共查询到20条相似文献,搜索用时 13 毫秒
1.
K T Trevor 《The New biologist》1990,2(11):1004-1014
The murine keratins Endo B and Endo A, which are homologs of the human keratins K18 and K8, constitute the intermediate filaments (IFs) that are found in all simple epithelia of the adult and in the first epithelial derivatives of the early embryo. The cellular role of simple epithelial keratins in development and differentiation was investigated by inducing filament collapse in HR9 endoderm and F9 embryonal carcinoma cells in which mutant Endo B protein was constitutively expressed. By immunolocalization techniques a perturbation of the keratin network was revealed as well as concomitant disruption of vimentin IFs and displacement of surface desmosomal proteins, demonstrating an intimate structural association of Endo B/A filaments with these cellular components. In aggregates of differentiating F9 cells displaying altered Endo A/B IFs, the formation of a compact, polarized visceral endoderm layer was significantly compromised. These results indicate that an intact keratin network influences the three-dimensional formation of cell-cell or cell-substratum contacts in embryonic visceral endoderm. 相似文献
2.
J A Emerson 《Development (Cambridge, England)》1988,104(2):219-234
The distribution of the cytokeratin network in the intact preimplantation mouse embryo and the role of cytokeratin filaments in trophectoderm differentiation were investigated by means of whole-mount indirect immunofluorescence microscopy and microinjection of anti-cytokeratin antibody. Assembled cytokeratin filaments were detected in some blastomeres as early as the compacted 8-cell stage. The incidence and organization of cytokeratin filaments increased during the morula stage, although individual blastomeres varied in their content of assembled filaments. At the blastocyst stage, each trophectoderm cell contained an intricate network of cytokeratin filaments, and examination of sectioned blastocysts confirmed that extensive arrays of cytokeratin filaments were restricted to cells of the trophectoderm. Microinjection of anticytokeratin antibody into individual mural trophectoderm cells of expanded blastocysts resulted in a dramatic rearrangement of the cytokeratin network in these cells. Moreover, antibody injection into 2-cell embryos inhibited assembly of the cytokeratin network during the next two days of development. Despite this disruption of cytokeratin assembly, the injected embryos compacted and developed into blastocysts with normal morphology and nuclear numbers. These results suggest that formation of an elaborate cytokeratin network in preimplantation mouse embryos is unnecessary for the initial stages of trophectoderm differentiation resulting in blastocyst formation. 相似文献
3.
4.
Identification of novel principles of keratin filament network turnover in living cells 总被引:8,自引:0,他引:8 下载免费PDF全文
It is generally assumed that turnover of the keratin filament system occurs by exchange of subunits along its entire length throughout the cytoplasm. We now present evidence that a circumscribed submembranous compartment is actually the main site for network replenishment. This conclusion is based on the following observations in living cells synthesizing fluorescent keratin polypeptides: 1) Small keratin granules originate in close proximity to the plasma membrane and move toward the cell center in a continuous motion while elongating into flexible rod-like fragments that fuse with each other and integrate into the peripheral KF network. 2) Recurrence of fluorescence after photobleaching is first seen in the cell periphery where keratin filaments are born that translocate subsequently as part of the network toward the cell center. 3) Partial keratin network reformation after orthovanadate-induced disruption is restricted to a distinct peripheral zone in which either keratin granules or keratin filaments are transiently formed. These findings extend earlier investigations of mitotic cells in which de novo keratin network formation was shown to originate from the cell cortex. Taken together, our results demonstrate that the keratin filament system is not homogeneous but is organized into temporally and spatially distinct subdomains. Furthermore, the cortical localization of the regulatory cues for keratin filament turnover provides an ideal way to adjust the epithelial cytoskeleton to dynamic cellular processes. 相似文献
5.
