首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
ySWI/SNF complex belongs to a family of enzymes that use the energy of ATP hydrolysis to remodel chromatin structure. Here we examine the role of DNA topology in the mechanism of ySWI/SNF remodeling. We find that the ability of ySWI/SNF to enhance accessibility of nucleosomal DNA is nearly eliminated when DNA topology is constrained in small circular nucleosomal arrays and that this inhibition can be alleviated by topoisomerases. Furthermore, we demonstrate that remodeling of these substrates does not require dramatic histone octamer movements or displacement. Our results suggest a model in which ySWI/SNF remodels nucleosomes by using the energy of ATP hydrolysis to drive local changes in DNA twist.  相似文献   

4.
5.
6.
Elucidating the mechanism of ATP-dependent chromatin remodeling is one of the largest challenges in the field of gene regulation. One of the missing pieces in understanding this process is detailed structural information on the enzymes that catalyze the remodeling reactions. Here we use a combination of subunit radio-iodination and scanning transmission electron microscopy to determine the subunit stoichiometry and native molecular weight of the yeast SWI/SNF complex. We also report a three-dimensional reconstruction of yeast SWI/SNF derived from electron micrographs.  相似文献   

7.
Protein complexes of the SWI/SNF family remodel nucleosome structure in an ATP-dependent manner. Each complex contains between 8 and 15 subunits, several of which are highly conserved between yeast, Drosophila, and humans. We have reconstituted an ATP-dependent chromatin remodeling complex using a subset of conserved subunits. Unexpectedly, both BRG1 and hBRM, the ATPase subunits of human SWI/SNF complexes, are capable of remodeling mono-nucleosomes and nucleosomal arrays as purified proteins. The addition of INI1, BAF155, and BAF170 to BRG1 increases remodeling activity to a level comparable to that of the whole hSWI/SNF complex. These data define the functional core of the hSWI/SNF complex.  相似文献   

8.
9.
10.
The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease.To realize the full potential of CPCs for therapeutic purposes,it is essenti...  相似文献   

11.
By regulating the structure of chromatin, ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in the maintenance, transmission and expression of the eukaryotic genome. Although all known chromatin-remodeling complexes contain an ATPase as a central motor subunit, a number of distinct classes have been recognized. Recent studies have emphasized a more extensive functional diversification among closely related chromatin remodeling complexes than previously anticipated. Here, we discuss recent insights in the functional differences between two evolutionary conserved subclasses of SWI/SNF-related chromatin remodeling factors. One subfamily comprises yeast SWI/SNF, fly BAP and mammalian BAF, whereas the other subfamily includes yeast RSC, fly PBAP and mammalian PBAF. We review the subunit composition, conserved protein modules and biological functions of each of these subclasses of SWI/SNF remodelers. In particular, we will focus on the roles of specific subunits in developmental gene control and human diseases. Recent findings suggest that functional diversification among SWI/SNF complexes allows the eukaryotic cell to fine-tune and integrate the execution of diverse biological programs involving the expression, maintenance and duplication of its genome.  相似文献   

12.
Dissecting the molecular mechanisms that guide the proper development of epicardial cell lineages is critical for understanding the etiology of both congenital and adult forms of human cardiovascular disease. In this study, we describe the function of BAF180, a polybromo protein in ATP-dependent SWI/SNF chromatin remodeling complexes, in coronary development. Ablation of BAF180 leads to impaired epithelial-to-mesenchymal-transition (EMT) and arrested maturation of epicardium around E11.5. Three-dimensional collagen gel assays revealed that the BAF180 mutant epicardial cells indeed possess significantly compromised migrating and EMT potentials. Consequently, the mutant hearts form abnormal surface nodules and fail to develop the fine and continuous plexus of coronary vessels that cover the entire ventricle around E14. PECAM and α-SMA staining assays indicate that these nodules are defective structures resulting from the failure of endothelial and smooth muscle cells within them to form coronary vessels. PECAM staining also reveal that there are very few coronary vessels inside the myocardium of mutant hearts. Consistent with this, quantitative RT-PCR analysis indicate that the expression of genes involved in FGF, TGF, and VEGF pathways essential for coronary development are down-regulated in mutant hearts. Together, these data reveal for the first time that BAF180 is critical for coronary vessel formation.  相似文献   

13.
14.
15.
16.
17.
18.
The ATPase subunits of the SWI/SNF chromatin remodeling enzymes, Brahma (BRM) and Brahma‐related gene 1 (BRG1), can induce cell cycle arrest in BRM and BRG1 deficient tumor cell lines, and mice heterozygous for Brg1 are pre‐disposed to breast tumors, implicating loss of BRG1 as a mechanism for unregulated cell proliferation. To test the hypothesis that loss of BRG1 can contribute to breast cancer, we utilized RNA interference to reduce the amounts of BRM or BRG1 protein in the nonmalignant mammary epithelial cell line, MCF‐10A. When grown in reconstituted basement membrane (rBM), these cells develop into acini that resemble the lobes of normal breast tissue. Contrary to expectations, knockdown of either BRM or BRG1 resulted in an inhibition of cell proliferation in monolayer cultures. This inhibition was strikingly enhanced in three‐dimensional rBM culture, although some BRM‐depleted cells were later able to resume proliferation. Cells did not arrest in any specific stage of the cell cycle; instead, the cell cycle length increased by approximately 50%. Thus, SWI/SNF ATPases promote cell cycle progression in nonmalignant mammary epithelial cells. J. Cell. Physiol. 223:667–678, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Complete deficiency in activity-dependent neuroprotective protein (ADNP), a heterochromatin 1-binding protein, results in dramatic changes in gene expression, neural tube closure defects, and death at gestation day 9 in mice. To further understand the cellular roles played by ADNP, the HEK293 human embryonic kidney cell line that allows efficient transfection with recombinant DNA was used as a model for the identification of ADNP-interacting proteins. Recombinant green fluorescent protein (GFP)-ADNP was localized to cell nuclei. When nuclear extracts were subjected to immunoprecipitation with specific GFP antibodies followed by polyacrylamide gel electrophoresis, several minor protein bands were observed in addition to GFP-ADNP. In-gel protein digests followed by mass spectrometry identified BRG1, BAF250a, and BAF170, all components of the SWI/SNF (mating type switching/sucrose nonfermenting) chromatin remodeling complex, as proteins that co-immunoprecipitate with ADNP. These results were verified utilizing BRG1 antibodies. ADNP short hairpin RNA down-regulation resulted in microtubule reorganization and changes in cell morphology including reduction in cell process formation and cell number. These morphological changes are closely associated with the SWI/SNF complex multifunctionality. Taken together, the current study uncovers a molecular basis for the essential function of the ADNP gene and protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号