rings and septa and were impaired in cell separation. Overproduction of Myo2p was also lethal, apparently blocking actin relocation. Nuclear division proceeded without actin ring formation and cytokinesis in cells overexpressing Myo2p, giving rise to multinucleated cells with dumbbell morphology. Analysis using tagged Myo2p revealed that Myo2p colocalizes with actin in the contractile ring, suggesting that Myo2p is a component of the ring and responsible for its contraction. Furthermore, genetic evidence suggested that the acto–myosin system may interact with the Ras pathway, which regulates mating and the maintenance of cell morphology in S. pombe.  相似文献   

15.
The Kar3 protein (Kar3p), a protein related to kinesin heavy chain, and the Cik1 protein (Cik1p) appear to participate in the same cellular processes in S. cerevisiae. Phenotypic analysis of mutants indicates that both CIK1 and KAR3 participate in spindle formation and karyogamy. In addition, the expression of both genes is induced by pheromone treatment. In vegetatively growing cells, both Cik1::beta-gal and Kar3::beta-gal fusions localize to the spindle pole body (SPB), and after pheromone treatment both fusion proteins localize to the spindle pole body and cytoplasmic microtubules. The dependence of Cik1p and Kar3p localization upon one another was investigated by indirect immunofluorescence of fusion proteins in pheromone-treated cells. The Cik1p::beta-gal fusion does not localize to the SPB or microtubules in a kar3 delta strain, and the Kar3p::beta-gal fusion protein does not localize to microtubule-associated structures in a cik1 delta strain. Thus, these proteins appear to be interdependent for localization to the SPB and microtubules. Analysis by both the two-hybrid system and co- immunoprecipitation experiments indicates that Cik1p and kar3p interact, suggesting that they are part of the same protein complex. These data indicate that interaction between a putative kinesin heavy chain-related protein and another protein can determine the localization of motor activity and thereby affect the functional specificity of the motor complex.  相似文献   

16.
Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, the timing of ring assembly responds to changes in Myo2p cellular levels and motor activity, and the emergence of tropomyosin-bound actin filaments. Doubling Myo2p levels suppresses defects in ring assembly associated with a tropomyosin mutant, suggesting a role for tropomyosin in maximizing Myo2p function. Correspondingly, tropomyosin increases Myo2p actin affinity and ATPase activity and promotes Myo2p-driven actin filament gliding in motility assays. Tropomyosin achieves this by favoring the strong actin-bound state of Myo2p. This mode of regulation reflects a role for tropomyosin in specifying and stabilizing actomyosin interactions, which facilitates contractile ring assembly in the fission yeast system.  相似文献   

17.
We have previously shown that Stu2p is a microtubule-binding protein and a component of the Saccharomyces cerevisiae spindle pole body (SPB). Here we report the identification of Spc72p, a protein that interacts with Stu2p. Stu2p and Spc72p associate in the two-hybrid system and can be coimmunoprecipitated from yeast extracts. Stu2p and Spc72p also interact with themselves, suggesting the possibility of a multimeric Stu2p-Spc72p complex. Spc72p is an essential component of the SPB and is able to associate with a preexisting SPB, indicating that there is a dynamic exchange between soluble and SPB forms of Spc72p. Unlike Stu2p, Spc72p does not bind microtubules in vitro, and was not observed to localize along microtubules in vivo. A temperature-sensitive spc72 mutation causes defects in SPB morphology. In addition, most spc72 mutant cells lack cytoplasmic microtubules; the few cytoplasmic microtubules that are observed are excessively long, and some of these are unattached to the SPB. spc72 cells are able to duplicate and separate their SPBs to form a bipolar spindle, but spindle elongation and chromosome segregation rarely occur. The chromosome segregation block does not arrest the cell cycle; instead, spc72 cells undergo cytokinesis, producing aploid cells and polyploid cells that contain multiple SPBs.  相似文献   

18.
In Saccharomyces cerevisiae, the unconventional myosin Myo2p is of fundamental importance in polarized growth. We explore the role of the neck region and its associated light chains in regulating Myo2p function. Surprisingly, we find that precise deletion of the six IQ sites in the neck region results in a myosin, Myo2-Δ6IQp, that can support the growth of a yeast strain at 90% the rate of a wild-type isogenic strain. We exploit this mutant in a characterization of the light chains of Myo2p. First, we demonstrate that the localization of calmodulin to sites of polarized growth largely depends on the IQ sites in the neck of Myo2p. Second, we demonstrate that a previously uncharacterized protein, Mlc1p, is a myosin light chain of Myo2p. MLC1 (YGL106w) is an essential gene that exhibits haploinsufficiency. Reduced levels of MYO2 overcome the haploinsufficiency of MLC1. The mutant MYO2-Δ6IQ is able to suppress haploinsufficiency but not deletion of MLC1. We used a modified gel overlay assay to demonstrate a direct interaction between Mlc1p and the neck of Myo2p. Overexpression of MYO2 is toxic, causing a severe decrease in growth rate. When MYO2 is overexpressed, Myo2p is fourfold less stable than in a wild-type strain. High copies of MLC1 completely overcome the growth defects and increase the stability of Myo2p. Our results suggest that Mlc1p is responsible for stabilizing this myosin by binding to the neck region.  相似文献   

19.
In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin.  相似文献   

20.
Budding yeast possesses one myosin-II, Myo1p, whereas fission yeast has two, Myo2p and Myp2p, all of which contribute to cytokinesis. We find that chimeras consisting of Myo2p or Myp2p motor domains fused to the tail of Myo1p are fully functional in supporting budding yeast cytokinesis. Remarkably, the tail alone of budding yeast Myo1p localizes to the contractile ring, supporting both its constriction and cytokinesis. In contrast, fission yeast Myo2p and Myp2p require both the catalytic head domain as well as tail domains for function, with the tails providing distinct functions (Bezanilla and Pollard, 2000). Myo1p is the first example of a myosin whose cellular function does not require a catalytic motor domain revealing a novel mechanism of action for budding yeast myosin-II independent of actin binding and ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号