Immunofluorescence microscopy was used to follow the rearrangement of keratin filaments and vimentin filaments during mitosis in Vero and HeLa cell lines. The experiment results showed that the three dimensional organization and structure of intermediate filaments changed drastically during mitosis. The behavior of intermediate filaments was different in these two epithelial cell lines. In mitotic Vero cells the keratin filaments and vimentin filaments maintained their filamentous structure and formed a cage around the mitotic apparatus. In mitotic HeLa cells the keratin filaments and vimentin filaments reorganized extensively and formed granular cytoplasmic bodies. The ratio of granular cytoplasmic body formation changed in different mitotic phase. The interphase intermediate filament network was reconstructed after mitosis. It is proposed that the state of intermediate filament network in these cells is cell cycle-dependent and intermediate filaments may have some skeletal role in mitosis. 相似文献
6.
Avian feathers have a filament-matrix texture and X-ray diffraction studies show that the filament has a helical structure with four repeating units per turn. Each repeating unit consists of a pair of twisted beta-sheets related by a perpendicular diad, and the twist in the sheets is of opposite hand to that of the helix. Each sheet is believed to comprise a 32-residue segment of the feather keratin molecule, which contains around 100 residues, the remainder constituting the matrix. In the present contribution, the sequence of emu feather is mapped to the low-resolution model derived earlier from X-ray studies. This shows that the inner surface of the "beta-sandwich" is densely populated by hydrophobic residues and that the charged residues and cysteine residues lie on the outer surface. In addition, the inner residues in the repeating unit mesh neatly together in layers oriented perpendicular to the filament axis. Amino acid sequences from a range of avian and reptilian keratins were collected and a 32-residue segment corresponding to the filament framework could be identified in every case, supporting the notion that there is a common plan for the filament framework in all of these materials. The hairpin turns in the beta-sheet were also identified and shown to be unusually rich in proline residues and also of variable composition. Two variants of the mapping were found which have complimentary conformations of the hairpin turns and these are illustrated and discussed. Since feather keratin yields a fiber rather than a crystalline X-ray pattern refinement of the model is restricted to trial-and-error methods and the assumptions made in its derivation are critically examined and some possible modifications discussed. 相似文献
7.
Cytokinesis is asymmetric along the apical–basal axis of epithelial cells, positioning the midbody near the apical domain. However, little is known about the mechanism and purpose of this asymmetry. We use live imaging of Drosophila follicle cell division to show that asymmetric cytokinesis does not result from intrinsic polarization of the main contractile ring components. We show that adherens junctions (AJs) maintain close contact with the apical side of the contractile ring during cytokinesis. Asymmetric distribution of AJ components within follicle cells and in the otherwise unpolarized S2 cells is sufficient to recruit the midbody, revealing that asymmetric cytokinesis is determined by apical AJs in the epithelia. We further show that ectopic midbody localization induces epithelial invaginations, shifting the position of the apical interface between daughter cells relative to the AB axis of the tissue. Thus, apical midbody localization is essential to maintain epithelial tissue architecture during proliferation. 相似文献
8.
Because of extraordinarily tight coiled-coil associations of type I and type II keratins, the composition and structure of keratin subunits has been difficult to determine. We report here the use of novel genetic and biochemical methods to explore the early stages of keratin filament assembly. Using bacterially expressed humans K5 and K14, we show that remarkably, these keratins behave as 1:1 complexes even in 9 M urea and in the presence of a reducing agent. Gel filtration chromatography and chemical cross-linking were used to identify heterodimers and heterotetramers as the most stable building blocks of keratin filament assembly. EM suggested that the dimer consists of a coiled-coil of K5 and K14 aligned in register and in parallel fashion, and the tetramer consists of two dimers in antiparallel fashion, without polarity. In 4 M urea, both end-to-end and lateral packing of tetramers occurred, leading to a variety of larger heteromeric complexes. The coexistence of multiple, higher-ordered associations under strongly denaturing conditions suggests that there may not be a serial sequence of events leading to the assembly of keratin intermediate filaments, but rather a number of associations may take place in parallel. 相似文献
9.
The organizational fate of intermediate filament networks in two epithelial cell types during mitosis 总被引:10,自引:11,他引:10 下载免费PDF全文
Intermediate filaments (IF) appear to be attached to the nuclear envelope in various mammalian cell types. The nucleus of mouse keratinocytes is enveloped by a cagelike network of keratin-containing bundles of IF (IFB). This network appears to be continuous with the cytoplasmic IFB system that extends to the cell surface. Electron microscopy reveals that the IFB appear to terminate at the level of the nuclear envelope, frequently in association with nuclear pore complexes (Jones, J. C .R., A. E. Goldman, P. Steinert, S. Yuspa, and R. D. Goldman, 1982, Cell Motility, 2:197-213). Based on these observations of nuclear-IF associations, it is of interest to determine the fate and organizational states of IF during mitosis, a period in the cell cycle when the nuclear envelope disassembles. Immunofluorescence microscopy using a monoclonal keratin antibody and electron microscopy of thin and thick sections of mitotic mouse keratinocytes revealed that the IFB system remained intact as the cells entered mitosis and surrounded the developing mitotic spindle. IFB were close to chromosomes and often associated with chromosome arms. In contrast, in HeLa, a human epithelial cell, keratin-containing IFB appear to dissemble as cells enter mitosis (Franke, W. W., E. Schmid, C. Grund, and B. Geiger, 1982, Cell, 30:103-113). The keratin IFB in mitotic HeLa cells appeared to form amorphous nonfilamentous bodies as determined by electron microscopy. However, in HeLa, another IF system composed primarily of a 55,000-mol-wt protein (frequently termed vimentin) appears to remain morphologically intact throughout mitosis in close association with the mitotic apparatus (Celis, J.E., P.M. Larsen, S.J. Fey, and A. Celis, 1983, J. Cell Biol., 97:1429-34). We propose that the mitotic apparatus in both mouse epidermal cells and in HeLa cells is supported and centered within the cell by IFB networks. 相似文献
10.
Aggregation of wool keratin intermediate filament proteins 总被引:1,自引:0,他引:1
E F Woods 《International journal of biological macromolecules》1989,11(5):278-284
The wool keratin intermediate filament proteins were isolated as their S-carboxymethyl derivatives (S-carboxymethylkerateine A, SCMKA) and purified by gel filtration to remove residual non-helical protein of low molecular weight. The alpha-helix content of purified SCMKA was approximately 62% in agreement with that predicted for the alpha-helical coiled-coil segments from the amino acid sequences of the subunits. In aqueous buffer at pH 11 or in n-propanol (20% v/v) at pH 9.2 very large aggregates are dissociated and SCMKA exists largely as a mixture of the dimer (two-chain coiled-coil of Mr approximately 103,000) and the tetramer. The protein species are not in rapidly reversible equilibrium as judged from gel filtration and sedimentation equilibrium. It is probable that species with a range of association constants are present. The equilibrium is shifted towards the dimer with change of pH from 9.2 to 11 or by the addition of 20% (v/v) n-propanol. The tetrameric proteolytic digestion product which is derived from the 1B segment of the alpha-helical rod section of the keratin molecule dissociates in a similar way to intact SCMKA with increase of pH and in the presence of n-propanol. This indicates the importance of this region of the rod domain in the initial stages of the assembly of the filament. Electrostatic and hydrophobic interactions are implicated in the association of the two-chain coiled-coil to the tetramer both in intact SCMKA and the 1B segment tetramer. The results are discussed in relation to the intact dimeric and tetrameric complexes obtained from other intermediate filament types. 相似文献
11.
Vimentin and keratin intermediate filament systems in cultured PtK2 epithelial cells are interrelated. 总被引:11,自引:0,他引:11 下载免费PDF全文
M W Klymkowsky 《The EMBO journal》1982,1(2):161-165
Certain cultured epithelial cells contain separate vimentin and keratin-type intermediate filament networks. The intracellular injection of monoclonal antibodies directed against either vimentin or keratin filaments into PtK2 cultured epithelial cells specifically disrupted the organization of both filament types. Neither antibody had any effect when injected into cells which, while containing vimentin or keratin filaments, lacked the specific filament type which that antibody recognized. These experiments suggest that keratin and vimentin filament networks are associated in some way with one another. 相似文献
12.
Morphology, behavior, and interaction of cultured epithelial cells after the antibody-induced disruption of keratin filament organization 总被引:7,自引:15,他引:7 下载免费PDF全文
The organization of intermediate filaments in cultured epithelial cells was rapidly and radically affected by intracellularly injected monoclonal antikeratin filament antibodies. Different antibodies had different effects, ranging from an apparent splaying apart of keratin filament bundles to the complete disruption of the keratin filament network. Antibodies were detectable within cells for more than four days after injection. The antibody-induced disruption of keratin filament organization had no light-microscopically discernible effect on microfilament or microtubule organization, cellular morphology, mitosis, the integrity of epithelial sheets, mitotic rate, or cellular reintegration after mitosis. Cell-to-cell adhesion junctions survived keratin filament disruption. However, antibody injected into a keratinocyte-derived cell line, rich in desmosomes, brought on a superfasciculation of keratin filament bundles, which appeared to pull desmosomal junctions together, suggesting that desmosomes can move in the plane of the plasma membrane and may only be 'fixed' by their anchoring to the cytoplasmic filament network. Our observations suggest that keratin filaments are not involved in the establishment or maintenance of cell shape in cultured cells. 相似文献
13.
Badock V Steinhusen U Bommert K Wittmann-Liebold B Otto A 《Cell death and differentiation》2001,8(3):308-315
Keratin 15 (K15) and keratin 17 (K17) are intermediate filament (IF) type I proteins that are responsible for the mechanical integrity of epithelial cells. By analyzing the human breast epithelial cell line H184A1 before and after induction of apoptosis by high-resolution two-dimensional gel electrophoresis (2-DE) we identified the caspase-mediated cleavage of keratins 15 and 17. After induction of apoptosis three fragments of both K15 and K17 could be observed by 2 -DE. K15 and K17 proteolysis was observed during staurosporine-induced apoptosis and anoikis (anchorage-dependent apoptosis) as well and was shown to be caspase-dependent. By using mass spectrometry we could determine the caspase cleavage sites, one in K15 and two in K17. The sequence VEMD/A at the cleavage site located in the conserved linker region was found in K15 and K17. A further cleavage site was identified in the tail region of K17 with the recognition motif EVQD/G. 相似文献
14.
A novel biological principle of cell-to-cell interaction based on membrane continuity of nanotubular channels has recently been described. These contacts are extremely dynamic and sensitive to mechanical stress, which causes their rapid breakage and retraction. Here we demonstrate that functional mechanical stress generated during cell division can disrupt membrane nanotubes, which are formed de novo when filopodia-like projections on one cell make contact with a neighbouring cell, using the SW620 colon carcinoma cell line. Considering the general principal of decreasing cell-cell interactions during tumour progression, our observation is appealing because this new phenomenon may be valid for neoplastic cells. 相似文献
15.
Subunit structure of the mouse epidermal keratin filament. 总被引:4,自引:0,他引:4
P M Steinert W W Idler M C Poirier Y Katoh G D Stoner S H Yuspa 《Biochimica et biophysica acta》1979,577(1):11-21
The two proteins which are the subunits of mouse epidermal keratin filaments have been isolated from fully differentiated epidermis (stratum corneum), viable differentiating cells and cells grown in culture. The proteins have molecular weights of 68 000 and 60 000, consist of families of very similar species, have common N-terminal (N-acetylserine) and C-terminal (glycine) residues, contain 35--40% alpha-helix and are immunologically cross-reacting. In mixtures, the two proteins polymerize in vitro into native-type keratin filaments that are 70--80 angstrom in diameter, up to 30 micrograms long, possess a characteristic alpha-type X-ray diffraction pattern and contain the subunits in the precise molar ratio of 1 : 2 or 2 : 1. 相似文献
16.
Identification of an epithelial protein related to the desmosome and intermediate filament network 下载免费PDF全文
Using a mAb, referred to as 08L, we have identified a protein, of M(r) approximately 140,000, associated with desmosomes of epithelial cells. The 08L antibody stained the intracellular side of lateral cell margins of monolayer epithelial cells but did not stain cell margins free of cell contact. Immunoelectron microscopy revealed that the 08L antigen was localized to the cytosolic surface of the desmosomal plaque near points of intermediate filament convergence with apparently little staining of the desmosomal plaque proper. Western blots revealed the 08L antigen to be a protein, of M(r) approximately 140,000, found in the Triton-X 100 insoluble pellet. High salt-containing buffers extracted the 08L antigen from the insoluble material. Examination of the assembly of 08L to the desmosome complex, in cells grown in low confluent culture or in calcium-switch assays, by double immunofluorescence with 08L and anti-desmoplakin antibody, revealed that 08L was recruited to morphologically identifiable desmosomes. 08L antigen may exist in a cytosolic pool prior to assembly to the cell surface. The solubility of 08L in low calcium and normal calcium conditions, however, was similar. 08L association to the desmosome was correlated with increased organization of the intermediate filament network. We suggest that the 08L antigen may be involved in the organization and stabilization of the desmosome-IF complexes of epithelia. 相似文献
17.
Loren W. Knapp W. Michael O'Guin Roger H. Sawyer Diane Mitchell Clive L. Bunn 《Experimental cell research》1985,156(2)
The intermediate filament composition of differentiated vertebrate cells provides a stable phenotype which appears to be specifically regulated in each cell type. In order to analyse the regulation of intermediate filament expression we have constructed human somatic cell hybrids from the fusion of the HeLa-derived cell line HEB7A and a normal human diploid fibroblast, GM2291. These parental cells differ with respect to the presence or absence of keratin intermediate filaments. Isolation of independently arising clones produced two classes of hybrids. One class expresses keratin in a stable manner and the other class lacks keratin altogether. Indirect immunofluorescence of hybrid cells using antikeratin antiserum demonstrates that there are variations in the intensity and organization of cytoskeletal keratin staining. SDS-PAGE comparisons of cell extracts from these hybrids indicates that there are quantitative differences in the relative amounts of individual keratin polypeptides as well. These clonal variations have allowed us to begin assessing the consequences of genetic interactions between cell types that are normally capable of closely regulating different subsets of intermediate filament genes. 相似文献
18.
19.
P M Steinert 《Journal of molecular biology》1978,123(1):49-70
The characteristic α-type X-ray diffraction pattern displayed by bovine epidermal keratin filaments can be ascribed to the presence of segments of triple-chain coiled coil α-helix in the repeating three-chain unit of the filaments.Limited proteolysis of filaments polymerized in vitro or a citrate-soluble protein derived from them with crystalline trypsin releases two types of α-helix-enriched particles which provide information on the structure of the three-chain unit. The smaller, particle 2, of molecular weight 42,500, α-helix content of 92% and dimensions of 180 Å × 20 Å, consists of three chains aligned side-by-side that presumably form a coiled coil. The high yields of particle 2 allow the conclusion that all of the α-helix of the epidermal keratin filament is present in the form of these discrete three-chain α-helical segments. The larger, particle 1, recovered during the earlier stages of digestion has a molecular weight of 100,000 to 110,000, α-helix content of 75%, average dimensions of 400 Å × 20 Å and also consists of three chains aligned side-by-side. It contains two α-helical segments corresponding to particle 2 which are located at the amino -terminal and carboxyl-terminal ends and are separated by a region of non-helix. Particle 1 contains all of the α-helix and therefore is the major portion of the three-chain unit of the keratin filament. The products resulting from reaction of intact filament subunits with N-bromosuccinimide suggest that particle 1 is formed during digestion by removal of regions of non-helix from each end of this unit.The structure of the three-chain unit of the bovine epidermal keratin filament may thus be viewed as three polypeptide subunits aligned side-by-side with two discrete coiled coil α-helical segments interspersed with regions of non-helix. 相似文献
20.